## Homework 3

## 1. SECTION 8

8.2 Determine the limits of the following sequences, and then prove your claims.
(a) $\lim _{n \rightarrow \infty} \frac{n}{n^{2}+1}$
(c) $\lim _{n \rightarrow \infty} \frac{4 n+1}{7 n-5}$
8.4 Let $\left(t_{n}\right)$ be a bounded sequence, i.e., there exists $M$ such that $\left|t_{n}\right| \leq M$ for all $n$, and let $\left(s_{n}\right)$ be a sequence such that $\lim s_{n}=0$. Prove $\lim \left(s_{n} t_{n}\right)=0$.
8.5 (a) Consider three sequences $\left(a_{n}\right),\left(b_{n}\right)$ and $\left(s_{n}\right)$ such that $a_{n} \leq s_{n} \leq b_{n}$ for all $n$ and $\lim a_{n}=$ $\lim b_{n}=s$. Prove $\lim s_{n}=s$. This is called the "squeeze lemma."
(b) Suppose $\left(s_{n}\right)$ and $\left(t_{n}\right)$ are sequences such that $\left|s_{n}\right| \leq t_{n}$ for all $n$ and $\lim t_{n}=0$. Prove $\lim s_{n}=0$. 8.6 Let $\left(s_{n}\right)$ be a sequence in $\mathbb{R}$.
(a) Prove $\lim s_{n}=0$ if and only if $\lim \left|s_{n}\right|=0$.
(b) Observe that if $s_{n}=(-1)^{n}$, then $\lim \left|s_{n}\right|$ exists, but $\lim s_{n}$ does not exist.
8.8 Prove the following [see Exercise 7.5]:
(a) $\lim \left[\sqrt{n^{2}+1}-n\right]=0$.
(c) $\lim \left[\sqrt{4 n^{2}+n}-2 n\right]=\frac{1}{4}$.
8.9 Let $\left(s_{n}\right)$ be a sequence that converges.
(a) Show that if $s_{n} \geq a$ for all but finitely many $n$, then $\lim s_{n} \geq a$.
(b) Show that if $s_{n} \leq b$ for all but finitely many $n$, then $\lim s_{n} \leq b$.
(c) Conclude that if all but finitely many $s_{n}$ belong to $[a, b]$, then $\lim s_{n}$ belongs to $[a, b]$.

## 2. SECtion 9

9.2 Suppose $\lim x_{n}=3, \lim y_{n}=7$ and all $y_{n}$ are nonzero. Determine the following limits:
(a) $\lim \left(x_{n}+y_{n}\right)$
(b) $\lim \frac{3 y_{n}-x_{n}}{y_{n}^{2}}$
9.4 Let $s_{1}=1$ and for $n \geq 1$ let $s_{n+1}=\sqrt{s_{n}+1}$.
(a) List the first four terms of $\left(s_{n}\right)$.
(b) It turns out that $\left(s_{n}\right)$ converges. Assume this fact and prove the limit is $\frac{1}{2}(1+\sqrt{5})$
9.6 Let $x_{1}=1$ and $x_{n+1}=3 x_{n}^{2}$ for $n \geq 1$.
(a) Show if $a=\lim x_{n}$, then $a=\frac{1}{3}$ or $a=0$.
(b) Does $\lim x_{n}$ exist? Explain.
(c) Discuss the apparent contradiction between parts (a) and (b).

## 3. Supplement Homework

S1. Give an example of each or state that the request is impossible. For any that are impossible, give a compelling argument for why that is the case.
(a) A sequence with an infinite number of ones that does not converge to one.
(b) A sequence with an infinite number of ones that converges to a limit not equal to one.
(c) A divergent sequence such that for every $n \in \mathbb{N}$ it is possible to find $n$ consecutive ones somewhere in the sequence.
S2. Give an example of each of the following, or state that such a request is impossible by referencing the proper theorem(s):
(a) Sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$, which both diverge, but whose sum $\left(x_{n}+y_{n}\right)_{n \in \mathbb{N}}$ converges.
(b) Sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$, such that $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges, $\left(y_{n}\right)_{n \in \mathbb{N}}$ diverges, and $\left(x_{n}+y_{n}\right)_{n \in \mathbb{N}}$ converges.
(c) A convergent sequence $\left(b_{n}\right)_{n \in \mathbb{N}}$ with $b_{n}>0$ for all $n \in \mathbb{N}$, such that $\left(1 / b_{n}\right)_{n \in \mathbb{N}}$ diverges.
(d) An unbounded sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ and a convergent sequence $\left(b_{n}\right)_{n \in \mathbb{N}}$ with $\left(a_{n}-b_{n}\right)_{n \in \mathbb{N}}$ bounded.
(e) Two sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$, such that $\left(a_{n} b_{n}\right)_{n \in \mathbb{N}}$ and $\left(a_{n}\right)_{n \in \mathbb{N}}$ converge but $\left(b_{n}\right)_{n \in \mathbb{N}}$ does not.

