Homework 9

1. Section 17

- 17.1 Let $f(x) = \sqrt{4-x}$ for $x \le 4$ and $g(x) = x^2$ for all $x \in \mathbb{R}$.
 - (a) Give the domains of f + g, fg, $f \circ g$ and $g \circ f$.
 - (b) Find the values $f \circ g(0)$, $g \circ f(0)$, $f \circ g(1)$, $g \circ f(1)$, $f \circ g(2)$ and $g \circ f(2)$.
 - (c) Are the functions $f \circ g$ and $g \circ f$ equal?
 - (d) Are $f \circ g(3)$ and $g \circ f(3)$ meaningful?
- 17.3 Accept on faith that the following familiar functions are continuous on their domains: $\sin x$, $\cos x$, e^x , 2^x , $\log_e x$ for x > 0, x^p for x > 0 [p any real number]. Use these facts and theorems in this section to prove the following functions are also continuous. (a) $\log_e(1 + \cos^4 x)$
 - (e) $\tan x$ for $x \neq$ odd multiple of $\frac{\pi}{2}$. (f) $x \sin \frac{1}{x}$ for $x \neq 0$.
- 17.4 Prove the function \sqrt{x} is continuous on its domain $[0, \infty)$. *Hint*: Apply Example 5 in Section 8.
- 17.6 A rational function is a function f of the form p/q where p and q are polynomial functions. The domain of f is $\{x \in \mathbb{R} : q(x) \neq 0\}$. Prove every rational function is continuous. *Hint*: Use Exercise 17.5.
- 17.7 (a) Observe that if $k \in \mathbb{R}$, then the function g(x) = kx is continuous by Exercise 17.5.
 - (b) Prove |x| is a continuous function on \mathbb{R} .
 - (c) Use (a) and (b) and Theorem 17.5 to give another proof of Theorem 17.3.
- 17.9 Prove each of the following functions in continuous at x_0 by verifying the $\varepsilon \delta$ property of Theorem 17.2.
 - (a) $f(x) = x^2, x_0 = 2;$
 - (b) $f(x) = \sqrt{x}, x_0 = 0;$
 - (c) $f(x) = x \sin(\frac{1}{x})$ for x = 0 and $f(0) = 0, x_0 = 0$;
- 17.10 Prove the following functions are discontinuous at the indicated points. You may use either Definition 17.1 or the $\varepsilon \delta$ property in Theorem 17.2.
 - (a) f(x) = 1 for x > 0 and f(x) = 0 for $x \le 0, x_0 = 0$;
 - (b) $g(x) = \sin(\frac{1}{x})$ for x = 0 and g(0) = 0, x0 = 0;
 - (c) $\operatorname{sgn}(x) = -1$ for x < 0, $\operatorname{sgn}(x) = 1$ for x > 0, and $\operatorname{sgn}(0) = 0$, $x_0 = 0$. The function sgn is called the signum function; note $\operatorname{sgn}(x) = \frac{x}{|x|}$ for x = 0.
- 17.12 (a) Let f be a continuous real-valued function with domain (a, b). Show that if f(r) = 0 for each rational number r in (a, b), then f(x) = 0 for all $x \in (a, b)$.
 - (b) Let f and g be continuous real-valued functions on (a, b) such that f(r) = g(r) for each rational number r in (a, b). Prove f(x) = g(x) for all $x \in (a, b)$. Hint: Use part (a).
- 17.13 (a) Let f(x) = 1 for rational numbers x and f(x) = 0 for irrational numbers. Show f is discontinuous at every x in \mathbb{R} .
 - (b) Let h(x) = x for rational numbers x and h(x) = 0 for irrational numbers. Show h is continuous at x = 0 and at no other point.