HOMEWORK 5

1. SEcTION 11

11.2 Consider the sequences defined as follows:
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(a) For each sequence, give an example of a monotone subsequence.

(b) For each sequence, give its set of subsequential limits.

(¢) For each sequence, give its lim sup and lim inf.

(d) Which of the sequences converges? diverges to +o0o0? diverges to —oo?
(e) Which of the sequences is bounded?

11.3 Repeat Exercise 11.2 for the sequences:
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11.6 Show every subsequence of a subsequence of a given sequence is itself a subsequence of the given
sequence. Hint: Define subsequences as in (3) of Definition 11.1.

2. SUPPLEMENT HOMEWORK

S1. Give an example of each of the following, or prove that such a request is impossible.
(a) A sequence that does not contain 0 or 1 as a term but contains subsequences converging to each
of these values.
(b) A monotone sequence that diverges but has a convergent subsequence.
(c) A sequence that contains subsequences converging to every point in the infinite set {1,1/2,1/3,1/4,1/5,...}.
(d) An unbounded sequence with a convergent subsequence.
(e) A sequence that has a subsequence that is bounded but contains no subsequence that converges.



