Homework 9

1. Section 17

17.1 Let $f(x)=\sqrt{4-x}$ for $x \leq 4$ and $g(x)=x^{2}$ for all $x \in \mathbb{R}$.
(a) Give the domains of $f+g, f g, f \circ g$ and $g \circ f$.
(b) Find the values $f \circ g(0), g \circ f(0), f \circ g(1), g \circ f(1), f \circ g(2)$ and $g \circ f(2)$.
(c) Are the functions $f \circ g$ and $g \circ f$ equal?
(d) Are $f \circ g(3)$ and $g \circ f(3)$ meaningful?
17.3 Accept on faith that the following familiar functions are continuous on their domains: $\sin x, \cos x$, $e^{x}, 2^{x}, \log _{e} x$ for $x>0, x^{p}$ for $x>0[p$ any real number $]$. Use these facts and theorems in this section to prove the following functions are also continuous.
(a) $\log _{e}\left(1+\cos ^{4} x\right)$
(e) $\tan x$ for $x \neq$ odd multiple of $\frac{\pi}{2}$. (f) $x \sin \frac{1}{x}$ for $x \neq 0$.
17.4 Prove the function \sqrt{x} is continuous on its domain $[0, \infty)$. Hint: Apply Example 5 in Section 8.
17.6 A rational function is a function f of the form p / q where p and q are polynomial functions. The domain of f is $\{x \in \mathbb{R}: q(x) \neq 0\}$. Prove every rational function is continuous. Hint: Use Exercise 17.5.
17.7 (a) Observe that if $k \in \mathbb{R}$, then the function $g(x)=k x$ is continuous by Exercise 17.5.
(b) Prove $|x|$ is a continuous function on \mathbb{R}.
(c) Use (a) and (b) and Theorem 17.5 to give another proof of Theorem 17.3.
17.9 Prove each of the following functions in continuous at x_{0} by verifying the $\varepsilon-\delta$ property of Theorem 17.2.
(a) $f(x)=x^{2}, x_{0}=2$;
(b) $f(x)=\sqrt{x}, x_{0}=0$;
(c) $f(x)=x \sin \left(\frac{1}{x}\right)$ for $x=0$ and $f(0)=0, x_{0}=0$;
17.10 Prove the following functions are discontinuous at the indicated points. You may use either Definition 17.1 or the $\varepsilon-\delta$ property in Theorem 17.2.
(a) $f(x)=1$ for $x>0$ and $f(x)=0$ for $x \leq 0, x_{0}=0$;
(b) $g(x)=\sin \left(\frac{1}{x}\right)$ for $x=0$ and $g(0)=0, x 0=0$;
(c) $\operatorname{sgn}(x)=-1$ for $x<0, \operatorname{sgn}(x)=1$ for $x>0$, and $\operatorname{sgn}(0)=0, x_{0}=0$. The function sgn is called the signum function; note $\operatorname{sgn}(x)=\frac{x}{|x|}$ for $x=0$.
17.12 (a) Let f be a continuous real-valued function with domain (a, b). Show that if $f(r)=0$ for each rational number r in (a, b), then $f(x)=0$ for all $x \in(a, b)$.
(b) Let f and g be continuous real-valued functions on (a, b) such that $f(r)=g(r)$ for each rational number r in (a, b). Prove $f(x)=g(x)$ for all $x \in(a, b)$. Hint: Use part (a).
17.13 (a) Let $f(x)=1$ for rational numbers x and $f(x)=0$ for irrational numbers. Show f is discontinuous at every x in \mathbb{R}.
(b) Let $h(x)=x$ for rational numbers x and $h(x)=0$ for irrational numbers. Show h is continuous at $x=0$ and at no other point.

