Homework 4

1. SECTION 9

9.9 Suppose there exists N_{0} such that $s_{n} \leq t_{n}$ for all $n>N_{0}$.
(a) Prove that if $\lim s_{n}=+\infty$, then $\lim t_{n}=+\infty$.
(c) Prove that if $\lim s_{n}$ and $\lim t_{n}$ exist, then $\lim s_{n} \leq \lim t_{n}$.
9.12 Assume all $s_{n} \neq 0$ and that the limit $L=\lim \left|\frac{s_{n+1}}{s_{n}}\right|$ exists.
(a) Show that if $L<1$, then $\lim s_{n}=0$. Hint: Select a so that $L<a<1$ and obtain N so that $\left|s_{n+1}\right|<a\left|s_{n}\right|$ for $n \geq N$. Then show $\left|s_{n}\right|<a^{n-N}\left|s_{N}\right|$ for $n>N$.
(b) Show that if $L>1$, then $\lim \left|s_{n}\right|=+\infty$. Hint: Apply (a) to the sequence $t_{n}=\frac{1}{\left|s_{n}\right|}$; see Theorem 9.10 .
9.14 Let $p>0$. Use Exercise 9.12 to show

$$
\lim _{n \rightarrow \infty} \frac{a^{n}}{n^{p}}= \begin{cases}0 & \text { if }|a| \leq 1 \\ +\infty & \text { if } a>1 \\ \text { does not exist } & \text { if } a<-1\end{cases}
$$

Hint: For the $a>1$ case, use Exercise 9.12(b).
9.16 Use Theorems 9.9 and 9.10 or Exercises 9.9-9.15 to prove the following:
(a) $\lim \frac{n^{4}+8 n}{n^{2}+9}=+\infty$
(b) $\lim \left[\frac{2^{n}}{n^{2}}+(-1)^{n}\right]=+\infty$

2. SECtion 10

10.1 Which of the following sequences are increasing? decreasing? bounded?
(a) $\frac{1}{n}$
(b) $\frac{(-1)^{n}}{n^{2}}$
(c) n^{5}
(d) $\sin \left(\frac{n}{7}\right)$
(e) $(-2)^{n}$
(f) $\frac{n}{3^{n}}$.
10.2 Prove Theorem 10.2 for bounded decreasing sequences.
10.4 Discuss why Theorems 10.2 and 10.11 would fail if we restricted our world of numbers to the set \mathbb{Q} of rational numbers.
10.5 Prove Theorem 10.4(ii).
10.7 Let S be a bounded nonempty subset of \mathbb{R} such that $\sup S$ is not in S. Prove there is a sequence $\left(s_{n}\right)$ of points in S such that $\lim s_{n}=\sup S$. See also Exercise 1.11.
10.10 Let $s_{1}=1$ and $s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)$ for $n \geq 1$.
(a) Find s_{2}, s_{3} and s_{4}.
(b) Use induction to show $s_{n}>\frac{1}{2}$ for all n.
(c) Show $\left(s_{n}\right)$ is a decreasing sequence.
(d) Show $\lim s_{n}$ exists and find $\lim s_{n}$.

3. Supplement Homework

S1. Give an example of each of the following, or argue that such a request is impossible.
(a) A Cauchy sequence that is not monotone.
(b) A Cauchy sequence with an unbounded subsequence.
(c) A divergence monotone sequence with a Cauchy subsequence.
(d) An unbounded sequence containing a subsequence that is Cauchy.

