Homework 3

1. Section 8

- 8.2 Determine the limits of the following sequences, and then prove your claims.
 - (a) $\lim_{n \to \infty} \frac{n}{n^2 + 1}$ (c) $\lim_{n \to \infty} \frac{4n + 1}{7n 5}$
- 8.4 Let (t_n) be a bounded sequence, *i.e.*, there exists M such that $|t_n| \leq M$ for all n, and let (s_n) be a sequence such that $\lim s_n = 0$. Prove $\lim (s_n t_n) = 0$.
- 8.5 (a) Consider three sequences (a_n) , (b_n) and (s_n) such that $a_n \leq s_n \leq b_n$ for all n and $\lim a_n =$ $\lim b_n = s$. Prove $\lim s_n = s$. This is called the "squeeze lemma."

(b) Suppose (s_n) and (t_n) are sequences such that $|s_n| \le t_n$ for all n and $\lim t_n = 0$. Prove $\lim s_n = 0$. 8.6 Let (s_n) be a sequence in \mathbb{R} .

- (a) Prove $\lim s_n = 0$ if and only if $\lim |s_n| = 0$.
- (b) Observe that if $s_n = (-1)^n$, then $\lim |s_n|$ exists, but $\lim s_n$ does not exist.
- 8.8 Prove the following [see Exercise 7.5]:
 - (a) $\lim[\sqrt{n^2 + 1} n] = 0.$
 - (c) $\lim[\sqrt{4n^2 + n} 2n] = \frac{1}{4}$.
- 8.9 Let (s_n) be a sequence that converges.
 - (a) Show that if $s_n \ge a$ for all but finitely many n, then $\lim s_n \ge a$.
 - (b) Show that if $s_n \leq b$ for all but finitely many n, then $\lim s_n \leq b$.
 - (c) Conclude that if all but finitely many s_n belong to [a, b], then $\lim s_n$ belongs to [a, b].

2. Section 9

- 9.2 Suppose $\lim x_n = 3$, $\lim y_n = 7$ and all y_n are nonzero. Determine the following limits: (b) $\lim \frac{3y_n - x_n}{y_n^2}$ (a) $\lim(x_n + y_n)$
- 9.4 Let $s_1 = 1$ and for $n \ge 1$ let $s_{n+1} = \sqrt{s_n + 1}$. (a) List the first four terms of (s_n) .
 - (b) It turns out that (s_n) converges. Assume this fact and prove the limit is $\frac{1}{2}(1+\sqrt{5})$
- 9.6 Let $x_1 = 1$ and $x_{n+1} = 3x_n^2$ for $n \ge 1$. (a) Show if $a = \lim x_n$, then $a = \frac{1}{3}$ or a = 0.
 - (b) Does $\lim x_n$ exist? Explain.
 - (c) Discuss the apparent contradiction between parts (a) and (b).

3. Supplement Homework

- S1. Give an example of each or state that the request is impossible. For any that are impossible, give a compelling argument for why that is the case.
 - (a) A sequence with an infinite number of ones that does not converge to one.
 - (b) A sequence with an infinite number of ones that converges to a limit not equal to one.
 - (c) A divergent sequence such that for every $n \in \mathbb{N}$ it is possible to find n consecutive ones somewhere in the sequence.
- S2. Give an example of each of the following, or state that such a request is impossible by referencing the proper theorem(s):
 - (a) Sequences $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$, which both diverge, but whose sum $(x_n+y_n)_{n\in\mathbb{N}}$ converges.
 - (b) Sequences $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$, such that $(x_n)_{n\in\mathbb{N}}$ converges, $(y_n)_{n\in\mathbb{N}}$ diverges, and $(x_n+y_n)_{n\in\mathbb{N}}$ converges.
 - (c) A convergent sequence $(b_n)_{n \in \mathbb{N}}$ with $b_n > 0$ for all $n \in \mathbb{N}$, such that $(1/b_n)_{n \in \mathbb{N}}$ diverges.
 - (d) An unbounded sequence $(a_n)_{n \in \mathbb{N}}$ and a convergent sequence $(b_n)_{n \in \mathbb{N}}$ with $(a_n b_n)_{n \in \mathbb{N}}$ bounded.
 - (e) Two sequences $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$, such that $(a_nb_n)_{n\in\mathbb{N}}$ and $(a_n)_{n\in\mathbb{N}}$ converge but $(b_n)_{n\in\mathbb{N}}$ does not.