Homework 6

1. Section 11

11.8 Use Definition 10.6 and Exercise 5.4 to prove $\liminf s_{n}=-\lim \sup \left(-s_{n}\right)$ for every sequence $\left(s_{n}\right)$.
11.9 (a) Show the closed interval $[a, b]$ is a closed set.
(b) Is there a sequence $\left(s_{n}\right)$ such that $(0,1)$ is its set of subsequential limits?
2. SECTION 12
12.2 Prove $\limsup \left|s_{n}\right|=0$ if and only if $\lim s_{n}=0$.
12.4 Show $\lim \sup \left(s_{n}+t_{n}\right) \leq \lim \sup s_{n}+\limsup t_{n}$ for bounded sequences $\left(s_{n}\right)$ and $\left(t_{n}\right)$. Hint: First show $\sup \left\{s_{n}+t_{n} n>N\right\} \leq \sup \left\{s_{n}: n>N\right\}+\sup \left\{t_{n}: n>N\right\}$. Then apply Exercise 9.9(c).
12.6 Let $\left(s_{n}\right)$ be a bounded sequence, and let k be a nonnegative real number.
(a) Prove $\lim \sup \left(k s_{n}\right)=k \cdot \lim \sup s_{n}$.
(b) Do the same for liminf. Hint: Use Exercise 11.8.
(c) What happens in (a) and (b) if $k<0$?
12.8 Let $\left(s_{n}\right)$ and $\left(t_{n}\right)$ be bounded sequences of nonnegative numbers. Prove $\lim \sup s_{n} t_{n} \leq\left(\lim \sup s_{n}\right)\left(\lim \sup t_{n}\right)$.
12.9 (a) Prove that if $\lim s_{n}=+\infty$ and $\liminf t_{n}>0$, then $\lim s_{n} t_{n}=+\infty$.
(b) Prove that if $\lim \sup s_{n}=+\infty$ and $\lim \inf t_{n}>0$, then $\limsup s_{n} t_{n}=+\infty$.
(c) Observe that Exercise 12.7 is the special case of (b) where $t_{n}=k$ for all $n \in \mathbb{N}$.
12.10 Prove $\left(s_{n}\right)$ is bounded if and only if $\limsup \left|s_{n}\right|<+\infty$.
12.11 Prove the first inequality in Theorem 12.2.

