Homework 5

1. Section 11

11.2 Consider the sequences defined as follows:

$$
a_{n}=(-1)^{n}, \quad b_{n}=\frac{1}{n}, \quad c_{n}=n^{2}, \quad d_{n}=\frac{6 n+4}{7 n-3} .
$$

(a) For each sequence, give an example of a monotone subsequence.
(b) For each sequence, give its set of subsequential limits.
(c) For each sequence, give its lim sup and liminf.
(d) Which of the sequences converges? diverges to $+\infty$? diverges to $-\infty$?
(e) Which of the sequences is bounded?
11.3 Repeat Exercise 11.2 for the sequences:

$$
s_{n}=\cos \left(\frac{n \pi}{3}\right), \quad t_{n}=\frac{3}{4 n+1}, \quad u_{n}=\left(-\frac{1}{2}\right)^{n}, \quad v_{n}=(-1)^{n}+\frac{1}{n} .
$$

11.6 Show every subsequence of a subsequence of a given sequence is itself a subsequence of the given sequence. Hint: Define subsequences as in (3) of Definition 11.1.

2. Supplement Homework

S1. Give an example of each of the following, or prove that such a request is impossible.
(a) A sequence that does not contain 0 or 1 as a term but contains subsequences converging to each of these values.
(b) A monotone sequence that diverges but has a convergent subsequence.
(c) A sequence that contains subsequences converging to every point in the infinite set $\{1,1 / 2,1 / 3,1 / 4,1 / 5, \ldots\}$.
(d) An unbounded sequence with a convergent subsequence.
(e) A sequence that has a subsequence that is bounded but contains no subsequence that converges.

