Homework 6

1. Section 11

- 11.8 Use Definition 10.6 and Exercise 5.4 to prove $\liminf s_n = -\limsup (-s_n)$ for every sequence (s_n) .
- (a) Show the closed interval [a, b] is a closed set.
 (b) Is there a sequence (s_n) such that (0, 1) is its set of subsequential limits?

$2. \ \mathrm{Section} \ 12$

12.2 Prove $\limsup |s_n| = 0$ if and only if $\lim s_n = 0$.

- 12.4 Show $\limsup(s_n + t_n) \le \limsup s_n + \limsup t_n$ for bounded sequences (s_n) and (t_n) . *Hint*: First show $\sup\{s_n + t_n n > N\} \le \sup\{s_n : n > N\} + \sup\{t_n : n > N\}$. Then apply Exercise 9.9(c).
- 12.6 Let (s_n) be a bounded sequence, and let k be a nonnegative real number.
 - (a) Prove $\limsup(ks_n) = k \cdot \limsup s_n$.
 - (b) Do the same for lim inf. *Hint:* Use Exercise 11.8.
 - (c) What happens in (a) and (b) if k < 0?
- 12.8 Let (s_n) and (t_n) be bounded sequences of nonnegative numbers. Prove $\limsup s_n t_n \leq (\limsup s_n)(\limsup t_n)$.
- 12.9 (a) Prove that if $\lim s_n = +\infty$ and $\liminf t_n > 0$, then $\lim s_n t_n = +\infty$. (b) Prove that if $\limsup s_n = +\infty$ and $\liminf t_n > 0$, then $\limsup s_n t_n = +\infty$. (c) Observe that Exercise 12.7 is the special case of (b) where $t_n = k$ for all $n \in \mathbb{N}$.
- 12.10 Prove (s_n) is bounded if and only if $\limsup |s_n| < +\infty$.
- 12.11 Prove the first inequality in Theorem 12.2.