Homework 7

1. Section 14

- 14.1 Determine which of the following series converge. Justify your answers.
 - (a) $\sum \frac{n^4}{2^n}$ (d) $\sum \frac{n!}{n^4+3}$ (e) $\sum \frac{\cos^2 n}{n^2}$
- 14.2 Repeat Exercise 14.1 for the following.
 - (a) $\sum \frac{n-1}{n^2}$ (e) $\sum \frac{n^2}{n!}$ (g) $\sum \frac{n}{2^n}$
- 14.3 Repeat Exercise 14.1 for the following.
 - (a) $\sum \frac{1}{\sqrt{n!}}$ (c) $\sum \frac{1}{2^n + \sqrt{n}}$ (e) $\sum \sin(\frac{n\pi}{9})$
- 14.4 Repeat Exercise 14.1 for the following. (a) $\sum \frac{1}{(n+(-1)^n)^2}$ (b) $\sum [\sqrt{n+1} - \sqrt{n}]$
- 14.6 (a) Prove that if $\sum |a_n|$ converges and (b_n) is a bounded sequence, then $\sum a_n b_n$ converges. Hint: Use Theorem 14.4. (b) Observe that Corollary 14.7 is a special case of part (a).
- 14.7 Prove that if $\sum a_n$ is a convergent series of nonnegative numbers and p > 1, then $\sum a_n^p$ converges.
- 14.8 Show that if $\sum a_n$ and $\sum b_n$ are convergent series of nonnegative numbers, then $\sum \sqrt{a_n b_n}$ converges. *Hint*: Show $\sqrt{a_n b_n} \le a_n + b_n$ for all n.
- 4.10 Find a series $\sum a_n$ which diverges by the Root Test but for which the Ratio Test gives no information. Compare Example 8.
- 14.12 Let $(a_n)_{n\in\mathbb{N}}$ be a sequence such that $\liminf |a_n| = 0$. Prove there is a subsequence $(a_{n_k})_{k\in\mathbb{N}}$ such that $\sum_{k=1}^{\infty} a_{n_k}$ converges.
- 14.14 Prove $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges by comparing with the series $\sum_{n=2}^{\infty} a_n$ where (a) is the sequence $\left(\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{16},\frac{1}{16},\frac{1}{16},\frac{1}{16},\frac{1}{16},\frac{1}{16},\frac{1}{16},\frac{1}{16},\frac{1}{16},\frac{1}{16},\frac{1}{32},\frac{1}{32},\dots\right)$