Homework 4

1. Section 9

9.9 Suppose there exists N_0 such that $s_n \leq t_n$ for all $n > N_0$.

(a) Prove that if $\lim s_n = +\infty$, then $\lim t_n = +\infty$.

- (c) Prove that if $\lim s_n$ and $\lim t_n$ exist, then $\lim s_n \leq \lim t_n$.
- 9.12 Assume all $s_n \neq 0$ and that the limit $L = \lim_{n \to \infty} |\frac{s_{n+1}}{s_n}|$ exists. (a) Show that if L < 1, then $\lim_{n \to \infty} s_n = 0$. *Hint*: Select a so that L < a < 1 and obtain N so that $|s_{n+1}| < a|s_n|$ for $n \ge N$. Then show $|s_n| < a^{n-N}|s_N|$ for n > N. (b) Show that if L > 1, then $\lim |s_n| = +\infty$. *Hint:* Apply (a) to the sequence $t_n = \frac{1}{|s_n|}$; see Theorem 9.10.
- 9.14 Let p > 0. Use Exercise 9.12 to show

$$\lim_{n \to \infty} \frac{a^n}{n^p} = \begin{cases} 0 & \text{if } |a| \le 1\\ +\infty & \text{if } a > 1\\ \text{does not exist} & \text{if } a < -1. \end{cases}$$

Hint: For the a > 1 case, use Exercise 9.12(b).

9.16 Use Theorems 9.9 and 9.10 or Exercises 9.9–9.15 to prove the following: (a) $\lim \frac{n^4 + 8n}{n^2 + 9} = +\infty$

b)
$$\lim[\frac{2^n}{n^2} + (-1)^n] = +\infty$$

2. Section 10

- 10.1 Which of the following sequences are increasing? decreasing? bounded?
 - (b) $\frac{(-1)^n}{n^2}$ (d) $\sin(\frac{n}{7})$ (f) $\frac{n}{3^n}$. (a) $\frac{1}{n}$ (c) n^5
 - (e) $(-2)^n$
- 10.2 Prove Theorem 10.2 for bounded decreasing sequences.
- 10.4 Discuss why Theorems 10.2 and 10.11 would fail if we restricted our world of numbers to the set \mathbb{Q} of rational numbers.
- 10.5 Prove Theorem 10.4(ii).
- 10.7 Let S be a bounded nonempty subset of \mathbb{R} such that sup S is not in S. Prove there is a sequence (s_n) of points in S such that $\lim s_n = \sup S$. See also Exercise 1.11.
- 10.10 Let $s_1 = 1$ and $s_{n+1} = \frac{1}{3}(s_n + 1)$ for $n \ge 1$.
 - (a) Find s_2 , s_3 and s_4 .
 - (b) Use induction to show $s_n > \frac{1}{2}$ for all n.
 - (c) Show (s_n) is a decreasing sequence.
 - (d) Show $\lim s_n$ exists and find $\lim s_n$.

3. Supplement Homework

- S1. Give an example of each of the following, or argue that such a request is impossible.
 - (a) A Cauchy sequence that is not monotone.
 - (b) A Cauchy sequence with an unbounded subsequence.
 - (c) A divergence monotone sequence with a Cauchy subsequence.
 - (d) An unbounded sequence containing a subsequence that is Cauchy.