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Classical tools of nonlinear dynamics are used to study the highly excited

vibrations of small molecules. For effective Hamiltonians with one polyad num-

ber (approximate constant of motion), previously developed methods locate new

anharmonic modes using the critical points in the reduced classical phase space.

Theoretical arguments are given for generalizing the method to more than one

polyad number. As the simplest classical invariant structure, critical points of the

reduced phase space are solved analytically without relying on either integrating

trajectories or visual inspection. These critical points, especially those that are

linearly stable, are expected to indicate regions with the same type of classical

dynamics as well as quantum modes of vibration.

The pure bending Hamiltonian of acetylene (C2H2 ) is analyzed to demon-
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strate the effectiveness of critical points analysis. Four families of critical points

are born in distinct bifurcations, each corresponding to a novel anharmonic mode.

These modes are visualized with custom computer-generated animations. Their

origin and nature are qualitatively explained through separate consideration of

DD-I and ` resonance alone. Quantum survival probability verifies that the Local

and Counter Rotator modes are the stable modes of vibration at high excitation.

The same analysis is extended for the first time to the acetylene stretch-

bend system, which has never been analyzed classically with all the resonance

couplings. Preliminary results are obtained for the polyad series containing the

C-H stretch overtones. The local C-H stretch critical points family, induced by

the stretch-stretch (K 1 1 = 3 3 ) resonance, is located and shown to bifurcate into at

least 4 new families when the stretch-bend resonances are included. The new

families indicate that the mixing between the stretch and bend may result in

novel vibrational modes.

This dissertation includes my previously co-authored materials.
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CHAPTER I

INTRODUCTION

1.1 Molecular Dynamics Encoded In Spectra

In its earlier years, spectroscopy was an important tool in the structure

determination of molecules. Today, the equilibrium structure, as well as the spec-

troscopic constants, continues to be actively pursued. Moreover, the accumulated

theory, techniques and data have also enabled researchers to use spectroscopy as

a probe of dynamical processes, such as collisions, energy transfer, and chemical

reactions.

The question is how to decode dynamical information from the resulting

spectra. Spectra recorded in either frequency domain or time domain should

reflect the same physical behavior. These domains are formally connected by a

Fourier transform [1]. Electromagnetic radiation affects molecules on at least four

levels in the order of increasing energy: the nuclear spin, rotational, vibrational

and electronic degrees of freedom (DOF). The interactions among even these four

levels within a molecule make it nontrivial to analyze the total dynamics. The

focus of this thesis is the vibrational dynamics of small polyatomic (3-4 atoms)
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molecules. We are not implying that other DOF are unimportant or irrelevant.

For chemists, however, the vibrational DOF are of special interest since they are

closely related to chemical reaction processes.

1.2 Modes of Vibration

We start with the frequency-domain spectra. Each resolved level in the

spectra corresponds to one quantum eigenstate of the molecular Hamiltonian.

The decoding of dynamics involves assignment of these levels with quantum num-

bers corresponding to their modes of vibration. The word “mode” has been rather

liberally used to designate patterns in vibrations. The conventional meaning is

that there are certain coordinates in which the vibration appears particularly sim-

ple. Especially it refers to the case when the vibration can be separated into

independent oscillations in these coordinates. Such a separation is crucial for

comprehending molecular vibrations that may be too complex to be directly vi-

sualized. Therefore, mode designation is more than mere labeling because it

reflects the pattern of underlying dynamics.

A well-known case is the normal modes. When the amplitudes of vibration

remain small, forces among atoms can be approximated as harmonic, i.e. pro-

portional to the displacement from equilibrium configuration. Diagonalization of

the resulting force constant matrix yields 3N ¡ 6 (or 3 N ¡ 5 for linear molecules)

normal mode coordinates, N being the number of atoms in the molecule [2]. The
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classical motion of the atoms (determined by Newtonian mechanics) is decom-

posable into oscillations along these normal mode coordinates with characteristic

frequencies. In the quantum system, the nodes of the corresponding eigenstates

are aligned along these same coordinates. A set of normal mode quantum num-

bers can be assigned from counting these nodes.

At higher energy, as the vibrational amplitudes increase, inter-atomic

forces deviate from the harmonic approximation. This requires the inclusion

of additional terms, such as anharmonicity and resonance couplings. The former

distorts the normal modes, while the latter not only distort but also mix them.

Eventually, the mixing would become so extensive that the normal mode picture

ceases to be a valid approximation.

It is believed that at sufficiently high energy, the vibrational dynamics enters

the “bag of atoms” regime [3], which is characterized by a total lack of regular

modes. In practice, however, this may not be easily attained. In at least some

and perhaps most molecules, the spectra turn out to be regular even when the

normal modes break down. The dynamics are then encoded in other new modes

of vibration. For example, in H2O [4] and O3 [5], the stretching states exhibit

a transition from normal to local mode behavior as the energy of excitation is

increased. In Fig. 1.1, the normal symmetric and anti-symmetric modes have

two A-B bonds vibrate in synchronization, while in the local mode only one

A-B bond is vibrating. Eigenstates in this regime appear as separable in the
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local mode coordinates. Here the local mode is not just another way to describe

the molecule, but a special one that directly reflects the underlying dynamics.

More exotic modes, such as the “precessional” mode [6] and more complicated

collective motions [7], are also known to exist.

FIGURE 1.1 Normal and local stretching modes in an ABA molecule. In the nor-
mal symmetric (“s”) and antisymmetric (“a”) modes, the two A-B bonds vibrate
in concert. In contrast, the local modes 1 (“`1”) and 2 (“`2”) have most vibrational
amplitude in only one bond.

These vibrational modes strongly influence the molecules’ chemical behav-

ior. When a molecule is between collisions and free of other external interactions,

its intrinsic reaction rate, if one exists, is determined by the flow of vibrational

energy within the molecule, a process termed Intramolecular Vibrational Relaxation
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(IVR) [3,8]. The complete characterization of IVR requires a “map” of all possible

paths of energy flow. Yet, in actual modeling of reactions, such a detailed descrip-

tion is often simplified into a statistical treatment. A most popular assumption

is the Rice-Ramsperger-Kassel-Marcus (RRKM) model, which assumes unrestricted

IVR flow among all vibrational DOF [9]. This model is assumed increasingly

valid at high internal energy and coupling (the “bag of atoms” limit). The corre-

sponding classical dynamics is chaotic [10].

In contrast, energy in a stable mode remains trapped in a small part of the

energetically accessible phase space. If the molecule has a significant probability

of getting into these trapped regions, IVR flow would be restricted. One then

has to be cautious about using a statistical model. These stable modes may be

of great use in coherently controlling chemical reactions [11] because excitation

energy may remain in these modes long enough for optical manipulation.

Since the famous Fermi-Ulam-Pasta simulation in 1953 [12], molecular sys-

tems have served as an application for the mathematical theory of nonlinear dy-

namics, and a motivation for its continued development. The past 50 years has

seen an increasing interest in applying classical nonlinear mechanics in studying

dynamics in microscopic systems.
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1.3 Overview of Thesis Structure

The identification and assignment of vibrational modes are crucial for an-

alyzing the spectra of highly excited molecules. For over a decade, the Kellman

group has been using the mathematical tools of bifurcation [13] and catastro-

phe theory [14] in analyzing classical and quantum dynamics in the vibration

of small molecules. The group developed the method of critical points analysis

in order to uncover the nonlinear, anharmonic modes at high excitation via an-

alytical detection (as opposed to numerical search). Its earliest formulation aims

at classifying the dynamics in a two-oscillator-single-resonance system (which is

integrable) according to the critical point(s) in its reduced classical phase space

[15]. This was later extended to the large-scale bifurcation analysis that considers

coupled 3-oscillator systems that are nonintegrable [16]. These two methods are

reviewed in references [17,18]. This thesis is a further generalization that takes

into account Hamiltonians with multiple polyad numbers, as well as providing a

more solid mathematical foundation to the method. The pure bending acetylene

(C2H2 ) system is used as a chemically significant test case.

Chapter 2 reviews the relevant background information: the effective quan-

tum Hamiltonian and polyads, basic tools in classical mechanics, and topics on

the quantum-classical correspondence.

Chapter 3 first describes existing procedures of critical points analysis for

treating integrable and nonintegrable systems with one polyad number. Then
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general discussions are given regarding the behavior of critical points, including

the novel complexity introduced by multiple polyad numbers.

Chapter 4 applies the bifurcation analysis to C2H2 pure bending system

(2 polyad numbers). The analysis reveals the existence of new families of critical

points, born in bifurcations at increasing energy. The result is compared to those

from the separate consideration of single resonances, giving a qualitative descrip-

tion of the nature of the new critical points. The stable families of critical points

correspond to stable quantum modes of vibration. Additional interpretation is

given

Chapter 5 extends the analysis to the stretch-bend acetylene system includ-

ing all the resonances. The fate of the C-H normal stretch modes is considered

under increasing excitation. The preliminary result suggest that a chain of bifur-

cations first create a local C-H stretch mode which then bifurcate into complex

stretch-bend modes.

Chapter 6 summarizes contributions made in this thesis, and discusses

possible future directions of research.
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CHAPTER II

BACKGROUND INFORMATION

2.1 Effective Quantum Hamiltonian and Polyads

In this thesis, vibrational dynamics is modeled by an effective Hamiltonian

obtained from fitting spectral levels 1. The general form of an effective Hamil-

tonian is

Ĥ ef f = Ĥ 0 +
X

V̂
ij
2 +

X
V̂
ij k
3 + ::: (2.1)

= 1 unless stated otherwise.

Ĥ 0 =
X
i

! i

µ
n̂ i +

d i

2

¶
+
X
i;j ;i· j

x ij

µ
n̂ i +

d i

2

¶µ
n̂ j +

d j

2

¶
+ ¢¢¢ (2.2)

V̂
ij
2 = V ij[(â

y
i)
m (â j)

n + (â yj)
n (â i)

m ] (2.3)

V̂
ijk
3 = V ijk [(â

y
i)
m (â j)

n (â k )
p + (â yj)

n (âyk )
p (â i)

m ] (2.4)

The zero-order part Ĥ 0 is in the form of a Dunham expansion. n̂ i is a

zero-order (e.g. normal or local) mode number operator whose eigenvalue is n i.

1The fit is to either the resolved experimental spectra or the spectra from
theoretical calculations [19].
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d i is the degeneracy of mode i: 1 for non-degenerate modes and 2 for doubly

degenerate modes such as the bending of a linear molecule. Each V̂ i;j2 term in

eqn. (2.1) represents a resonance that couples the i and j modes. It exchanges m

quanta in mode i and n quanta in mode j . V̂ i;j;k3 acts in a similar manner among

three modes i, j and k .

The operators â yi , â i have matrix elements identical to those of harmonic

raising and lowering operators, i.e.

â
y
ijn ii =

p
n i + 1 jn i + 1i (2.5)

â ijn ii =
p
n i jn i ¡ 1 i (2.6)

â
y
i â ijn ii = n̂ ijn ii = n i jn ii (2.7)

The jn 1 ;n 2 ;¢¢¢ ;n N i comprise a set of eigenstates of Ĥ 0 . They are referred to as

Zero Order States (ZOS). In this basis, the matrix form of Ĥ ef f is obtained from

eqns. (2.5,2.6). Diagonalization of this matrix yields quantum eigenfunctions in

terms of the ZOS. In order to compare these eigenfunctions to the molecular coor-

dinate space (such as bond length and angle), one needs to assume an oscillator

model for each n i. For example, this representation could be taken as that of a

harmonic [20] or Morse [21] oscillator.

The resonance coupling terms V̂ cause the ZOS to mix the eigenfunctions.

The quantum numbers n i then are no longer good quantum numbers. However,

certain linear combinations of them, known as the polyad numbers, may remain
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conserved in the fitting Hamiltonian (and approximately conserved in the exact

molecular Hamiltonian). In ABA-type triatomic molecules like H2O, there is often

an approximate 2:1 frequency ratio between one of the two normal stretching

modes n 1 and the bending n 2 [22], leading to the inclusion of a Fermi resonance

term in Ĥ e f f . The resonance either (1) takes out one quantum of n 1 and adds

two quanta of n 2 , or (2) takes out two quanta of n 2 and adds one quantum of n 1 .

Meanwhile, the other non-interacting stretching normal mode n 3 can be regarded

as a “spectator”. Because the number of quanta in it is constant, it is absorbed

into the other parameters when we only consider a specific n 3 manifold. When

the stationary configuration of the molecule is non-linear, the bending n 2 mode

is singly degenerate (d 2 = 1 ). The effective two-mode Hamiltonian is

Ĥ F er m i = ! 1 (n̂ 1 +
1

2
) + ! 2 (n̂ 2 +

1

2
) + x 1 1 (n̂ 1 +

1

2
)2 + x 1 2 (n̂ 1 +

1

2
)(n̂ 2 +

1

2
)

+ x 2 2 (n̂ 2 +
1

2
)2 + V F e r m i[̂a

y
1 (â 2 )

2 + (â y2 )
2 â 1 ] (2.8)

The polyad number

P̂ = 2 n̂ 1 + n̂ 2 (2.9)

remains conserved since it commutes with the Hamiltonian

[P̂ ;Ĥ F ] = P̂ Ĥ F ¡ Ĥ F P̂ = 0 (2.10)

In the quantum Hamiltonian, the presence of P̂ means that the resonance

coupling only couples ZOS with the same polyad number. For example, there
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are four ZOS (n 1 ;n 2 ) interacting within P = 3 :

(3;0 ) $ (2 ;2 ) $ (1 ;4 ) $ (0 ;6 )

and states belong to the same polyad appear in clusters in the spectra, as illus-

trated in Fig. 2.1. Experimentally, it is often the observation of such clustering

that leads to the adoption of a polyad model [23].

FIGURE 2.1 Schematic illustration of polyad structure in spectra. The states with
the same polyad number P are clustered together, while the energy spacing be-
tween different polyads is relatively large.

Since there is no coupling between two polyads, the Hamiltonian matrix is

block-diagonal and the intra-polyad couplings are confined to the polyad blocks.
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The blocks can be individually diagonalized, substantially reducing the amount

of computation. In the time domain, the existence of polyad(s) imposes an ap-

proximate restriction on the energy flow: IVR only happens within the same

polyad [24].

Kellman devised a systematic method to locate polyad numbers [25]. The

method is closely related to an earlier van Vleck perturbation study by Fried

and Ezra [26]. Suppose there are N zero-order vibrational modes, excluding the

spectator ones. Each resonance term in Ĥ ef f is represented by a resonance vector in

the N -dimensional linear space f n 1 ;n 2 ;¢¢¢n N g . All the resonance vectors ~V i form

a linear subspace with M dimensions (M · N ). Orthogonal to this subspace is

another (N ¡ M )-dimensional subspace from which the (N ¡ M ) polyad numbers

are found. The coefficients in the polyad number are determined by the set

of linearly independent vectors ~P j which span the subspace orthogonal to the

resonance vectors. This is graphically illustrated in Fig. 2.2 for N = 3;M = 2 . In

the Fermi resonance system, the resonance vector ~V F = f 1 ;¡ 2 g gives the polyad

number P = 2n 1 + n 2 , in accordance with the orthogonal vector ~P = f 2;1 g .

Although the total number of polyad numbers is fixed, each of them is not

uniquely defined. There is the liberty of multiplying the coefficients by a factor

or linearly combining two polyad numbers vectors. The usual choice is to match

them to the approximate integer ratio among the zero-order mode frequencies.



13

FIGURE 2.2 Schematic illustration of the method to locate polyad number(s),
adapted from Fig. 1 of [18] with changes.

These integer ratios lead to the inclusion of the respective resonance terms in Ĥ e f f

[27]. In eqn. (2.8), ! 1 : ! 2 ¼ 2 : 1 , so P = 2n 1 + n 2 .

The effective Hamiltonian can be constructed from the more comprehen-

sive Potential Energy Surface (PES) using perturbative methods [28,29]. However,

the effective Hamiltonian obtained from fitting experimental data is not only a

more reliable model for the highly excited states in triatomic or larger molecules,

but also easily gives the useful insight of the polyad structure. The conservation

of polyad numbers is never exact, though, due to additional small couplings in

the PES. The degree of their conservation can be estimated by the uncertainty re-

lationship ¢ E ¢¢ t ¸ . Spectral data recorded at relatively low frequency (larger

¢ E ) decodes dynamics at shorter timescale (smaller ± t), and vice versa. In mole-

cules such as acetylene, it has been observed that spectral peaks well-described
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by a polyad Hamiltonian may break into finer structures when scrutinized at

high frequency resolution. This is caused by the smaller couplings not included

in the effective Hamiltonian (and likely to break the polyad number), which exer-

cise their effect at longer time scales [30]. As an example, the C2H2 pure bending

Hamiltonian of Chapter 4 is fitted to spectra recorded with a maximum of 2 cm¡1

resolution. The corresponding uncertainty ¢ t = 2.6 picosecond is much longer

than the bending vibration period (50 femtoseconds). Since the polyad structure

is still present at this time scale, the polyad numbers predicted from the effective

Hamiltonian can be assumed valid at the same time scale or longer.

2.2 Basic Concepts in Classical Mechanics

Although microscopic systems are governed by quantum mechanics, clas-

sical mechanics continues to be an important tool in understanding molecular

dynamics. There are both fundamental and empirical and reasons: (1) Quantum

mechanics is built upon classical mechanics, rather than being a self-consistent

theory. The real behavior of the molecules may be derived through semiclassical

methods, which is a bridge between the quantum and classical worlds. (2) To

the human researcher, classical mechanics proves to be a more intuitive tool in

understanding the microscopic phenomena. (3) In large and/or highly excited

systems, treating the whole system quantum mechanically can be challenging.

Classical and semiclassical methods thus become useful supplements.
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Below we discuss some basic concepts in classical mechanics that are per-

tinent to the central topic in this thesis. The reader is referred to Tabor [31]

for a general introduction to classical mechanics with emphasis on the nonlinear

dynamics. The textbook by Goldstein [32] may serve as a more comprehensive

reference.

2.2.1 Heisenberg’s Correspondence Principle

Heisenberg’s Correspondence Principle [33] provides an important connec-

tion between the quantum and classical worlds. It relates raising and lowering

operators in quantum mechanics to Fourier components of the action-angle vari-

ables in classical mechanics [34]:

â
y
i !

r
n i +

d i

2
e iÁ i =

p
I ie

iÁ i

â i !
r
n i +

d i

2
e¡ iÁ i =

p
Iie

¡iÁ i (2.11)

The N -mode quantum Hamiltonian Ĥ ef f is mapped to an N DOF classical

Hamiltonian in canonical variables (I i;Á i). The n i terms in H 0 transform as

Ii = n i +
d i

2
(2.12)

Substitution of eqn. (2.11) into (2.8) gives

H F = ! 1 I1 + ! 2 I 2 + x 1 1 I
2
1 + x 1 2 I1 I 2 + x 2 2 I

2
2 + 2V F er m i

q
I 21 I 2 co s[Á 1 ¡ 2Á 2 ] (2.13)
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2.2.2 Hamiltonian Classical Dynamics

The (I i;Á i) variables form a set of canonically conjugate coordinates in

Hamiltonian mechanics. Their time evolution (also known as equations of mo-

tion) has the elegant form

_Ii =
d I i

d t
= ¡ @ H

@ Á i
(2.14)

_Á i =
d Á i

d t
=
@ H

@ I i
(2.15)

Once the initial condition fI i(0);Á i(0 )g is given, the subsequent solution

f Ii(t);Á i(t)g is determined by integrating eqns. (2.14,2.15). f I i(t);Á i(t)g is known

as a phase space trajectory or trajectory. When the Hamiltonian H is independent

of time, a trajectory cannot intersect with itself in phase space, although it could

retrace the same closed orbit over and over.

An important property of Hamiltonian systems is that the equations of

motion remain formally invariant. After a transformation between two sets of

canonical coordinates (called a canonical transformation), e.g. (I i;Á i) ! (J i;© i) we

have:

_J i = ¡
@ H

@ © i
(2.16)

_© i =
@ H

@ J i
(2.17)
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2.2.3 Constants of Motion

In a time-independent Hamiltonian, the energy is conserved, i.e. is a con-

stant of motion. Additional constants of motion may be present due to the polyad

numbers. In the Fermi resonance system, the polyad number P̂ = 2 n̂ 1 + n̂ 2 cor-

responds to a constant of motion through eqn. (2.12):

I = 2 I1 + I 2 = P +
3

2
(2.18)

Like the quantum commutator in eqn. (2.10), the Poisson bracket between I and

H also vanishes

f I ;H g =
X
i

µ
@ I

@ Á i

@ H

@ I i
¡ @ I

@ Ii

@ H

@ Á i

¶
= 0 (2.19)

The angle µ conjugate to I must satisfy

_I = ¡ @ H
@ µ

= 0 (2.20)

and does not appear explicitly in the Hamiltonian. Such a variable is known as

a cyclic variable [31]. This property naturally leads to a canonical transformation

(I 1 ;Á 1 ;I 2 ;Á 2 ) ! (I ;µ ;I z ;ª )

with

I =
2 I1 + I2
2

µ = Á 1 + 2 Á 2 (2.21)

I z =
2 I1 ¡ I2
2

ª = Á 1 ¡ 2Á 2 (2.22)
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In the new coordinates, the classical Hamiltonian in eqn. (2.13) is expressed as

H F = ! 1 (I + Iz ) + ! 2 (I ¡ I z ) + x 1 1 (I + I z )2 + x 1 2 (I 2 ¡ I 2z ) + x 2 2 (I ¡ I z )2

+ 2 V F
p
(I + Iz )2 (I ¡ Iz ) co s ª (2.23)

I can be regarded as an external parameter as it does not change with time. µ

is absent from the Hamiltonian, and has limited physical significance. The non-

trivial part of the dynamics is captured in a 2-dimensional phase space (I z ;ª ),

which is called a reduced phase space. In general, with (N ¡ M ) constants of

motion in an N DOF Hamiltonian, the phase space can be reduced from 2 N to

2M dimensions by a similar transformation. The details of such transformations

are discussed in Appendix A.

When there are as many constants of motion as the DOF, a system is called

integrable. In an integrable system, it is possible to express the Hamiltonian in

terms of N constants of motion and cyclic variables. Then the trajectories can

be solved analytically without recourse to numerical integration. A Hamiltonian

with 1 DOF is always integrable when the energy is conserved.

2.2.4 Invariant Phase Space Structures

An invariant phase space structure is defined as any lower-dimensional sub-

set of the phase space that is mapped onto itself by the equations of motion.

These structures are “landmarks” that delineate regions in phase space with dif-
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ferent dynamics. The qualitative description of all these regions can be called the

phase space portrait [13].

Critical Points The simplest invariant phase space structure is a critical point [35].

These are defined as points where the equations of motion (2.14, 2.15) vanish2:

@ H

@ Á i
=
@ H

@ Ii
= 0 (2.24)

The critical points are the simplest invariant structure not only because they have

the lowest dimensionality (zero), but also because they can be systematically

determined as roots of simultaneous equations.

The stability of a critical point intuitively refers to the system’s behavior

when a trajectory deviates slightly from the point. A stable critical point can be

compared to a potential minimum and an unstable one to a maximum. In the

illustration of Fig. 2.3 (a), trajectories near a stable critical point are confined to

the neighborhood, oscillating with small amplitude. Fig. 2.3 (b) shows that an

unstable critical point behaves locally like a saddle point, with nearby trajectories

deviating exponentially rapidly. Mathematically, the stability of a critical point (or

other invariant structures) can be characterized in several ways to suit different

purposes. The most important ones are Lyapunov, linear and spectral stabilities.

Lyapunov stability implies linear stability, which in turn implies spectral stability

2The term “critical points” may also refer to where the gradient of a given
function vanishes [36], and the function may not be related to any dynamical
property. However, in Hamiltonian systems this definition coincides with the one
in the text, because Hamilton’s equations of motion coincide with the gradient of
H with regard to the canonical coordinates.
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[37]. The linear stability of a critical point has been widely used because it is easy

to compute. Its exact derivation will be discusses in x 3.3.1.

FIGURE 2.3 Trajectories near linearly stable and unstable critical points in a 1
DOF systems. Panel (a): near a linearly stable critical point. (b) near a linearly
unstable critical point.

Periodic Orbits A closed periodic orbit (PO) is a trajectory that retraces itself with

a finite period T :

f Ii(n T );Á i(n T )g = f I i(0);Á i(0)g with n=1,2,3, . . . (2.25)

A PO is a 1-dimensional invariant phase space structure. Unlike critical points,

the only way to locate the POs in a general system is through an iterative numer-

ical search [38].

Invariant Tori Another example of invariant phase space structure is the invariant

tori. In an N DOF integrable system, if I i are chosen as the N constants of motion,
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then their conjugate angles µ i evolve at constant frequencies _µ i =
@ H
@ Ii

for any

trajectory. These trajectories form a set of nesting N-dimensional tori, filling the

(Ii;µ i) phase space.

An N = 2 example is illustrated in Fig. 2.4. If _µ 1 : _µ 2 happens to be a rational

number (also known as commensurable), the surface of the torus is covered by a

family of PO 3. Otherwise, any one trajectory will gradually fill the entire toroidal

surface, instead of closing on itself within a finite time. This type of trajectory is

called quasiperiodic.

FIGURE 2.4 Trajectory on an invariant 2-torus.

3See the 3D model on the accompanying CD-ROM.
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When small non-integrable perturbations are added to an integrable

Hamiltonian, some invariant tori are destroyed and the rest remain in a deformed

state . This is the result of the Kolmogorov-Arnold-Moser theorem [31]. Invariant

tori in a non-integrable system generally indicate regions where the local dynam-

ics closely resembles that in an integrable system.

In higher dimensions, there are also the normal hyperbolic invariant manifolds

[39], which act as impenetrable barriers in the phase space. The constant energy

shell is always an invariant structure in isolated systems.

2.2.5 Bifurcations

A bifurcation generally may refer to any qualitative change in the phase

space portrait, as some external control parameter is being varied [13]. In practice,

the “qualitative change” is labeled by the change in the number and/or stability

of some well-defined objects, especially the invariant phase space structures. The

“external control parameter” may refer to either a variable physical quantity (such

as the energy), or coefficients in the Hamiltonian.

Fig. 2.5 depicts the so-called pitchfork bifurcation of critical points in a 1

DOF system. As the potential V (x ) in the Hamiltonian is continuously deformed,

suddenly the single well (stable critical point) lifts to a barrier (unstable critical

point), and two additional wells are born. The whole phase space portrait changes

accordingly, adding two additional zones that correspond to confinement in the

new local minima.
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FIGURE 2.5 Pitchfork-type bifurcation in 1 DOF system and the associated phase
space change. The back, middle and the front panels are before, at and after the
bifurcation point.

The same principle holds throughout this thesis: Qualitative changes in the

classical phase space are tracked by solving for the bifurcations of critical points. The

parameters in the effective Hamiltonian are regarded as given, and the polyad

number(s) varied as the control parameter.

2.2.6 Poincaré Surface of Section

In a 2 DOF system, the phase space is 4-dimensional and cannot be directly

visualized as in the 1 DOF case. However, since the energy is conserved, the
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phase space may be visualized by taking a series of 2-dimensional iso-energy

slices. This technique is called Poincaré Surface of Section (SOS) [31].

The typical construction of a SOS in the phase space proceeds as follows.

Let the 2 DOF canonical variables be of action-angle type I1 ;Á 1 ;I 2 ;Á 2 . First, an

energy of interest is determined 4. Then an ensemble of trajectories with this

energy is integrated. Their intersections with a 2-dimensional dividing surface in

the phase space (e.g. defined by Á 2 = 0 ) are recorded by two other independent

phase space variables (e.g. I 1 ;Á 1 ), as illustrated in Fig. 2.6. Due to time-reversal

symmetry, only crossings in one direction, e.g. d Á 2 = d t > 0 are recorded.

1

I1

x

x

x

FIGURE 2.6 Construction of Poincaré Surface of Section.

4It can also be some other constant of motion that is held fixed instead of
energy– see the footnote in x 3.1.2 later.
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At a given energy, the classical dynamics is reflected in patterns of the

corresponding SOS. Displayed in Fig. 2.7 are 4 SOS for the Henon-Heiles system

[40], which is composed of two coupled 1-dimensional oscillators. There are two

distinct types of trajectories in panel (a). For each of the red, black, blue and

green trajectories, the crossings remain on two closed curves. Each pair of curves

(e.g. the red ones on the p y axis) can be thought of as the result of slicing the

2-dimensional invariant torus across the radius. This kind of phase space regions

is called regular. The magenta trajectory, on the other hand, randomly fills an

area complementary to the regular regions. Such a phase space region is called

chaotic.

Panels (b)-(d) of Fig. 2.7 are taken for the same Hamiltonian with increasing

energy. At the lowest energy (panel b), most of the SOS is regular. In panel (c)

the portion of chaotic region increases. At the highest energy (d), most of the

SOS is filled with trajectories that explore all the phase space volume allowed by

the conservation of energy (the teardrop-shaped outline). This regular-to-chaotic

trend is typical for dynamical systems that are nonintegrable. In this thesis, we

focus on systems with mixed dynamics as in panel (c); with an important question

being how to distinguish the regular regions from a sea of chaos.
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FIGURE 2.7 Regular, mixed and chaotic dynamics from an SOS of the Henon-
Heiles Hamiltonian. Panel (a) (created by the online program at [41]) displays the
contribution from 5 individual trajectories coded by color. Panels (b)-(d), adapted
from [31], are taken with increasing energy, where the classical motion changes
from regular to mixed to chaotic.

2.3 Quantum-Classical Correspondence

According to the well-known Bohr correspondence principle, when

Planck’s constant ! 0 or when the quantum number approaches infinity, the

behavior of a quantum system converges to that of the corresponding classical

system. A more recent theorem by Helton and Tabor concludes that in the limit

! 0 , quantum eigenstates must localize into phase space regions supporting

an “invariant measure”, i.e. regions with invariant phase space structures [42].

The correspondence between classical invariant phase space structure and
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quantum wavefunction has been observed at finite in the phenomenon called

localization [43]. Generally, a regular region of classical phase space corresponds

to eigenfunctions with nodal structure aligned along the invariant phase space

structures. In Fig. 2.8, for example, the nodal backbones of wavefunctions closely

follow the periodic orbits labeled [r], [B ], and [S N ]. Wavefunction 4 corresponds

to a combination of modes [r]and [B ], and the nodes form a deformed rectangular

grid along these two directions.

FIGURE 2.8 Localization of semiclassical wavefunctions in the HCP Hamiltonian,
adapted from [19]. The lines labeled [B ], [S N ] and [r] (which coincides with
the left edge of the panel) are periodic orbits, which form the backbones of the
wavefunctions. The axes are harmonic normal mode coordinates.
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Most eigenfunctions in a classically chaotic system have randomly distrib-

uted nodes [44]. However, invariant phase space structures such as PO have been

observed to have important influence even when the dynamics is dominated by

chaos [45]. In the classical vibrational Hamiltonians, the presence of these phase

space structures is indicative of the underlying patterns of vibration.

Such observations have led to renewed interest in using classical mechanics

to understand excited molecular vibrations [46]. The goal is not only finding

appropriate phase space structure to explain dynamics in an a posteriori manner,

but also actively predicting the dynamics from analytic detection of classical phase

space structures.
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CHAPTER III

METHODOLOGY

In this chapter, we first review two existing methods of analyzing systems

with one polyad number via classical critical points (x 3.1, 3.2). Then in x 3.3

we address additional questions in order to formulate a generalized method of

the critical points analysis. The analysis covers cases with arbitrary DOF and

multiple polyad numbers. The method establishes that near a stable critical point

in the reduced phase space, the classical trajectories are quasiperiodic. These

critical points indicate the existence of regular quantum vibration modes.

3.1 Critical Points Analysis of Single m : n Resonance

This systematic method was developed by Kellman et al. for analyzing an

effective Hamiltonian with two modes coupled by a single resonance. A brief

overview is given below on aspects that will be used in Chapter 4. For a more

detailed description, the reader is referred to [17,47].

3.1.1 The m : n Resonance Hamiltonian

In many triatomic molecules, the coupling between two vibrational modes

1 and 2 (which are not necessarily normal modes) can be approximated by an m :
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n type resonance. Both m and n are positive integers. A third mode is relatively

isolated, and is treated as a spectator. The effective two-mode Hamiltonian has

the following form:

Ĥ m n = Ĥ 0 (n 1 ;n 2 ) + V m n [(ây1 )
m
(â 2 )

n + (â y2 )
n
(â 1 )

m ] (3.1)

Ĥ 0 is a Dunham expansion with the same form as in eqn. (2.2). The other term

corresponds to a matrix element between ZOS jn 1 ;n 2 i and jn 1 + m ;n 2 ¡ n i. It

removes m quanta from n 1 and adds n quanta to n 2 , or vice versa. This coupling

destroys both n 1 , n 2 as exact quantum numbers, but preserves one polyad number

P m n =
n 1

m
+
n 2

n
(3.2)

Using Heisenberg’s Correspondence Principle in eqn. (2.11), a classical

Hamiltonian in action-angle variables (I1 ;Á 1 , I2 ;Á 2 ) is obtained from eqn. (3.1).

Then the following canonical transformation is carried out. Let ¾ be the largest

common factor between m and n :

I =
¾

2

µ
I1

m
+
I2

n

¶
µ =

m Á 1 + n Á 2
¾

(3.3)

Iz =
¾

2

µ
I1

m
¡ I2
n

¶
ª =

m Á 1 ¡ n Á 2
¾

(3.4)

I is the constant of motion differing from P m n by a constant, while µ is its

conjugate cyclic angle. The Hamiltonian becomes

H m n = H 0 (I ;I z ) + 2V m n (I + Iz )
m
2 (I ¡ Iz )

n
2 co s[¾ ª ] (3.5)
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In Chapter 2, eqn. (2.13) is one example with m : n = 1 : 2 .

The 2 DOF Hamiltonian of (3.5) is integrable, since both the energy (H m n )

and I are constants of motion. The classical phase space can be formally reduced

to 1 DOF with the equations of motion:

_Iz = ¡ @ H
@ ª

, _ª = @ H
@ Iz

(3.6)

µ does not appear explicitly in the Hamiltonian, and I can be treated as a para-

meter. The reduced phase space is spanned by (I z ;ª ).

3.1.2 The Polyad Phase Sphere and Critical Points

The reduced phase space in eqn. (3.5) has the same topology as the surface

of a 2-dimensional sphere [6]. The sphere is called the Polyad Phase Sphere (PPS)

1. On the PPS, the angle arccos[I z = I ] is the longitude while ª is its latitude, as

shown in Fig. 3.1. According to their definitions in eqns. (3.4), Iz is a measure of

the extent of mixing between the zero-order oscillators 1 and 2, and ª represents

their relative phase angle. The north pole (I 2 = 0 ) is the mode 1 overtone, while

the south pole (I 1 = 0 ) is the mode 2 overtone. At these two points, ª becomes

unphysical, since the phase angle of an oscillator is ill defined when the amplitude

is zero.

1Alternatively, (I z ;ª ) could be regarded as a special SOS in the full phase
space (I ;µ ;I z ;ª ). Instead of energy, here I is held constant. The dividing surface
is defined by a constant µ .
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FIGURE 3.1 Coordinates on the polyad phase sphere (PPS). The rectangular plane
in (a) is a Mecartor projection of the spherical surface in (b). Identical points are
labeled by A-D in both panels to aid visualization.

In an integrable Hamiltonian, each quantum eigenstate of Ĥ m n is associated

with an invariant torus in (I , µ , I z , ª ) via the Einstein-Brillion-Keller (EBK) quan-

tization procedure [48]. Each of these tori appears on the PPS as a closed semi-

classical trajectory. In practice, this trajectory can be well approximated (within

1 cm ¡ 1 ) by solving for points on the PPS that have the same energy as that of

the quantum state [19].

All the semiclassical trajectories are organized by the critical points on the

PPS. These points define where the flow of (I z ;ª ) vanishes, i.e.

_Iz = ¡ @ H
@ ª

= 0 _ª =
@ H

@ I z
= 0 (3.7)



33

In the zero-order case (V m n = 0 ), all trajectories are parallel to the equator on the

PPS because H m n has no dependence on ª . The only critical points are the north

and south poles. This corresponds to the trivial case where the eigenstates are

assigned with the zero-order quantum numbers n 1 and n 2 . When the resonance

is turned on, new critical points may emerge and the old ones may change their

stabilities. This is called a bifurcation. The semiclassical trajectories, as well as the

quantum states they represent, are organized around the critical points. A bifur-

cation therefore signals the birth, death and/or transformation of the vibrational

modes in the system.

Fig. 3.2 shows a sample PPS for the HCP molecule (m : n = 1 : 2 ). Here

modes 1 and 2 refer to the normal C-P stretch and normal H-C-P bend, respec-

tively. In this particular polyad P = n 1 + n 2 = 2 = 1 1 there are 12 eigenstates, and

their trajectories (labeled 0-11) are evenly spread over the surface of the PPS. The

most prominent structure here is a separatrix (dashed line) with the unstable crit-

ical point [S N ] (“X”). The separatrix is so-named because it separates the phase

space into three regions: (1) levels 0-7 surrounding the stable critical point [B ];

(2) levels 9,11 surrounding the stable critical point [S N ]; and (3) levels 8,10 sur-

rounding the stable critical point [r ] (normal mode 1 ). Each level can be assigned

two quantum numbers: one is the polyad number P , the other is determined by

the critical point its trajectory surrounds. Since the surface of the PPS is divided,

the assignment is not uniform for all 11 states.
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FIGURE 3.2 PPS and semiclassical trajectories adapted from [19]. (a) a view of
the PPS. The points on the PPS labeled [r ], [B ] and [S N ] are stable critical points,
while [S N ] is an unstable critical point. The dashed line is the separatrix. Panel
(b) presents a cut along the great circle defined by ª = 0;¼ , where µ 2 [0 ;2¼ ] is
a parameter around this great circle. Panel (b) also shows the relative energy of
all 12 levels.

FIGURE 3.3 Gap in the spectral patterns induced by a classical separatrix for the
PPS in Fig. 3.2.
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In the full 4-dimensional phase space, although I , I z and ª are fixed at the

critical points, the cyclic angle µ is not. Instead, it precesses between 0 and 2¼ at a

constant frequency. Hence, each critical point in the m : n resonance Hamiltonian

corresponds to a periodic orbit.

3.1.3 Spectral Patterns

The location of trajectories on the PPS reflects patterns in the quantum

spectra. First, the ratio between n 1 and n 2 for each state corresponds to the time-

averaged I z of its trajectory. In the example of Fig. 3.2, levels 9,11 with I1 < < I2

have a strong bending character, which are identified in experimental spectra by

their large rotational constant B [49].

Second, a separatrix on the PPS acts like a barrier in phase space. Clas-

sically, the frequency traversing the top of a barrier is expected to drop to zero.

The quantum equivalence of this frequency is the energy difference ¢ E between

adjacent levels. Therefore, the energy gap pattern is expected to exhibit a dip

when a separatrix is crossed [50].

When the separatrix is in contact with more than 2 regions on the PPS

(Fig. 3.2), the gaps should be taken only between eigenstates within the same

region on the PPS. Otherwise, if the states are sorted by energy alone, levels 9,

11 are intermingled with 8,10. As shown in Fig. 3.3, this choice creates a zigzag
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pattern in the energy gap of panel (a). The dip pattern is recovered when the

energy differences is taken within the same zone(s) in panel (b). This resorting

procedure was first discussed by Svitak et al. in [50].

3.1.4 Catastrophe Map

If the effective Hamiltonian only includes up to quadratic terms and V m n

is a constant, all possible PPS structures for a given type of m : n resonance

can be further summarized by just two independent parameters. The PPS up to

a scaling factor can be reconstructed from these parameters. With the help of

catastrophe theory in mathematics [14], this 2-parameter space (called catastrophe

map) is divided into zones for any m : n system [47], and within each zone the

PPS have the same qualitative structure. As an example, Fig. 3.4 displays the

catastrophe map as well as representative PPS for m : n = 1 : 1 . In zone I, (cases

1, 5, 7, 8 and 9) the spheres share an undivided structure, while in zone II (cases

3, 4 and 6) the spheres are each divided by a separatrix. In going from spheres

1-2-3-4, the qualitative change happens at sphere 2 where its representative point

crosses from I (normal mode dynamics) to II (local mode dynamics). 3D models

of these spheres are also included on the accompanying CD-ROM.

The catastrophe map, however, is not suitable for extension to include

high-order terms. In x 5.2 of [52], the inclusion of a single cubic term in H 0 adds
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FIGURE 3.4 Catastrophe map of 1 : 1 resonance system and associated PPS,
adapted from [51]. Panel (a) is the catastrophe map with two independent para-
meters being ¹ and ¤ . Panel (b) displays the PPS corresponding to each of the
representative points on panel (a).

substantial complexity to the catastrophe map. When these high-order terms are

indeed not ignorable, the more convenient alternative is analyzing the dynamics

using the PPS and spectral patterns alone.

3.1.5 Summary

The above steps of the single resonance analysis are summarized in Fig. 3.5.

The 2-dimensional reduced phase space is directly visualized with the PPS. Each

quantum state corresponds to a semiclassical trajectory on the PPS. The trajectory

can be assigned quantum numbers by the stable critical point it surrounds. The

unstable critical points are associated with separatrices, which cause “dips” in the

neighboring energy gap pattern among trajectories traversing them. All possible
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divisions on the PPS with the same m : n resonance can be further classified on

the catastrophe map by two parameters.

FIGURE 3.5 Bifurcation analysis of the single resonance Hamiltonian, adapted
from Fig. 2 of [53] with modifications.

3.2 Large-Scale Bifurcation Analysis

In a non-integrable Hamiltonian, the main distinction in the classical phase

space structure is between the regular and the chaotic regions. Even today, it

remains a poorly understood field. The most challenging problems have mul-

tiple resonances acting simultaneously, preventing reduction of the dynamics to
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less than 3 effective DOF and thus preventing direct visualization. For effective

Hamiltonians with one polyad number (and arbitrary DOF), Lu and Kellman

proposed the large-scale bifurcation analysis [16,54] as an extension of the above

m : n resonance analysis of integrable systems.

The main assumption of large-scale bifurcation analysis is that “The large-

scale bifurcation structure is defined by the lowest-order periodic orbits and their bifur-

cations.” [16]. In a 2 DOF Hamiltonian, phase space regions with different types

of dynamics can be visually recognized on a SOS. Each regular region surrounds

a “periodic orbit” on the SOS. Here the word “periodic” should not be confused

with the continuous T in eqn. (2.25) for a PO. It refers to the trajectory that

appears on the SOS at a few discrete points (as opposed to filling a continuous

curve/area). The period is the integer number of steps between the returns. Those

with period 1 are also known as fixed points on the SOS 2.

Consider a 3 DOF system with one polyad number (such as the Baggott

H2O Hamiltonian [55]). The polyad number enables one to rewrite the Hamil-

tonian in a 4-dimensional reduced phase space (I1 ; Ã 1 , I2 ; Ã 2 ), plus a conserved

action I 3 and a cyclic angle Ã 3 . Dynamics in the reduced phase space can be

visualized using a series of SOS. Without loss of generality, let the energy and

2In the existing literature, “fixed points” and critical points are often used
interchangeably. In this thesis, to avoid confusion, “fixed point” is used in the
context of a discrete mapping (such as an SOS) where the trajectory it represents
is not stationery in the phase space. In contrast, critical points refer to stationery
points in a continuous dynamical system.
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coordinate Ã 2 be held constant in the construction of this SOS, and the crossings

of trajectories be recorded in (I1 , Ã 1 ) space. A fixed point on the resulting SOS

has all four action-angle variables (I1 ; Ã 1 , I 2 ; Ã 2 ) constant – therefore it must be a

critical point of the reduced phase space:

_I 1 = _Ã 1 = _I 2 = _Ã 2 = 0 (3.8)

Unless the cyclic angle Ã 3 has zero frequency, these critical points are closed POs

in the full phase space.

Therefore, the large-scale phase space structure (i.e. fixed points on the

SOS) can be found as critical points in the reduced phase space. This is done by

solving the simultaneous analytic equations (3.8). It avoids numerical integration

of many individual trajectories, as well as the subsequent problem of classifying

their behavior into types of dynamics.

Ref. [16] solved the bifurcation structure of critical points for several similar

systems. Fig. 3.6 is reproduced from [16] showing the bifurcation structure of

H2O. This structure is verified by two subsequent studies using methods that are

more detailed [39,56]. In the limit of P ! 0 , there are 3 branches of critical points

corresponding to the 3 normal modes. In the lower right corner of Fig. 3.6, the

normal bend family is aligned along the vertical line, while the two normal O-H

stretches are on top of each other, along the short diagonal segment between the

origin and point A. Then as P is increased, resonances cause the normal modes

to bifurcate (at points A, B, B’, etc.) into new families of critical points. These
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critical points were then used to successfully assign all states in polyad P = 8 to

quantum numbers consistent with the vibrational dynamics [54].

FIGURE 3.6 Large-scale bifurcation structure in H2O, reproduced from Fig. 3 in
[16].

3.3 Generalized Critical Points Analysis

In the previous subsections, the importance of critical points is illustrated

for both integrable and nonintegrable Hamiltonians. In using the critical points

to characterize modes of vibration in nonlinear systems, two aspects should be

emphasized.

(1) The existence of polyad numbers is crucial for this analysis. Specifically, the

polyad numbers make it possible to reduce the DOF of the classical Hamiltonian.
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The cyclic angle(s) not explicit in the reduced phase space provide time evolu-

tion for the critical points in the full phase space. In comparison, a critical point

defined in the full phase space usually conveys little information about the dy-

namics. For example, although two coupled anharmonic oscillators may exhibit

a rich range of dynamical behavior, this is not apparent from examination of the

equilibrium point (where there is no motion in either oscillator). With a single

polyad number, critical points in the reduced phase space are POs in the full phase

space, which form the “skeletons” of phase space [39]. In the presence of multiple

polyad numbers, the critical points are expected to have the same importance,

although they now correspond to invariant tori in the full phase space.

(2) The critical points are found by solving analytically defined equations. Be-

cause the method does not rely on numerical integration of Hamilton’s equations,

it circumvents the problem induced by unstable/chaotic trajectories. In addition,

unlike most existing nonlinear methods, the equations can (at least theoretically)

be extended to arbitrary DOF in a straightforward manner.

In x 3.1 - 3.2 we only considered systems with 1 polyad number and up

to 3 DOF. The following 3 points need to be addressed in order to extend the

critical points analysis to multiple polyad numbers and arbitrarily large number

of DOF.

1. In a 2 DOF system, the consistency between critical points and large-scale
phase space structure may be verified by direct inspection such as through
SOS. These visual aids become increasingly impractical in higher dimen-
sions. Although it was suggested that the large-scale bifurcation analysis
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could be extended to > 3 DOF systems with one polyad number [17], it
remains unclear how the “periodic orbits” defined on a SOS (see x 3.2) can
be extended to arbitrary DOF. A dimensionality-independent description of
the dynamics surrounding a critical point is strongly preferred.

2. With multiple polyad numbers, the critical points generally have multiple
non-commensurable frequencies associated with the cyclic angles. Motion
at these critical points is quasiperiodic in the full phases space, instead of
being closed POs. To what extent would this difference affect the predictions
of classical and quantum dynamics of the molecule?

3. In references [39,54], the eigenstate assignment was performed via the local-
ization of the Husimi distribution function of the states, which is performed
by visual inspection. As both the computation of these semiclassical wave-
functions and the visual assignment become increasingly difficult in higher
dimensions, a more general consideration of how to assign wavefunction
localization becomes necessary.

The next three subsections discuss these questions in their order. The result

is a more generalized framework of critical points analysis, which will be used

in Chapter 4 to analyze the C2H2 bending system.

3.3.1 Reduced Phase Space Trajectory Near A Critical Point

First, we consider an effective Hamiltonian of the most general form. Let

the Hamiltonian have a total of N modes, M linearly independent resonance

vectors, and (N ¡ M ) polyad numbers. The classical Hamiltonian after a suit-

able canonical transformation has (N ¡ M ) constants of motion, their conjugate

cyclic angles f P M + 1 ;¢¢¢ ;P N ;µ M + 1 ;¢¢¢ ;µ N g , and 2 M action-angle variables J i, ª i

spanning the reduced phase space

~X = f x ig = f ª 1 ;¢¢¢ ;ª M ;J 1 ;¢¢¢ ;J M g
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Hamilton’s equations of motion in the reduced phase space can be written in the

following matrix form

d

d t
~X =

0BBBBBBBBB@

¡ @ H
@ x M + 1

¢¢¢
¡ @ H
@ x 2 M

@ H
@ x 1

¢¢¢
@ H
@ x M

1CCCCCCCCCA
=

µ
0 ¡ E M
E M 0

¶
0BBBBBBBBB@

@ H
@ x 1

¢¢¢
@ H
@ x M

@ H
@ x M + 1

¢¢¢
@ H
@ x 2M

1CCCCCCCCCA
(3.9)

with E M being the M £ M unit matrix. A critical point ~X 0 in the reduced phase

space is defined by the 2M simultaneous equations:

µ
@ H

@ x i

¶
X 0

= 0 (3.10)

Linear stability is defined by the behavior of the linearized equations of

motion at nearby points. Let the point be

~X = X 0 + f d x 1 ;¢¢¢ ;d x i;¢¢¢ ;d x 2 M g = ~X 0 + ~d X (3.11)

The linearized equations of motion are obtained by expanding @ H = @ x i on the

right hand of eqn. (3.9) into a Taylor series, and keeping only terms linear to the

displacement

µ
@ H

@ x i

¶
X

=

µ
@ H

@ x i

¶
X 0

+
X
j

µ
@ 2 H

@ x i@ x j

¶
X 0

d x j =
X
j

µ
@ 2 H

@ x i@ x j

¶
X 0

d x j (3.12)

Then eqn. (3.9) is reduced to the linearized form:

d

d t
~X =

µ
0 ¡ E M
E M 0

¶µ
@ 2 H

@ x i@ x j

¶
X 0

d ~X = A ¢ ~d X (3.13)
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which is a set of homogeneous ordinary differential equations. The standard pro-

cedure of solving them requires first finding the 2M eigenvalues ¸ i and eigen-

vectors ~V i of matrix A [57]. The ¸ i and corresponding ~V i satisfy

A ¢ ~V i = ¸ i ~V i (3.14)

If none of the ¸ i is equal to zero, the solutions have the following form:

~X (t) = ~X 0 +

2 MX
i= 1

a i e
¸ it ~V i (3.15)

With a i being arbitrary complex coefficients. The time evolution of ~X (t) therefore

is separable into 2M directions, each indicated by the vector ~V i.

The linear stability of ~X 0 is defined in terms of eqn. (3.13), through the

eigenvalues ¸ i. In a Hamiltonian system, the conservation of phase space volume

(Liouville’s theorem) leads to the result that the ¸ i always appear in conjugate

quadruplets (§ a § bi), for which there are four cases described below.

A) When a pair of ¸ i is purely imaginary (a = 0 ), all solutions in eqn. (3.15)

would oscillate in the subspace spanned by ~V i with a characteristic frequency

determined by j̧ ij. The linear stability in this direction is known as stable, elliptic

or (E).

B) When a pair of ¸ i is real (b = 0 ), all solutions in eqn. (3.15) would be attracted

to or repelled from ~X 0 exponentially with time in the ~V i subspace. This direction

is known as linearly unstable, hyperbolic or (H). The names elliptic and hyperbolic

originated from the shape of these linearized trajectories (Fig. 2.3).
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C) When a quadruplet of ¸ i = § a § bi has a ;b 6= 0 , the solution contains both oscil-

lating and exponential attraction/repulsion components in the subspace spanned

by the four ~V i corresponding to the quadruple ¸ i. In two of the four directions

the nearby trajectory “spirals” towards the critical point, while in the other two

directions it “spirals” away from the critical point. This stability type is called

mixed or (M) [16].

D) When a pair of ¸ i = 0 , the stability type is degenerate (D). In this case, the

linearized equations eqn. (3.13) become insufficient, and higher-order terms in

the Taylor expansion are needed to evaluate the stability near a critical point.

If all the eigenvalues fall into category (A), then the linearized trajectories

defined by eqn. (3.15) oscillate with M distinctive frequencies. Hence, near an

all-stable critical point, the linearized equations of motion are quasiperiodic. They are

expected to resemble the trajectories of the true Hamiltonian for at least a finite

time.

3.3.2 The Presence of Multiple Cyclic Angles

At a critical point, all the canonical variables are fixed except the (N ¡ M )

cyclic angles µ i. Unless any of their frequencies becomes zero or commensurable

with another, the full phase space trajectory is quasiperiodic and restricted to

an (N ¡ M ) dimensional invariant torus. When there is more than one polyad

number, the trajectory does not close onto itself within a finite time.
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Intuitively, the role these critical points play in the phase space should not

change whether there are one or more cyclic angles. As an example, consider

the case of HCP where only 2 of the 3 normal modes are coupled by a Fermi

resonance [19]. Excitation in the spectator mode 3 (C-H stretching) can be treated

as a parameter in the effective Hamiltonian. Strictly speaking there are two polyad

numbers and cyclic angles:

P 1 = n 1 +
n 2

2
µ 1 = 2Á 1 + Á 2 (3.16)

P 2 = n 3 µ 2 = Á 3 (3.17)

Yet, in assigning e.g. the n 3 = 1 states, one could simply use the critical points

found in this manifold, in spite of the fact that the frequency of µ 2 is not zero

here.

We argue that in general the cyclic angles µ i represent a trivial aspect of

the dynamics, at least as far as quantum spectra are concerned. This is evident

if one considers the semiclassical quantization. There they appear as a pre-factor

with the form (¦ e iP iµi) in the resulting wavefunctions [7]. The µ i angles do not

have physical meaning on their own, since the polyad number P are not uniquely

defined.

Critical points in a reduced phase space, especially those with non-zero

frequencies in the cyclic coordinate, are known as relative equilibria in the math-

ematics community [58,59]. Near a relative equilibrium, classical dynamics in

the full phase space can be rigorously separated into two parts: the group orbit,
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which is motion along the cyclic angles; and motion in the reduced phase space

[60]. The latter is a multidimensional “slice” transverse to the group orbit [61].

The slice contains all the “essential dynamics” (page 304 of [58]), in the sense that

the full dynamics can be reconstructed from a point on the slice and appropriate

initial conditions. This provides a further argument against making a distinction

between systems with one and multiple polyad numbers.

In the field of physical chemistry, relative equilibria theory has been used to

classify rotationally excited molecular spectra [62,63]. Total angular momentum J

plays the same role as the polyad numbers in this thesis. At a relative equilibrium,

the molecule rotates with a constant shape. Vibrational modes are defined by

the normal form of the Hamiltonian near the stable relative equilibria. As J is

increased, the bifurcations of relative equilibria correspond to predictions of the

as yet unobserved rovibrational spectral patterns.

3.3.3 Semiclassical Localization Near A Critical Point

An eigenstate may be assigned meaningful quantum numbers based on the

critical point, if its representation in the same (ª i;J i) space is localized near the

critical point with a well-ordered nodal pattern. The semiclassical wavefunctions

can be obtained through either (1) full phase space representations (e.g. the

Wigner or Husimi function [64]) or (2) the angle-space semiclassical quantization

proposed by Voth and Marcus in [65]. Examples of both methods are illustrated

in Fig. 3.7. In panels (a) and (b), the localization is along the normal mode critical
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points with (n 1 = n 2 = 3 :5 ; Ã 1 = ¼
2
and 3 ¼

2
). In panels (c) and (d), the localization

is around the critical points at (Ã a = § ¼ ; Ã b = § ¼ ).

FIGURE 3.7 Semiclassical localization in action-angle phase space. Panels (a), (b)
are reproduced from Fig. 3 of [54], displaying the two projections of the Husimi
function of the same eigenstate in action (n 1 ;n 2 ) and angle (Ã 1 ; Ã 2 ) space, respec-
tively. Panels (c) and (d) are reproduced from Fig. 5 of [66], which display the
angle-space representation of two different wavefunctions both localized around
(Ã a = § ¼ ; Ã b = § ¼ ).

Consider a local minimum or maximum (together referred to as extremum)

in the reduced phase space (ª i;J i). This extremum point is necessarily a critical
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point. Then if there is a quantum eigenstate whose energy is nearby, intuitively

one expects the semiclassical representation of the eigenstate in (ª i;J i) or (ª i)

space to localize near the critical point, simply because of the limited volume of

accessible phase space into which it can expand. This is illustrated schematically

in Fig. 3.8.

FIGURE 3.8 Localization near a minimum of the Hamiltonian, which is also an
elliptic critical point. An eigenstate with energy nearby must be localized in
nearby phase space.

There is no apparent reason why the same argument should not be valid for

all choices of semiclassical representation, as well as for arbitrary dimensionality

of the system, except for the following two scenarios. The localization may be
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disrupted by tunneling when the local extremum is not prominent enough, or

there are other local extrema nearby with similar energy.

In x 3.3.2 it was shown that the linearized motion near an all-stable critical

point is quasiperiodic. If (1) it is a good approximation for the real classical trajec-

tories in this region and (2) the region is large enough to support one quantizing

invariant torus, then the semiclassical wavefunctions may be localized around

the torus, with M quantum numbers assigned by EBK quantization. Therefore,

one could expect the all-stable critical points to correspond to quantum modes

around which semiclassical wavefunctions localize.

3.3.4 Summary

From x 3.3.1 - 3.3.3, we can draw the following conclusions about critical

points in the reduced phase space:

1. Linearized classical trajectories near these points are quasiperiodic.

2. The existence of additional cyclic angles are not expected to affect the es-

sential part of the classical dynamics or semiclassical localization.

3. Semiclassical eigenfunctions are expected to localize near the critical points

if the latter correspond to local extrema in the reduced phase space.

The critical points can be used to assign vibrational modes to the quantum

spectra. The change in their number and/or stability should correspond to the

change in birth, death and transformations of the vibrational modes.
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CHAPTER IV

BIFURCATION ANALYSIS OF C2H2 BENDS

4.1 Introduction

Acetylene (C2H2 ) is among the most-studied polyatomic molecules in spec-

troscopy. Its normal mode constants on the ground electronic state (S0 ) have been

refined over a long period [67,68]. At increased energy, however, its vibrational

dynamics is rather complex. Recently the highly excited spectra of acetylene

became more accessible due to techniques such as Stimulated Emission Pump-

ing and Dispersed Fluorescence (DF). The observations include additional spec-

tral features under enhanced resolution [30], signatures of both regularity and

chaos in level statistics [69], and the emergence of local modes in H-C-C bending

[28,66,70–73] and C-H stretching [24,74]. The stretch-bend system has also been

investigated in a few studies [75–81]. Theoretical analysis of these results, how-

ever, remains challenging. While the coupled vibrational DOF are too numerous

for many analytical tools, they are not enough to warrant a statistical approach.

The dynamics of acetylene vibration has an important role in combustion

processes. Its interconversion with vinylidene, a marginally stable isomer, di-

rectly influences the outcome of reaction rate modeling [82]. Fig. 4.1 illustrates

the geometry and energy change during the isomerization process. The transition
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state is planar and involves mostly one C-H bond in acetylene bending over. It is

believed that the highest bending levels recorded by Field et al. are within 5,000

cm¡ 1 of the reaction barrier [83]. Decoding the dynamics hidden in these spectra

is expected to shed light on this isomerization process.

FIGURE 4.1 The acetylene-vinylidene isomerization on the S0 electronic surface.
The energy and configurations are averaged over compiled ab initio results in
Table. 1 of [84]. Note that 1 eV = 808 0 cm¡ 1 .

For modeling highly excited states (¼ 10,000 cm¡ 1 ), the effective Hamil-

tonians from fitting spectra are reliable than any existing ab initio PES. The best-

known PES [85] barely reproduces the quantitative experimental results in this

energy range [86]. A refined PES recently published by Bowman et al. is still not

as accurate as a direct fit to the spectra [87,88].
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Near its linear equilibrium configuration, acetylene has 3 N ¡ 5 = 7 normal

modes as shown in Fig. 4.2. Both º 4 ;º 5 bends are doubly degenerate. Two

additional quantum numbers `4 ;`5 are used to label the respective vibrational

angular momenta.

FIGURE 4.2 Normal vibrational modes of C2H2 , with º 4 and º 5 being doubly
degenerate. Also shown schematically are the two vibrational angular momenta.

The existing stretch-bend effective Hamiltonians all conserve three polyad

numbers:

N t = 5n 1 + 3n 2 + 5 n 3 + n 4 + n 5 (4.1a)

N s = n 1 + n 2 + n 3 (4.1b)

` = `4 + `5 (4.1c)
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N t is the “total” quantum number, representing the approximate integer ratio

among the normal mode frequencies. Using the frequencies of [89] in units of

cm¡ 1 , the ratio is

! 1 : ! 2 : ! 3 : ! 4 : ! 5 = 33 71:66 : 19 74 :7 6 : 3 288 :7 5 : 6 08:50 : 72 9:18 ¼ 5 : 3 : 5 : 1 : 1

N s is the total number of stretching quanta. In the absence of rotational excitation

(J = 0 ), ` denotes the total angular momentum of the molecule, which is always

conserved 1. The inversion symmetry (gerade/ungerade), parity (+/-) and total

angular momentum J are also conserved [93]. Each polyad can therefore be

labeled as [N t;N s;`]g = u .

4.2 C2H2 Pure Bending System

4.2.1 Quantum Effective Hamiltonian

The pure bending states with (N s = 0 ) form a separate subsystem among

the [N t;N s;`]g = u polyads. In the remainder of Chapter 4, these polyads are labeled

by [N b;`]g = u with

N b = N t = n 4 + n 5 (4.2)

Field et al. produced the latest pure bending effective Hamiltonian. The

data used in their fit includes both energies and intensity information from FTIR

and DF experiments [83]. The high-lying levels were obtained from DF spectra

1Incidentally, all three polyad numbers remain good for the isotopomer 1 3C2H2

[90]. The doubly deuterated C2D2 conserves N s and ` [91]. Experimental spectra
also suggest the existence of polyad structure in the monodeuterated C2HD [92].
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with a frequency resolution of 2 cm¡ 1 , and unresolved ` = 0 = 2 states. These levels

are as much as 15,000 cm¡ 1 above the ground vibrational state. The parameters

in this Hamiltonian are listed in Table 4.1.

TABLE 4.1 Parameters in pure bending effective Hamiltonian, from [83]. The
parameters are in units of cm¡1 .

! 4 608.657 y 5 5 5 0.00955
! 5 729.137 g 4 4 0.677
x 4 4 3.483 g 4 5 6.670
x 4 5 -2.256 g 5 5 3.535
x 5 5 -2.389 S 4 5 -8.574
y 4 4 4 -0.03060 r 04 5 -6.193
y 4 4 5 0.0242 r 4 4 5 0.0304
y 4 5 5 0.0072 r 5 4 5 0.0110

Using the normal mode basis jn `44 ;n `55 i ((n i ¸ j̀ ij)) as the ZOS, the fitting

Hamiltonian has a diagonal part H 0 and three resonance couplings.

Ĥ ben d = Ĥ 0 + V̂ D D I + V̂ ` + V̂ D D I I (4.3)

Ĥ 0 = ! 4 n 4 + ! 5 n 5 + x 4 4 n
2
4 + x 4 5 n 4 n 5 + x 5 5 n

2
5 + y 4 4 4 n

3
4 + y 4 4 5 n

2
4 n 5 + y 4 5 5 n 4 n

2
5

+ y 5 5 5 n
3
5 + g 4 4 `

2
4 + g 4 5 `4 `5 + g 5 5 `

2
5 (4.4)

1. A Darling-Dennison [94] resonance (DD-I):

hn `44 ;n `55 jV̂ D D I jn 4 ¡ 2`4 ;n 5 + 2`5 i =
S 4 5

4

£
(n 24 ¡ `24 ) (n 5 + `5 + 2)(n 5 ¡ `5 + 2)

¤1 = 2 (4.5)

2. An `-resonance:

hn `44 ;n `55 jV̂ `jn `4¨24 ;n `5§25 i = R 4 5

4
[(n 4 ¨ `4 ) (n 4 § `4 + 2) (n 5 § `5 ) (n 5 ¨ `5 + 2) ] 1 = 2 (4.6)
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with R 4 5 = r 04 5 + r 4 4 5 (n 4 ¡ 1 ) + r 5 4 5 (n 5 ¡ 1 ).

3. Another Darling-Dennison resonance (DD-II), which is weaker than the other

two:

hn `44 ;n `55 jV̂ D D I I jn 4 ¡ 2 `4¨ 2 ;n 5 + 2 `5§ 2 i =
R 4 5 + 2g 4 5

16
£

[(n 4 § `4 )(n 4 § `4 ¡ 2)(n 5 § `5 + 2 )(n 5 § `5 + 4)]1 = 2 (4.7)

Fig. 4.3 illustrates the manner these resonances act within a polyad. The

resonances are shown as lines connecting pairs of ZOS. V̂ D D I couples within each

column (same `4 ;`5 ), while V̂ ` couples within each row (same n 4 ;n 5 ). V̂ D D I I in

eqn. (4.7) contains couplings along the diagonal directions. With both V̂ D D I and

V̂ ` , or V̂ D D I I alone, all ZOS in a polyad [N b;`]g = u are connected into an inseparable

network.

Alternatively, Ĥ ben d can be written with raising/lowering operators, which

act on the normal-mode trans- and cis- 2-dimensional oscillators. The symmetry-

adapted operators â y4 d ;â
y
4 g ;â 4 d ;â 4 g and â

y
5 d ;â

y
5 g ;â 5 d ;â 5 g

2 are defined according to

[95] as

â
y
id jn `ii i =

r
n i + `i + 2

2
jn i + 1 `i+ 1 i; â

y
ig jn `ii i =

r
n i ¡ `i + 2

2
jn i + 1 `i¡ 1 i (4.8)

â id jn `ii i =
r
n i + `i

2
jn i ¡ 1 `i¡1 i; â ig jn `ii i =

r
n i ¡ `i
2

jn i ¡ 1 `i+ 1 i (4.9)

2The g (gauche/left) and d (droit/right) subscripts are named according to the
manner they affect the vibrational angular momentum.
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FIGURE 4.3 Resonance couplings within a pure bending polyad [8;0 ]. Panel (a)
displays the g states and panel (b) the u states.
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The zero-order part of Ĥ be n d can be expressed with

n i = â
y
id ^a id + â

y
ig â ig , `i = â

y
id â id ¡ âyig â ig (4.10)

and the resonance terms as

V̂ D D I = S 4 5 [̂a
y
4 d â

y
4 g â 5 d â 5 g + â 4 d â 4 g â

y
5 d â

y
5 g ] (4.11)

V̂ ` = R 4 5 [̂a 4 d â
y
4 g â

y
5 d â 5 g + â

y
4 d â 4 g â

y
5 d â 5 g ] (4.12)

V̂ D D I I =
R 4 5 + 2 g 4 5

4
[̂ay4 d â

y
4 d â 5 d â 5 d + â

y
4 g â

y
4 g â 5 g â 5 g

+ â 4 d â 4 g â
y
5 d â

y
5 d + â 4 g â 4 g â

y
5 g â

y
5 g ] (4.13)

4.2.2 Classical Hamiltonian

Next, a classical Hamiltonian is obtained from Ĥ be n d using Heisenberg’s

Correspondence Principle of eqn. (2.11). The result is expressed in canonical

action-angle type variables Ii;Á i (i = 4 d ;4g ;5 d ;5g ). The actions are related to the

zero-order quantum numbers by

I 4 d = (n 4 + 1 + `4 )= 2 ; I4 g = (n 4 + 1 ¡ `4 )= 2 (4.14)

I 5 d = (n 5 + 1 + `5 )= 2 ; I5 g = (n 5 + 1 ¡ `5 )= 2 (4.15)

Corresponding to N b and `, there are two conserved classical actions:

I 4 d + I4 g + I5 d + I 5 g = n 4 + n 5 + 2 = N b + 2 (4.16)

I 4 d ¡ I4 g + I5 d ¡ I 5 g = `4 + `5 = ` (4.17)
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In order to reduce the dimensionality of the phase space, the following

canonical transformation is useful 3

K a =
I4 d + I 4 g + I5 d + I 5 g

2
=
N b + 2

2
µ a =

Á 4 d + Á 4 g + Á 5 d + Á 5 g

2

K b =
I4 d ¡ I 4 g + I 5 d ¡ I5 g

2
=
`

2
µ b =

Á 4 d ¡ Á 4 g + Á 5 d ¡ Á 5 g
2

J a =
I4 d + I 4 g ¡ I 5 d ¡ I5 g

2
=
n 4 ¡ n 5
2

Ã a =
Á 4 d + Á 4 g ¡ Á 5 d ¡ Á 5 g

2

J b =
I4 d ¡ I 4 g ¡ I 5 d + I5 g

2
=
`4 ¡ `5
2

Ã b =
Á 4 d ¡ Á 4 g ¡ Á 5 d + Á 5 g

2
(4.18)

The resulting classical Hamiltonian is

H (K a ;K b;J a ;J b; Ã a ; Ã b ) = ! 4 (K a + J a ¡ 1) + ! 5 (K a ¡ J a ¡ 1)
+ x 4 4 (K a + J a ¡ 1) 2 + x 4 5 (K a + J a ¡ 1) (K a ¡ J a ¡ 1) + x 5 5 (K a ¡ J a ¡ 1) 2
+ y 4 4 4 (K a + J a ¡ 1) 3 + y 4 4 5 (K a + J a ¡ 1) 2 (K a ¡ J a ¡ 1)
+ y 4 5 5 (K a + J a ¡ 1) (K a ¡ J a ¡ 1) 2 + y 5 5 5 (K a ¡ J a ¡ 1) 3
+ g 4 4 (K b + J b )

2 + g 4 5 (K b
2 ¡ J b 2 ) + g 5 5 (K b ¡ J b ) 2

+
S 4 5

2

h
(K 2

a ¡ K 2
b )
2
+ (J 2a ¡ J 2b ) 2 ¡ 2(K 2

a + K
2
b )(J

2
a + J

2
b ) ¡ 8K a K bJ a J b

i1
2
cos[2 Ã a ]

+
R ¤4 5
2

h
(K 2

a ¡ K 2
b )
2
+ (J 2a ¡ J 2b ) 2 ¡ 2(K 2

a + K
2
b ) (J

2
a + J

2
b ) ¡ 8K a K bJ a J b

i1
2
cos[2 Ã b ]

+
1

8
[R ¤4 5 + 2g 4 5 ] f [(K a + K b ) 2 ¡ (J a ¡ J b ) 2 ] cos[2( Ã a ¡ Ã b ) ]+
[(K a ¡ K b ) 2 ¡ (J a + J b ) 2 ] cos[2( Ã a + Ã b ) ]g (4.19)

with

R ¤4 5 = r
0
4 5 + r 4 4 5 (K a + J a ¡ 2) + r 5 4 5 (K a ¡ J a ¡ 2 ) (4.20)

3These new coordinates are defined in the same way as Jacobson et al. in [66].
The only difference is that our actions are expanded by a factor of 2, while the
angles are reduced by a factor of 1 = 2 . Such a difference is trivial, except ours are
more compatible to the single-resonance analysis of x 4.4.1 .
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Since K a and K b are constants of motion, their conjugate angles µ a ;µ b are

the cyclic variables and therefore absent from the Hamiltonian. However, they

do evolve in time with

_µ a =
@ H

@ K a

(4.21)

_µ b =
@ H

@ K b

(4.22)

The reduced phase space (J a ; Ã a ;J b; Ã b) is four-dimensional. The equations

of motion in it are:

_Ã a =
@ H

@ J a
; _J a = ¡ @ H

@ Ã a
(4.23)

_Ã b =
@ H

@ J b
; _J b = ¡

@ H

@ Ã b
(4.24)

The parameters in Table 4.1 apply to ` = 0 , 2 , which from eqns. (4.18)

correspond to K b = 0 , 12 , respectively. This thesis will focus on these cases. For

` = 0 , K b = 0 and thus eqn. (4.19) becomes

H ben d (K a ;J a ;J b; Ã a ; Ã b) = H 0 + V D D I + V ` + V D D I I + V
0
D D I I (4.25)

with

H 0 = ! 4 (K a + J a ¡ 1) + ! 5 (K a ¡ J a ¡ 1 ) + x 4 4 (K a + J a ¡ 1)2

+ x 4 5 (K a + J a ¡ 1 )(K a ¡ J a ¡ 1 ) + x 5 5 (K a ¡ J a ¡ 1)2 + y 4 4 4 (K a + J a ¡ 1)3

+ y 4 4 5 (K a + J a ¡ 1)2 (K a ¡ J a ¡ 1) + y 4 5 5 (K a + J a ¡ 1 )(K a ¡ J a ¡ 1 )2

+ y 5 5 5 (K a ¡ J a ¡ 1)3 + (g 4 4 ¡ g 4 5 + g 5 5 )J 2b (4.26)
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and

V D D I =
S 4 5

2

£
K 4
a + (J

2
a ¡ J 2b )2 ¡ 2K 2

a (J
2
a + J

2
b )
¤1 = 2

cos[2 Ã a ] (4.27)

V ` =
R ¤4 5
2

£
K 4
a + (J

2
a ¡ J 2b )2 ¡ 2 K 2

a (J
2
a + J

2
b )
¤1 = 2

cos[2 Ã b] (4.28)

V D D I I =
1

8
(R ¤4 5 + 2g 4 5 )[K

2
a ¡ (J a ¡ J b)2 ]co s[2 (Ã a ¡ Ã b)] (4.29)

V
0
D D I I =

1

8
(R ¤4 5 + 2g 4 5 )[K

2
a ¡ (J a + J b)2 ]co s[2(Ã a + Ã b)] (4.30)

4.3 Critical Points Analysis

Following the method outlined in Chapter 3, the critical points in the re-

duced phase space are expected to indicate the changes in vibrational modes. In

this section, we explicitly solve for the critical points for ` = 0 in eqn. (4.25) and

their bifurcations with variation of N b . Four new families of critical points are

found at increasing N b when the initially stable normal modes become unstable

in distinct bifurcations. Two of the new families, namely the Local and Counter

Rotator critical points, are linearly bi-stable (EE). They correspond to new stable

modes of bending vibration.

Readers not interested in details of the calculation may skip the next sub-

section and go directly to x 4.4.2 for the results.
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4.3.1 Computational Details

The critical points of eqn. (4.25) are defined by four simultaneous equa-

tions:

_J a = ¡ @ H
@ Ã a

= 0 (4.31)

_J b = ¡ @ H
@ Ã b

= 0 (4.32)

_Ã a =
@ H

@ J a
= 0 (4.33)

_Ã b =
@ H

@ J b
= 0 (4.34)

To simplify the notation we let

¤ = [K 4
a ¡ 2K 2

a (J
2
a + J

2
b ) + (J

2
a ¡ J 2b )2 ]1 = 2 (4.35)

The left sides of eqns. (4.31-4.34) become

@ H

@ Ã a
= ¡ ¤S 4 5 sin[2 Ã a ] ¡ 1

4
(R ¤4 5 + 2g 4 5 )f [K 2

a ¡ (J a ¡ J b ) 2 ] sin[2( Ã a ¡ Ã b ) ]+

[K 2
a ¡ (J a + J b ) 2 ] sin[2( Ã a + Ã b ) ] g (4.36)

@ H

@ Ã b
= ¡ ¤R ¤4 5 sin[2 Ã b ] +

1

4
(R ¤4 5 + 2g 4 5 )f [K 2

a ¡ (J a ¡ J b ) 2 ] sin[2( Ã a ¡ Ã b ) ] ¡

[K 2
a ¡ (J a + J b ) 2 ] sin[2( Ã a + Ã b ) ] g (4.37)

@ H

@ J a
=
@ H 0

@ J a
¡ J a
¤
(K 2

a ¡ J 2a + J 2b ) (S 4 5 cos[2 Ã a ] + R ¤4 5 cos[2 Ã b ] ) + ¤(r4 4 5 ¡ r5 4 5 ) cos[2 Ã b ]

¡ R
¤
4 5 + 2g 4 5
4

f (J a ¡ J b ) cos[2( Ã a ¡ Ã b ) ] + (J a + J b ) cos[2( Ã a + Ã b ) ] g

+
r 4 4 5 ¡ r5 4 5

2
f2J a J b sin[2 Ã a ] sin[2 Ã b ] + (K 2

a ¡ J 2a ¡ J 2b ) cos[2 Ã a ] cos[2 Ã b ] g (4.38)

@ H

@ J b
=2(g 4 4 ¡ g 4 5 + g 5 5 ) J b ¡ J b

¤
(K 2

a + J
2
a ¡ J 2b ) (S 4 5 cos[2 Ã a ] + R ¤4 5 cos[2 Ã b ] )

+
R ¤4 5 + 2g 4 5

4
f (J a ¡ J b ) cos[2( Ã a ¡ Ã b ) ] ¡ (J a + J b ) cos[2( Ã a + Ã b ) ] g (4.39)
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A visual inspection of the first two equations (4.36, 4.37) reveals a sufficient

condition 4 for both of them to vanish:

sin [2 Ã a ] = sin [2 Ã b] = 0 (4.40)

or

(Ã a ; Ã b) = (
m ¼

2
;
n ¼

2
) with m ;n = 0 ;1;2;3 (4.41)

Eqn. (4.41) leads to the 16 combinations of (Ã a , Ã b) in Table 4.2. The

remaining two equations (4.38, 4.39) are then solved for J a and J b , with (Ã a , Ã b)

held at these discrete values. Eqns. (4.38, 4.39) are invariant with regard to the

transformations

Ã a ! Ã a + ¼ (4.42)

Ã b ! Ã b + ¼ (4.43)

It is then sufficient to consider only one entry out of each row in Table 4.2. Here

we use:

(Ã a ; Ã b) = (0;0) ;
³
0;
¼

2

´
;

³
¼

2
;0
´
;

³
¼

2
;
¼

2

´
(4.44)

Given the (Ã a ;Ã b) values of Table 4.2, eqn. (4.39) is further simplified as:

@ H

@ J b
= J bf 2(g 4 4 ¡ g 4 5 + g 5 5 ) ¡ K

2
a + J

2
a ¡ J 2b
¤

(S 4 5 cos[2 Ã a ]+ R
¤
4 5 cos[2 Ã b])

¡ R
¤
4 5 + 2 g 4 5

2
co s[2 Ã a ]cos[2 Ã b]g = 0 (4.45)

4An additional root search was carried out, and no extra critical points were
found beyond the ones discussed here.
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TABLE 4.2 (Ã a , Ã b ) values of bending critical points.

(Ã a , Ã b) (Ã a , Ã b ) (Ã a , Ã b) (Ã a , Ã b)
(0, 0) (0, ¼ ) (¼ , 0) (¼ , ¼ )
(0, ¼

2
) (0, 3 ¼

2
) (¼ , ¼

2
) (¼ , 3 ¼

2
)

( ¼
2
, 0) ( 3 ¼

2
, ¼ ) ( ¼

2
, 0) ( 3 ¼

2
, ¼ )

( ¼
2
, ¼
2
) ( ¼

2
, 3 ¼
2
) ( 3 ¼

2
, ¼
2
) ( 3 ¼

2
, 3 ¼
2
)

All terms on the right-hand side are proportional to J b . The other multiplier (the

sum of terms between the curly brackets) can be numerically shown to be always

positive. Hence eqn. (4.34) has the trivial solution:

J b = 0 (4.46)

The last equation (4.33) is then solved analytically on a personal computer using

the software Mathematica [96].

At each critical point, the linear stability is determined by the eigenvalues

of the stability matrix described in x 3.3.1. Here the matrix is 4 £ 4 in size, and the

possible stability types are bi-stable (EE), bi-unstable (HH), stable-unstable (EH),

mixed (MM) and degenerate [16].

Special consideration of the critical points is required where jJ a j+ jJ bj = K a .

At these points, the values of Ã a and Ã b are indeterminate as the denominator

¤ in eqns. (4.38, 4.39) vanishes. The (J a ; Ã a ; J b; Ã b ) coordinate system becomes

singular at these locations. Alternative coordinates are required to evaluate (1)

whether a point is critical point or not, and if yes, (2) its linear stability. The
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technical details are discussed in Appendix B. Only the following four prove to

be truly critical points:

J a = § K a ;J b = 0 with (EE) stability (4.47)

J a = 0;J b = § K a with (MM) stability (4.48)

4.3.2 Results of the [N b;0] Polyads

Normal Modes at Low N b Up to N b = 6 , there are two critical points at

J a = § K a with (EE) stability. They correspond to the normal Trans and Cis

modes. This picture is consistent with the usual assumption that small-amplitude

vibrations near equilibrium are dominated by the normal modes.

Bifurcation at Higher N b With increasing polyad number N b as well as energy,

four bifurcations occur to Trans and Cis critical points. Four new families of

critical points called the Local (L), Precessional (Pre), Orthogonal (Orth) and Counter

Rotator (CR) emerge out of the normal mode critical points at the points of the

bifurcations. The analytical solutions of these families are listed in Table 4.3 and

eqns. (4.49-4.52).
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TABLE 4.3 New families of critical points in the pure bending Hamiltonian.

Name (Ã a ; Ã b) Stability
Local (0;0) (EE)

Orthogonal
¡
0; ¼

2

¢
(EH)

Precessional
¡
¼
2
;0
¢

(HH)

Counter Rotator
¡
¼
2
; ¼
2

¢
(EE)

Local: J a = 2 1:166 ¡ 0:584 K a ¡ 0:26 81
p
4 091 :9 02 + 42:37 6K a ¡ K 2

a (4.49)

Orth: J a = 2 4:876 ¡ 0:496 K a ¡ 0:82 27
p
5 31:86 5 + 3 2:598 K a ¡ K 2

a (4.50)

Pre: J a = 1 0:920 ¡ 0:564 K a ¡ 0:46 03
p
¡ 27 6:741 + 93 :4 90K a ¡ K 2

a (4.51)

CR: J a = ¡ 18 :3 12 ¡ 0 :5 36 K a + 0:63 44
p
3 09:35 6 + 1 43:45 7K a ¡ K 2

a (4.52)

At each of the four bifurcation points, either Trans or Cis changes its stability,

and gives birth to one new family of critical points in the following manner

Trans (EE) N b = 7 :6 3¡¡ ¡ ¡ ¡! Trans (EH) + L (EE) (4.53a)

Cis (EE) N b = 9 :5 6¡¡ ¡ ¡ ¡! Cis (EH) + CR (EE) (4.53b)

Trans (EH) N b = 9 :7 7¡¡ ¡ ¡ ¡! Trans (HH) + Orth (EH) (4.53c)

Trans (HH) N b = 1 4 :5 6¡¡ ¡ ¡ ¡! Trans (EH) + Pre (HH) (4.53d)

The Trans family undergoes three consecutive bifurcations while the Cis

family undergoes one. All six families involved in these bifurcations have J b = 0 ,
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and thus `4 = `5 = 0 . The ratio J a = K a is presented in Fig. 4.4 as a function of N b

5. The (J a = K a = § 1 ) line corresponds to Trans/Cis critical points, respectively.

At each bifurcation point, the new family appears at J a = § K a . Then they

migrate towards J a = K a = 0 with increasing N b . This trend reflects increasingly

equal mixing between the Trans and Cis modes in the new motions, which will

be explained in detail below.

FIGURE 4.4 Bifurcation of critical points in [N b;0] bending polyads. The four
new families of critical points are shown on the figure, while the Trans and Cis
coincide with the J a = K a = § 1 lines. Their stability before/after each bifurcation
is also indicated on the figure.

Trajectories in the Full Phase Space The critical points in the reduced phase

5In Fig. 4.4, the bifurcation is calculated up to N b = 30 , although the effective
Hamiltonian is based on spectra up to only N b = 2 2 .
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space have two cyclic angles (µ a , µ b) that are absent from the Hamiltonian. µ a

corresponds to an overall translation in time while µ b corresponds to a rotation of

the system around the C-C axis [66]. According to the general argument in x 3.3.2,

in the full phase space these critical points are quasiperiodic on a 2-dimensional

invariant torus.

However, the [N b;0] polyads have K b = 0 and thus the frequency of µ b

is no longer physical. A proper analogy is that when one “shrinks” to zero the

tube thickness of the invariant torus, quasiperiodic trajectories on its surface are

reduced to periodic orbits with a single frequency _µ a . At the critical points the

frequency of µ b is zero when we substitute in K b = J b = 0 :

_µ b =

µ
@ H

@ K b

¶
= 2J b(g 4 4 + g 4 5 + g 5 5 ) ¡ S 4 5 J b cos[2 Ã a ] + R

¤
4 5 J b co s[2 Ã b]

¤
£

(K 2
a + J

2
a ¡ J 2b ) ¡

R ¤4 5 + 2g 4 5
2

J b cos[2 Ã a ]cos[2 Ã b] = 0 (4.54)

This leaves only µ a with non-zero frequency. Therefore, critical points found in

the [N b;0] polyads correspond to POs in the full phase space.

Visualization of Critical Point POs In order to understand the motions in a

more intuitive manner, the periodic orbits in action-angle coordinates are trans-

formed to the Cartesian coordinate. This is done by assuming each normal mode

to be a 2-dimensional harmonic oscillator. Following the method in [66], the
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normal Cartesian coordinates are:

x 4 = [(K a + K b + J a ¡ J b)= ! 4 ]1 = 2 cos[(µ a + µ b + Ã a ¡ Ã b)= 2 ]+

[(K a ¡ K b + J a + J b)= ! 4 ]
1 = 2 cos[(µ a ¡ µ b + Ã a + Ã b)= 2 ] (4.55a)

y 4 = [(K a + K b + J a ¡ J b)= ! 4 ]1 = 2 sin [(µ a + µ b + Ã a ¡ Ã b)= 2]¡

[(K a ¡ K b + J a + J b)= ! 4 ]
1 = 2 sin [(µ a ¡ µ b + Ã a + Ã b)= 2] (4.55b)

x 5 = [(K a + K b ¡ J a + J b)= ! 5 ]1 = 2 cos[(µ a + µ b ¡ Ã a + Ã b)= 2 ]+

[(K a ¡ K b ¡ J a ¡ J b)= ! 5 ]1 = 2 co s[(µ a ¡ µ b ¡ Ã a ¡ Ã b)= 2 ] (4.55c)

y 5 = [(K a + K b ¡ J a + J b)= ! 5 ]1 = 2 sin [(µ a + µ b ¡ Ã a + Ã b)= 2]¡

[(K a ¡ K b ¡ J a ¡ J b)= ! 5 ]1 = 2 sin [(µ a ¡ µ b ¡ Ã a ¡ Ã b)= 2] (4.55d)

These are related to the local coordinates (x 1 ;y 1 , x 2 ;y 2 ) shown in Fig. 4.5 by

x 1 = x 4 + x 5 ; y 1 = y 4 + y 5 (4.56)

x 2 = ¡ x 4 + x 5 ; y 2 = ¡ y 4 + y 5 (4.57)

In order to visualize the resulting POs in 3-dimensional space, they are

converted into animations with the modeling software Bryce 4. The animations for

N b = 22 are included on the accompanying CD-ROM in QuickTime 4 format [97].

Fig. 4.6 illustrates these animations by superimposing some of the still frames.

The trajectories of L and Pre are both planar and resemble their namesakes in [76].

L has most of the amplitude of bending in one C-H bending oscillator (bender)

while the other C-H bender has very little. Pre has the two C-H benders at equal
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FIGURE 4.5 Cartesian bending coordinates, as defined in eqns. (4.56,4.57).

amplitude but out of phase by ¼ = 2 . For Orth, the two benders vibrate on planes

orthogonal to each other, and reach their turning points in phase. For CR, the

two hydrogens rotate in ellipses (circles) in opposite directions at the two ends

of the molecule.

Immediately after each bifurcation, the trajectories resemble the respective

“parent” normal mode motions. In Fig. 4.4, this is where the new family of critical

points is still close to J a = § K a . As the family migrates towards J a = K a = 0, the

Cartesian trajectory more and more resembles the ideal motion in Fig. 4.6. For

example, the L trajectory initially resembles a slightly asymmetrical trans bend.

Then the imbalance of amplitude between the two C-H benders increases with
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FIGURE 4.6 Cartesian periodic orbits corresponding to critical points in [2 2;0]
polyad, produced from still frames in the computer animation. The carbon and
hydrogen atoms are represented by the large and small spheres, respectively. The
panels refer to (a) Trans; (b) Cis; (c) L; (d) Orth; (e) Pre; (f) CR critical points.

N b . Finally, at N b = 22 where J a = K a ¼ 0 , almost all the amplitude is in one of the

two oscillators.

An examination of the V D D I and V ` terms in (4.27, 4.28) reveals that both

contribute negatively to the Hamiltonian when (Ã a ; Ã b) = (0;0), and most posi-

tively when (Ã a ; Ã b ) = (¼ = 2;¼ = 2 ). The L and CR critical points correspond to the

global extrema points of the reduced Hamiltonian. L has the lowest energy while

CR has the highest. Hence, the L and CR are stable modes of vibration because
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of the limited phase space volume at the top and bottom of the energy range (x

3.3.2).

In summary, critical points analysis of the [N b;0] polyads yields four new

families of critical points, in addition to the Trans and Cis normal families. The

low-energy (EE) stability of Trans and Cis is destroyed in their first bifurcations.

Due to the special condition K b = ` = 0 , the frequency of one cyclic angle _µ b

vanishes for all critical points. Therefore, they correspond to POs in the full

phase space.

4.3.3 Results of the [N b;`] Polyads

The ` 6= 0 cases have not been considered by any other research groups.

The critical point analysis, in contrast, can be extended to arbitrary ` values

(although the validity of the effective Hamiltonian beyond ` = 2 is questionable

due to a lack of supporting experimental data). Here we present critical points in

the [N b;2], [N b;6 ] and [N b;1 0] polyad series (with K b = `= 2 = 1 ;3;5 , respectively)

as preliminary predictions, and as a demonstration of this significant extension

of our methods.

Similar to the ` = 0 case, eqns. (4.33, 4.34) are solved with (Ã a ; Ã b) held

fixed at the four values listed in (4.44). However, it is no longer true that eqn.

(4.34) has the trivial solution J b = 0 , as in the ` = 0 case. Instead, (4.33, 4.34)

must be solved simultaneously for J a and J b values. The solutions are numerically

found by first transforming these equations into a polynomial form, then solving
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them using the homotopy continuation package PHCpack [98]. This package has

no limitation on the number and form of polynomials to solve, and can be used

with no preliminary knowledge about the solutions. The solutions are further

subject to the constraint

K a ¡ K b ¸ jJ a + J bj; K a + K b ¸ jJ a ¡ J bj

in order that the actions I 4 d , I4 g , I 5 d and I 5 g in eqn. (4.18) are all non-negative.

The J a = K a ;J b= K a values of non-normal critical points are plotted against

N b in Fig. 4.7. The solutions for each of the 4 (Ã a ; Ã b ) conditions are named in

the same way as for the ` = 0 case (Table 4.3). In panels (a), (c) and (e), all

families branch out of the Trans and Cis normal modes in a manner similar to

the ` = 0 results (Fig. 4.4). The lower panels illustrate that these critical points

are not restricted to J b = 0 . Instead, they diverge from J b = 0 with increasing `.

The close resemblance between Fig. 4.4 and panel (a) of Fig. 4.7 is consistent

with the observation that in DF spectra the ` = 0 = 2 states have indistinguishable

intensity patterns. Were the dynamics vastly different for these two ` values, the

resulting fractionation patterns of the bright states are expected to be different.

At higher ` values, our analysis reveals interesting bifurcation structures, which

awaits further interpretation. Even though the quantitative predictions here are

limited by the validity of the effective Hamiltonian, we nevertheless expect the

vibrational dynamics with sufficiently high ` to become qualitatively different

from the ` = 0 case.
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FIGURE 4.7 Bifurcation of critical points in [N b;`] bending polyads. Panels (a),
(b): ` = 2 ; (c), (d): ` = 6 ; (e), (f): ` = 10 . The upper panels display J a = K a vs. N b ,
while the lower panels display J b= K a vs. N b values.
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In spite of their similarity, the physical trajectories corresponding to the

` = 0 and ` 6= 0 critical points have different natures. In the former case they are

periodic orbits and in the latter quasiperiodic orbits on 2-dimensional invariant

tori. The claim made by Jacobson et al. that “a fixed point in the abstract action-

angle space ::: must lift to a periodic orbit in the physical coordinates of the

molecule ::: that lies on a full dimension torus” [66] is accurate only when applied

to the ` = 0 case. Generally, there exist as many independent frequencies as the

number of additional constants of motion (polyad numbers). It is the critical points

in reduced phase space, not the POs in the full phase space, that are the centers of phase

space organization.

4.4 Discussion of Bifurcation Results

4.4.1 Comparison with Other Studies

The pure bending Hamiltonian was analyzed by Jacobson et al. in a nu-

merical manner. They first visually examined sequences of SOS to identify stable

fixed points at the center of regular phase space regions. The stable fixed points

are then followed while the energy is varied within the same polyad N b . A “family

tree” of these fixed points is then built within N b = 16 [99] and N b = 22 [66]. They

found a local fixed point at the bottom and a counter rotator fixed point at the top

energy end of these polyads. The fixed points were used to assign eigenstates

based on the nodal pattern of the semiclassical wavefunctions.
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The local and counter rotator fixed points correspond to our critical points

with the same names, as they occupy the same phase space region 6. There

is another fixed point these authors called the “M2 mode”, which appears to

be related to our Orth family of critical points. Reproduced in Fig. 4.8 from

Jacobson et al. is the stable M 2 PO trajectory they found in N b = 22 . The motion

qualitatively resembles panel (d) of Fig. 4.6, with the two C-H bonds bending in

phase with each other. Jacobson et al. observed numerically that this PO family

becomes unstable below 14 ;1 61 cm¡ 1 within this polyad, which is consistent with

our Orth critical point with (EH) stability at energy 14 ;114 cm¡ 1 . At this stage,

we believe that the M 2 family (both the stable and unstable segments) is formed

by secondary POs surrounding the Orth critical point, which corresponds to a

primary PO [39]. This speculation remains to be verified numerically.

We have to mention that Champion et al. had deduced the existence of L,

CR and Orth-types of modes as idealized cases using Lie algebraic analysis of the

same bending Hamiltonian [73], even though they did not perform a bifurcation

analysis with variable polyad numbers. Moreover, the L and CR modes are

independently verified in ab initio quantum eigenfunction calculations [86] as

well as numerical PO search on molecular PES [75].

According to our analysis, the Pre family is bi-unstable and therefore ex-

6Specifically, in [66] the local mode states are localized around (Ã a ;Ã b)=(0 ;0 ),
and the counter rotator mode states are around (¼ ;¼ ). Their Ã a and Ã b are defined
as twice ours.
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FIGURE 4.8 The M2 trajectories calculated by Jacobson et al. in Fig. 3 of [66], with
N b = 22.

pected to be surrounded by chaos. Thus this family is not apparent in the study

by Jacobson et al. , which relies on inspection of SOS for regular regions. Their

SOS (reproduced below as Fig. 4.9) at nearby energies shows only a strongly

chaotic region.

FIGURE 4.9 SOS near the Pre critical point, calculated by Jacobson et al. and
adapted from Fig. 1 of [99].
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4.4.2 Summary of Method

Compared to the procedure of Jacobson et al. , our critical points analysis

is much more efficient in picking out new and relevant phase space structures.

In the former, a large number of SOS taken at different directions and energy are

examined. In contrast, finding critical points in the reduced phase space involves

solving simultaneous analytic equations. Yet, in the current case, almost all the

significant observations from inspecting the SOS (specifically, those with mani-

festation in the quantum wavefunctions) can be obtained through four families

of critical points.

In the reduced Hamiltonian, time evolutions of the cyclic variable(s) are

formally factored out and not considered as the essential part of dynamics. The

critical points are determined in a uniform manner, regardless of how many (¸ 1 )

polyad numbers there are. Hence, we are able to carry the same critical points

analysis to both ` = 0 and ` 6= 0 cases. At high ` values, the latter cases display

additional bifurcations that have not been observed elsewhere.

Moreover, the usage of SOS is almost exclusively reserved for 2 DOF sys-

tems. With 3 DOF, the phase space is 6-dimensional. A 2-dimensional surface

does not have the correct dimensionality to divide it. Therefore, such a surface

is at most limited to short times because the trajectories soon stop intersecting it

[100]. The generalized SOS are 4-dimensional “hyper slices” whose visualization

is not trivial [101]. Analytic detection of interesting dynamics (without visual
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inspection) becomes essential for analyzing systems with 3 or more DOF. The

critical points analysis is such a choice. The number of equations scales linearly

with the DOF, and it is theoretically possible to find all the roots in a compre-

hensive and accurate manner. The resulting critical points then enables a guided

exploration of the phase space using other techniques, including visualization.

4.5 Effect of Single DD-I or ` Resonance

In this section, we propose an interpretation of the bifurcations in the full

4 DOF H be n d in terms of the individual resonances, namely the DD-I and the

` resonances. The DD-II is ignored due to its relative weakness. With either

of these resonances alone, a [N b;`] polyad is further separated into subpolyads.

The DD-I subpolyads are along the columns in Fig. 4.3, while the ` resonance

subpolyads are along the rows. The corresponding Hamiltonians H 0 + V D D I and

H 0 + V ` both have two modes connected by a 2 : 2 resonance.

These Hamiltonians can be analyzed using the method described in Chap-

ter 3.1. The H 0 + V D D I Hamiltonian (H D D I ) is parameterized by two reduced

phase space variables J a ;Ã a according to eqns. (4.18). Within each subpolyad,

these parameters define a DD-I PPS. Similarly, the H 0 + V ` Hamiltonian (H `) is

parameterized by J b and Ã b , which define an ` PPS for each subpolyad. For sim-

plicity, we only consider the [N b;0] polyads without the high-order coefficients

y ijk ;r 4 4 5 and r 5 4 5 . Then the DD-I PPS has radius K a ¡ jJ bj while the ` PPS has
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radius K a ¡ jJ a j.

Fig. 4.10 presents the zero-order DD-I and ` PPS, and the semiclassical

trajectories on them. With only the H 0 term, this is a trivial case because the

Hamiltonian does not depend on Ã a or Ã b . All semiclassical trajectories of H 0

can be regarded as the “composition” between one DD-I trajectory and one `

trajectory, as labeled in the figure. The critical points on the PPS are where

@ H D D I

@ J a
=
@ H D D I

@ Ã a
= 0 or

@ H `

@ J b
=
@ H `

@ Ã b
= 0 (4.58)

In the zero-order case, the only critical points are the north and south poles of

each PPS.

The DD-I and ` PPS for polyads [4;0], [12 ;0 ] and [2 0;0] are presented in

Figs. 4.11-4.13. Note that the two sets of spheres do not coexist within the same

Hamiltonian. The zero-order quantum numbers on these figures are no longer

meaningful in labeling the trajectories in H D D I and H ` , since n 4 ;n 5 (or `4 ;`5 ) are

mixed by the resonance term. As the DD-I and ` PPS do not qualitatively change

across the subpolyads with same N b , in the latter two figures the number of PPS

is reduced to make the figure legible.
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The H D D I System This Hamiltonian had been considered previously by Rose

and Kellman [76] with slightly different parameters, with the same qualitative

results. A comparison across Figs. 4.11-4.13 shows that as N b increases, two

new families of critical points emerge in two bifurcations. Between N b = 6 - 8

(Figs. 4.11, 4.12), two local mode critical points LD D I are born at the north pole

of the PPS onto the great circle (Ã a = 0;¼ ). Then between N b = 14 -16 (Figs. 4.12,

4.13) two precessional-type critical points PD D I emerge at the south pole of the PPS

onto another great circle (Ã a = ¼
2
; 3 ¼
2
). Both LD D I and PD D I migrate towards the

equator of the PPS (where J a = 0) with increasing N b .

The migration of the LD D I and PD D I is depicted in Fig. 4.14, which plots

these critical points in the same manner as Fig. 4.4. Similar to Fig. 4.4, here both

critical points in H D D I are born at J a = K a ¼ 1 and migrate towards the equator,

finally reaching J a = K a = 0 at about N b = 2 0 .

Fig. 4.15 summarizes the structure of the central DD-I PPS (N b = 4-20) on

the 2 : 2 catastrophe map. The control parameters ± D D I ;¯ 0D D I are defined in eqns.

(4.1-4.2) of [76]. ¯ 0characterizes the strength of the 2:2 resonance, while ± reflects

the detuning between the two coupled frequencies. Here, the resonance strength

s 4 5 is a constant. The trans- and cis- bending frequencies, starting as ! 4 < ! 5 , are

tuned towards each other as x 5 5 < 0 < x 4 4 . The representative points on Fig. 4.15

cross two zone boundaries as N b increases: first the trans- normal critical point
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FIGURE 4.14 Bifurcation diagram of H D D I . Only the central column (`4 = `5 = 0 )
of each polyad is shown.

(north pole) is destabilized in a bifurcation, then the cis- normal critical point is

destabilized by another bifurcation at higher polyad number.

Ref. [76] assumes a planar model of C2H2 , and predicts the LD D I and

PD D I critical points (see Fig. 1 thereof) to have the same Cartesian motion as the

L and Pre critical points in Fig. 4.6. These two motions can be interpreted in

the following simple way. The angle Ã a is defined as the relative phase between

the trans- and cis- normal mode oscillators. When exactly in resonance, these

two oscillators have the same frequency. As shown in Fig. 4.17 (a) and (b),

superimposing two such oscillators on the same plane with relative phases 0 or ¼

results in only one C-H bending motion being excited (L). Changing the relative

phase to ¼ = 2 or 3¼ = 2 causes the two C-H benders to be out of phase by ¼ = 2 or

3¼ = 2 (Pre).
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FIGURE 4.15 Catastrophe map of single DDI resonance Hamiltonian H D D I . The
representative points are for the central PPS with N b = 4-20. N, L and P denote
the Normal, Local and Precessional critical points. The unstable critical points of
a given region are underlined.

FIGURE 4.16 Catastrophe map of single ` resonance Hamiltonian H ` . The zone
structures are the same as Fig. 4.15. At all N b values, the representative points of
the central PPS are located at the same point.
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The H ` System Unlike H D D I , the Hamiltonian H ` contains a special degener-

acy condition. The quantum ZOS jn `44 ;n `55 i and jn ¡`44 ;n
¡`5
5 i always have the same

energy. This is a consequence of the time reversal symmetry, when the directions

of both angular momenta `4 , `5 are reversed [102]. In other words, the two “fre-

quencies” coupled by V ` are always in exact resonance. Any finite V ` coupling

will induce a non-local bifurcation on the zero-order system [15]. Such a bifur-

cation of critical points is indeed shown in a comparison of the ` PPS between

Figs. 4.10 and 4.11. When V ` is turned on, both poles of the sphere are unstable.

The following two new families are stable critical points:

L`: J b = 0; Ã b = 0 ;¼ (4.59)

P`: J b = 0; Ã b =
¼

2
;
3¼

2
(4.60)

H D D I and H ` share the same zone structure on the catastrophe map because they

are both formally 2 : 2 resonances. The coupling strength here is taken to be r 04 5

(which is a constant), and ¯ 0 ´ 0 . On the catastrophe map, the representative

points for the central ` subpolyads in Figs. 4.11-4.13 share a single location for all

N b values. This is shown in Fig. 4.16, which is very different from the DD-I case

in Fig. 4.15.
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FIGURE 4.17 New bending modes as superposition of the normal trans- and
cis- modes. The coordinates are defined as in Fig. 4.5, and the trans- and cis-
vibrations are assumed to be at the same frequency and amplitude. In panels
(a) - (d), the relative (phase angle, dihedral angle) between the normal mode
oscillators are (0 , 0 ), (0 , ¼ = 2 ), (¼ = 2 , 0 ) and (¼ = 2 , ¼ = 2 ) respectively. Superimposing
trans- (first column) and cis- (second column) motion result in the four new types
of motion found through critical points analysis.
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The L ` and P ` modes are formally like the local and precessional modes

in the DD-I system, although the angles Ã a and Ã b have very different meanings.

While Ã a is the relative phase angle between planar trans- and cis- motions, the

physical interpretation of Ã b is rather complex. When `4 = `5 = 0 , Ã b corresponds

to the dihedral angle between the two planar normal C-H benders.

Connection with Bifurcations in the Full Hamiltonian A comparison between

the critical points in H D D I and H ` and those found in the full H ben d of x 4.4 reveals

the following connections:

1. The 16 conditions of (Ã a ; Ã b) for critical points in H ben d (Table 4.2) can be

produced from combining the great circles on DD-I and ` PPS. Table 4.2 can

thus be regarded as a set of generalized great circles in H ben d .

2. DD-I resonance induces bifurcations in the (J a ; Ã a ) coordinates with increas-

ing N b . The new LD D I and PD D I then migrate towards J a = 0 . The `-

resonance, on the other hand, induces L` and P` in the (J b; Ã b) coordinates

as soon as V ` is included. Both new families are located at J b = 0. There is

no additional bifurcation in H ` as N b increases. All these observations are

consistent with the results in Fig. 4.4.

3. Superimposing equal amounts of trans- and cis- vibrations at the same fre-

quency, with relative phase angle Ã a and dihedral angle Ã b produces the

same non-normal Cartesian trajectories as in Fig. 4.6. Superpositions with
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(relative phase, dihedral angle) at (0 ;0 ) and (0 ;¼ = 2 ) result in the L and Orth

type trajectories respectively (see (a), (b) of Fig. 4.17), while (¼ = 2;0 ) and

(¼ = 2 ;¼ = 2 ) result in the Pre and CR type vibrations (see (c), (d) of Fig. 4.17).

4. Intuitively, the critical points in the full system can be regarded as formed

from one critical point in H D D I and one in H ` , in the manner listed in

Table 4.4. The bifurcations along N b are caused by DD-I, while the nature

of the four new modes is determined by both DD-I and ` terms.

TABLE 4.4 Proposed composition of critical points in H ben d from those in H D D I
and H ` . The notations in columns 1 and 3 refer to Figs. 4.11-4.13.

H D D I and H ` H ben d H D D I and H ` H ben d

ND D I ;L ` Trans LD D I ;L ` L
ND D I ;P ` Trans PD D I ;L ` Orth
SD D I ;L ` Cis LD D I ;P ` Pre
SD D I ;P ` Cis PD D I ;P ` CR

This composition is only a qualitative one. Most importantly it fails in predicting

the stability of critical points in the full system. Although all new critical points

in H D D I and H ` are stable, those in H be n d exhibit three different types of stability.

Only the L and CR families are bi-stable (EE). These differences are likely to

be caused by the fact that in the full Hamiltonian, the two directions (J a ; Ã a )

and (J b; Ã b) are strongly coupled to each other instead of forming independent

subsystems.
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4.6 Quantum Survival Probability of Bending States

Due to its resemblance to the transition state of Fig. 4.1, the local bending

mode is expected to play an important role in the isomerization process. Carter

et al. recently performed a Car-Parrinello calculation of the acetylene-vinylidene

system [103]. Dozens of classical trajectories are integrated, with the force field

at each step obtained from ab initio calculation. Surprisingly, many trajectories

go back and forth across the potential barrier many times before settling in the

acetylene well. The authors give a kinematic explanation: The time interval be-

tween the hydrogen crossing the barrier and swinging back is not long enough

for the energy in the reaction coordinate to dissipate effectively. This interpreta-

tion reconciles the discrepancy of vinylidene lifetime measured at two different

timescales in earlier studies – 0.04-4.6 p s in [104,105] and 3.5 ¹ s in [106]. The pi-

cosecond timescale is believed to be that of the initial decay of vinylidene, while

the microsecond is the decay time averaged over many recrossings.

In the frequency domain, such a “recurring state” is decoupled from the

rest of the vibrational manifold. This is supported by the observation of Levin

et al. [106]. In their Coulomb explosion experiment, while the vinylidene mole-

cules have energy well above the reaction barrier, the estimated dilution factor

(more on this later) is only ¼ 0.5, indicating that this is coupled to one other

state. Schork and Köppel compared the intrinsic lifetime of vinylidene to the

local density of acetylene vibrational states, and concluded that extensive IVR is
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unlikely, at least for the lowest vibrational state of vinylidene [107]. In addition,

Srivastava et al. also suggested the acetylene-vinylidene isomerization is going

to be far from the RRKM limit due to the relatively low density of states [108].

The survival probability P (t) has been an important tool in characterizing

the dynamics of quantum states [72,109]. For a quantum state jª i written as an

expansion in the eigenstate basis

jª (t)i =
X

ci e
¡ iE it= jÁ ii (4.61)

P (t) is defined as the overlap between jª (0 )i and jª (t)i:

P (t) = jhª (t)jª (0)ij2 = j(
X
i

hÁ ijc¤i e iE it= )(
X
j

cjjÁ ji)j
2

= (
X
i

jcij2 co s[E it= ])2 + (
X
j

jcjj2 sin [E j t= ])2

=
X
i

jcij4 + 2
X
i;j;i6= j

jcij2 jcj j2 co s[(E i ¡ E j )t= ] (4.62)

The survival probability of an eigenstate is trivial: P (t) ´ 1. For other

initial states, the rate of the initial decay from P (0) = 1 is determined by the

states to which jª i is directly coupled [110]. Later oscillations (quantum beats) in

P (t) reflect the (usually partial) recurrence of the initial state. Finally, the long

time average
P jcij4 , also known as the dilution factor [3], gives an estimate of the

number of states participating in the IVR of the initial state.

P (t) is the quantum analogue of the classical autocorrelation function [111].

For an eigenstate, P (t) ´ 1 . Otherwise when the state P (t) remains near unity for
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a sufficiently long time, then jª i is strongly localized in some representation (as

opposed to spreading over all space). In the statistical (RRKM) limit, the value

of P (t) is approximately equal to the local density of states that are symmetry-

allowed to couple to the initial state.

In x 3.3.2, we hypothesized that the extremum critical points correspond

to localized states. In order to test this claim in the case of the C2H2 bending

Hamiltonian, P (t) of states corresponding to Trans, Cis, L and CR critical points

are calculated for polyads N b = 2 to 20. While the Trans and Cis states are the

normal ZOS jn 04 ;0 0 i and j0 0 ;n 05 i, the L and CR states have to be constructed.

Here we use the method described by Field et al. in [72], which also contains

calculation of P (t) for selected L states. The L and CR states are defined as 7:

jLn (0)i = 1

2 n = 2
(â y4 d + â

y
5 d )(â

y
4 g + â

y
5 g )

n
2 j0 0 ;0 0 i (4.63)

jCRn (0)i = 1

2 n = 2
(â y4 d + â

y
5 d )(â

y
4 d ¡ ây5 d )

n
2 j0 0 ;0 0 i (4.64)

These are the “perfect” L and CR states in the sense of containing equal amounts

of trans- and cis- components.

Fig. 4.18 shows the P (t) values for the first 4 picoseconds. Similar results

had been obtained by Jacobson et al. in Fig. 3 in [83]. In panels (a) and (b), up to

N b = 6, the Trans and Cis states have P (t) ¼ 1 , indicating that these ZOS overtone

states will remain localized. At N b = 10, the periodic oscillations become stronger,

7A derivation for the L state can also be found in x 5.3.2. of [112].
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but the recurrences still reach close to 1. The stability appears to be lost for the

Trans state at N b = 10 and for the Cis state at N b = 14. These changes only happen

after their respective critical points become unstable in the two bifurcations of

Fig. 4.4: N b = 8 for Trans and N b = 10 for Cis. However, even at N b = 22 their

dilution factors are still 0.4 and 0.3 for j2 2 0 ;0 0 i and j0 0 ;22 0 i, respectively. Any

ZOS in the [2 2;0]g polyad is coupled to the other 71 ZOS. Had the IVR been

purely statistical, the dilution factor would have been 1
7 2
, an order of magnitude

smaller than the dilution factors of trans- and cis- overtones. This suggests the

vibrational dynamics are far from the RRKM limit, even after then normal modes

have been destabilized.

In panels (c) and (d) of Fig. 4.18, before N b = 1 4 the P (t) evolution of L and

CR states remain strongly oscillating. The almost sinusoidal oscillation between

0 and 1 of L and CR at N b = 2 is due to the fact that each state there is coupled

to another L or CR states that is degenerate to it. Between N b = 18-22, both L and

CR states have P (t) oscillating slightly under unity. On the bifurcation diagram

of Fig. 4.4, this corresponds to (J a = 0 ) which is where the (EE)-type critical

points L and CR approach their “prefect” shape in the Cartesian coordinates.

Hence, quantum wavefunctions localize around these now stable modes. Similar

conclusions were reached by Jacobson et al. through a visual match between the

classical periodic orbits and semiclassical wavefunctions in [66,99].
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The states in Fig. 4.18 with near unity P (t) are in agreement with the

(EE)-type critical points found in the classical analysis. They closely resemble the

highly excited local bending modes of acetylene [72]. P (t) of L states in Fig. 4.18

shows a lack of IVR, which is similar to the behavior of the isomerization states

discussed in [106]. The only difference is that the pure bending acetylene states

presumably are still below the isomerization barrier. With additional vibrational

energy in the stretching DOF, these states or the superposition of several such

states will be capable of going back and forth across the barrier many times with

clearly non-RRKM dynamics.

4.7 Summary and Conclusion

The critical points analysis is performed on the C2H2 pure bending effective

Hamiltonian. In the [N b;0 ] polyads, 4 new families of critical points (L, Orth, Pre

and CR) are born out of the normal Trans and Cis critical points in distinct

bifurcations as N b is increased. The bifurcation points where the new families

are born correspond to qualitative changes in the classical phase space structure.

3-dimensional computer animations give visual insight into the nature of their

motions in Cartesian space. Similar bifurcation structure is obtained for the [N b;`]

polyads (` = 2;6;1 0 ).

Three new types of critical points in [N b;0] are consistent with the results

of other researchers who had used more elaborate methods. The bi-unstable Pre
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family, on the other hand, can only be uncovered through an explicit search of

critical points like ours, as presented in this thesis.

Separate consideration of the DD-I or ` resonances alone qualitatively ac-

counts for the origin and nature of these four new modes. Using the method of x

3.1, the dynamics induced by DD-I or ` resonance alone is analyzed. Combining

the critical points in the single-resonance Hamiltonians yields the same types of

motion as those obtained as critical points in the full bending Hamiltonian.

The calculated quantum survival probability shows the break down of the

normal modes description at intermediate polyad, as well as the emergence of

local and counter rotator modes as new stable modes of vibration. These results

demonstrate that the classical phase space structure is indeed reflected in the

dynamics of the corresponding quantum system.
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CHAPTER V

BIFURCATION ANALYSIS OF C2H2 STRETCH-BEND

5.1 Introduction

Beyond the pure bending subsystem, the next step is extending the critical

point analysis to all 7 vibrational DOF of C2H2 (4 bending DOF and 3 stretching

DOF) explicitly. In such a high-dimensional system, an analytic detection method

would be far more superior to both visual inspection and numerical search.

5.1.1 The Effective Hamiltonian

Three stretch-bend effective Hamiltonians of C2H2 have been published

up to date [89,113,114]. In all of them, the resonance couplings conserve the 3

polyad numbers [N to t, N s , `]g = u in eqns. (4.1).

In this chapter, we use the Hamiltonian of Herman et al. from reference

[89], since it is the only one whose dynamics has been studied outside the ex-

perimental spectra [77,79]. It contains 8 resonances: The Darling-Dennison type

K 1 1 = 3 3 resonance coupling between the two normal C-H stretch modes, the K 4 4 = 5 5

(DD-I in Chapter 4) between the two normal bending modes, the ` resonance

r 4 5 , and K 3 = 2 4 5 , K 1 = 2 4 4 , K 1 = 2 5 5 , K 1 4 = 3 5 , K 3 3 = 1 2 4 4 resonances which couple between

the stretch and bend DOF. This coupling structure is illustrated in Fig. 5.1. In
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a typical stretch-bend polyad, the normal ZOS jn 1 ;n 2 ;n 3 ;n `44 ;n `55 i are all coupled

together by a complex web of resonances in this Hamiltonian. There are only

two exceptions. The pure bending polyads analyzed in Chapter 4 form an iso-

lated subsystem. The C-C stretch overtones j0;n 2 ;0;0 0 ;0 0 i are not coupled by any

resonance, therefore they are eigenstates of the effective Hamiltonian.

FIGURE 5.1 Resonance couplings in the stretch-bend effective Hamiltonian of
[89].

In producing all the effective Hamiltonians in [89,113,114], the fitting is

based on only a small part of the states predicted by the polyad model. A high-

lying polyad typically contains dozens of states, out of which only a few have been
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experimentally detected and included in the fit. This allows for some uncertainty

in the high-order coefficients in these fits. Especially lacking are states that contain

both stretching (N s ¸ 1 ) excitation and high bending excitation (n 4 + n 5 ¸ 12 ).

Using Heisenberg’s Correspondence Principle in eqn. (2.11), the 7 DOF

quantum Hamiltonian in [89] is transformed to a classical one with 14 action-

angle variables: (¿i;Á i) for i = 1 ¡ 5 and (· j ;Â j ) for j = 4 ¡ 5 . The actions are

related to the zero-order quantum numbers by

¿i = n i +
1

2
for i = 1 ;2;3 (5.1)

¿j = n j + 1 for j = 4 ;5 (5.2)

· k = `k for k = 4 ;5 (5.3)

To simplify our analysis, the last five high-order parameters in Table 5.1:

y 2 4 4 ;K 3 3 = 1 2 4 4 ;k 4 ;r 4 4 5 ;r 5 4 5 are ignored from all subsequent analysis. The classical

Hamiltonian then has the following form [77]:

H sb = H 0 + H v (5.4)

with
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H 0 =
5X
i= 1

! i¿i +
5X

i;j= 1 ;i· j
x ij ¿i¿j +

5X
i;j= 1 ;i· j

g ij · i· j (5.5)

H v =
K 1 1 3 3

2
¿1 ¿3 cos[2(Á 1 ¡ Á 3 ) ]

+
K 3 = 2 4 5

4

p
¿2 ¿3 f

p
(¿4 ¡ · 4 ) (¿5 + · 5 ) cos[Á 2 ¡ Á 3 + Á 4 ¡ Â 4 + Á 5 + Â 5 ]

+
p
(¿4 + · 4 ) (¿5 ¡ · 5 ) cos[Á 2 ¡ Á 3 + Á 4 + Â 4 + Á 5 ¡ Â 5 ]g

+
K 1 = 2 4 4

2

q
¿1 ¿2 (¿

2
4 ¡ · 24 ) cos[Á 1 ¡ Á 2 ¡ 2Á 4 ]

+
K 1 = 2 5 5

2

q
¿1 ¿2 (¿ 25 ¡ · 25 ) cos[Á 1 ¡ Á 2 ¡ 2Á 5 ]

+
K 1 4 = 3 5

2

p
¿1 ¿3 f

p
(¿4 ¡ · 4 ) (¿5 ¡ · 5 ) cos[Á 1 ¡ Á 3 + Á 4 ¡ Â 4 ¡ Á 5 + Â 5 ]

+
p
(¿4 + · 4 ) (¿5 + · 5 ) cos[Á 1 ¡ Á 3 + Á 4 + Â 4 ¡ Á 5 ¡ Â 5 ]g

+
K 4 4 = 5 5

2

q
(¿ 24 ¡ · 24 ) (¿ 25 ¡ · 25 ) cos[2(Á 4 ¡ Á 5 ) ]

+
r4 5

2

q
(¿ 24 ¡ · 24 ) (¿ 25 ¡ · 25 ) cos[2(Â 4 ¡ Â 5 ) ] (5.6)

The values of the parameters in the above equations are listed in Table 5.1

1. The 3 polyad numbers correspond to 3 classical constants of motion:

P = 5¿1 + 3 ¿2 + 5¿3 + ¿4 + ¿5 = N t +
1 5

2
(5.7)

R = ¿1 + ¿2 + ¿3 = N s +
3

2
(5.8)

L = · 4 + · 5 = ` (5.9)

1It was found later that the K 1 4 = 3 5 value appear as 29:04 4 in [89] and 29:94 4
in [77], which is a minor discrepancy compared to its later revision to 15 :6 6 and
16 :6 14 in [113] and [114], respectively.
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TABLE 5.1 C2H2 stretch-bend effective Hamiltonian from [89] and published in
[77] for the classical Hamiltonian . The parameters are in units of cm¡ 1 .

! 1 3501.537 x 1 5 -10.09 x 4 5 -2.311 K 1 4 = 3 5 29.944
! 2 2013.425 x 2 2 -7.802 x 5 5 -2.492 K 4 4 = 5 5 -12.909
! 3 3417.644 x 2 3 -5.882 g 4 4 0.4181 r 4 5 -6.09
! 4 621.692 x 2 4 -12.841 g 4 5 6.603 — —
! 5 746.773 x 2 5 -1.829 g 5 5 3.676 y 2 4 4 0.1522
x 1 1 -24.758 x 3 3 -27.483 K 1 1 = 3 3 -102.816 K 3 3 = 1 2 4 4 6.38
x 1 2 -11.199 x 3 4 -10.617 K 3 = 2 4 5 -16.698 k 4 -1.315
x 1 3 -103.386 x 3 5 -8.676 K 1 = 2 4 4 6.379 r 4 4 5 0.1255
x 1 4 -12.98 x 4 4 3.595 K 1 = 2 5 5 6.379 r 4 5 5 -0.225

5.1.2 Overview of Existing Studies

To our knowledge, no stretch-bend effective Hamiltonians has been ana-

lyzed with all the resonances included. To date we are aware of only three studies

of the effective Hamiltonian, all of which are limited either to special cases or by

truncation of resonance terms.

² Pals and Gaspard [77] investigated the classical trajectories’ recurrences. The

study did include the stretching DOF. However, they were mostly focused

on the pure bending subsystem, for which the Poincaré surface of section

is readily applicable.

² Hasegawa and Someda [79] analyzed the quantum dynamics using a per-

turbative method. The focus was the short-time evolution of 3 types of
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quantum ZOS: j0 ;0;0;n 04 ;0 0 i (part of pure bending subsystem), j1;3;0 ;6 0 ;0 0 i

and j0;0;n 3 ;0 0 ;0 0 i.

² Kellman et al. investigated the planar system (`4 = `5 = 0 ) with 3 resonances:

K 1 1 = 3 3 ;K 3 = 2 4 5 and K 4 4 = 5 5 in a diabatic correlation approach [115]. A series of

states termed the “primary subpolyad” are identified, which carries most of

the intensity in the experimental spectra. The states are then fit to a single-

resonance Hamiltonian, with which the spectral patterns are interpreted.

Due to the dimensionality of the problem, none of these studies explicitly

considered all the major resonances in the effective Hamiltonian. In contrast, the

approach presented in this thesis is designed to be dimensionality-independent.

Therefore we believe it is more suitable for analyzing the stretch-bend acetylene

system.

5.2 Preliminary Considerations

In Chapter 4 it was shown that the normal bending modes are destabilized

at increased internal energy (polyad numbers) by the resonance couplings, and

new stable bending modes are born in the bifurcations. A similar destruction of

the normal modes is expected in the stretch-bend system with sufficient excitation

and coupling. Independent theoretical investigations such as the PO search by

Prosmiti and Farantos [116] also suggest that the highly excited stretch-bend

system retains some regularity, which could be caused by newmodes of vibration.
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5.2.1 The Stretch Overtone Polyads

The critical points analysis starts with solving for all critical points in the

4 DOF (7 DOF - 3 polyad numbers) reduced classical Hamiltonian. In order to

obtain preliminary results, we focus on a single series of polyads of interest, as

opposed to varying all three polyad numbers [P ;R ;L ] independently.

Of the 5 normal modes of C2H2 (see Fig. 4.2), the pure bending subsystem

was analyzed in Chapter 4, and the C-C stretch (¿2 ) overtones are isolated. This

leaves the obvious question: what could happen to the two C-H normal stretches

as they are excited to higher energy? Although the C-H stretching dynamics

has been actively studied using two-mode models [24,74], their coupling to the

other vibrational modes remains little known. This motivates us to investigate

the polyad series, which includes the symmetric and antisymmetric C-H stretch

overtones:

f ¿1 ;¿2 ;¿3 ;¿4 ;¿5 ;· 4 ;· 5 g = f ¿1 ;0 ;0;0;0;0 ;0g ;f 0;0;¿3 ;0;0;0 ;0g (5.10)

Although quantization requires that the action in each mode exceed the zero-

order energy (¿i ¸ d i= 2 ), this constraint is ignored in the current purely classical

analysis. The polyads containing them are found by substituting eqn. (5.10) into

eqns. (5.7-5.9) to give

P = 5 R ;L = ` = 0 (5.11)
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These [P ;R ;`] = [5 R ;R ;0 ] polyads are henceforward referred to as the stretch

overtone polyads. The upper limit of R in this study is set at 8.0, as the effective

Hamiltonian in [113] includes up to 6 quanta of C-H overtones excitation (R =

7:5 ).

5.2.2 Stability of the Normal C-H Stretch Mode

The first consideration is the stability of the normal C-H stretch modes. For

this purpose, the classical trajectories very close to the normal mode overtones in

eqn. (5.10) are integrated. The overtone itself is stable if the deviation of nearby

trajectories remains small. The onset of large-amplitude oscillations indicates the

destabilization of the corresponding overtone trajectory.

From the results in Fig. 5.2, the symmetric stretch overtone ¿1 remains

stable to at least ¿1 = 6.5 (n 1 = 6). In contrast, the antisymmetric ¿3 overtone is

unstable even at ¿ 3 = 1 :5 , which corresponds to 1 quanta of n 3 excitation. Two

resonances may be responsible for the destabilization of ¿3 overtones: K 1 1 = 3 3 and

K 3 = 2 4 5 .

K 1 1 = 3 3 Resonance The K 1 1 = 3 3 single resonance system

H 1 1 = 3 3 = H 0 +
K 1 1 3 3

2
¿1 ¿3 cos[2(Á 1 ¡ Á 3 )] (5.12)

is analyzed for the stretch overtone polyads with the method described in x 3.1,

with m : n = 2 : 2 . After the other actions (¿2 , ¿4 ¿5 , · 4 , · 5 ) are set to be zero,
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FIGURE 5.2 Classical stability of C-H normal stretch overtones. Panel (a) and
(b) are the ¿1 and ¿ 3 values of trajectories very close to the respective overtone
conditions in eqn. (5.10).

(¿1 ;¿ 3 ) form a two-mode system with R = ¿ 1 + ¿3 . The 2 DOF reduced phase

space (PPS) are described be canonical variables I z , Ã :

I z =
¿1 ¡ ¿3
2

; Ã = Á 1 ¡ Á 3 (5.13)

The constant energy contours (at arbitrary energy) of the Hamiltonian in

the (Iz ; Ã ) space are plotted in Fig. 5.3 for R = 2 - 8. Each of these panels is the

Mecartor projection of the corresponding PPS, as in Fig. 3.1 (a) of Chapter 3. The

contours display the same qualitative features as the semiclassical trajectories.

The top and bottom of I z represent the ¿1 and ¿ 3 overtones, respectively. The

stable critical points at Ã = 0;¼ and 2¼ are the stable (E) local mode critical points.

The points at 0 and 2¼ are identified with each other, and they are degenerate

with the one at ¼ , since the two local C-H stretches are equivalent. The existence
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of local C-H stretch in C2H2 has been proposed in previous studies of the two

coupled C-H stretch oscillators [117].

The horizontal curves at the top of all panels of Fig. 5.3 indicate that the ¿1

overtone is a stable critical point. The ¿3 overtone, in contrast, becomes unstable

on the PPS from ¿ 3 = 2 onward. These qualitative results are consistent with the

stability observed in Fig. 5.2.

FIGURE 5.3 Phase space structure of single K 1 1 = 3 3 resonance Hamiltonian, as
illustrated by the constant energy contours. In panels (a)-(d) R = 2, 4, 6 and
8. The dashed line in panel (a) labels the separatrix crossing the unstable ¿3
overtones, while the black ovals at Ã = 0 ;¼ ;2¼ indicate the new stable local
mode critical point.
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K 3 = 2 4 5 Resonance The classical K 3 = 2 4 5 resonance system

H 3 = 2 4 5 = H 0 +
K 3 = 2 4 5

4

p
¿2 ¿3 f

p
(¿4 ¡ · 4 )(¿5 + · 5 ) cos[Á 2 ¡ Á 3 + Á 4 ¡ Â 4 + Á 5 + Â 5 ]

+
p
(¿4 + · 4 ) (¿5 ¡ · 5 ) cos[Á 2 ¡ Á 3 + Á 4 + Â 4 + Á 5 ¡ Â 5 ] g (5.14)

was formally analyzed by Rose and Kellman in [80]. However they did not

give any result concerning the actual parameters in C2H2 . Here the same type of

analysis is carried out for the stretch overtone polyads, with actions (¿1 , · 4 , · 5 )

taken to be zero 2. The ¿3 overtones are then contained in the action space with

¿2 = ¿4 = ¿5 = R ¡ ¿3 (5.15)

Because the derivation in [80] failed to use the proper d i for the doubly-degenerate

bends, the canonical variables (J ;' ) 3 of the 2 DOF reduced Hamiltonian are

redefined as:

J = 1 4¿2 + ¿3 ¡ 7¿ 4 ¡ 7 ¿5 ; ' = Á 3 ¡ Á 2 ¡ Á 4 ¡ Á 5 (5.16)

The arbitrary constant energy contours in (J ;' ) space are plotted in Fig. 5.4.

The top of each panel (maximum J ) corresponds to the ¿3 overtones and the

bottom to (¿2 = ¿4 = ¿5 6= 0 ;¿ 3 = 0 ). At very low energy, the K 3 = 2 4 5 resonance

induces a bifurcation of the ¿ 3 overtone, creating a stable critical point at ' = ¼ .

However, the overtone itself remains stable at higher R .

2In [80], the elimination of · i from consideration is not rigorous, since the
K 3 = 2 4 5 resonance does couple `4 ;`5 , and therefore · 4 ;· 5 .

3The notations are intentionally different those used in the K 1 1 = 3 3 case (eqn.
5.13) to avoid confusion.
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FIGURE 5.4 Phase space portraits of single K 3 = 2 4 5 resonance Hamiltonian. The
contour lines are plotted at arbitrary energy, rather than at the quantized energies
for the actual eigenstates. In panels (a)-(d) R = 2, 4, 6 and 8.

From the above separate consideration of K 1 1 = 3 3 and K 3 = 2 4 5 resonances,

below R = 2 the K 1 1 = 3 3 resonance first destabilizes the antisymmetric ¿3 C-H

stretch overtones, and the local C-H stretch becomes the stable mode of C-H

stretch.
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5.2.3 Effect of Stretch-Bend Resonances

After its creation, the local C-H stretch mode can be further perturbed

by the stretch-bend resonances, and thus coupled to the bending DOF. Of the

four stretch-bend resonances (K 3 = 2 4 5 , K 1 = 2 4 4 , K 1 = 2 5 5 and K 1 4 = 3 5 ), it is unlikely that

they are all equally important in any given part of a stretch overtone polyad.

As a qualitative estimate, we use a simplified version of Chirikov analysis [118].

When · 4 ;· 5 are left out of consideration, the “strength” of each of the 5 resonances

(except the ` resonance) can be measured by how far the zero-order frequencies

! i = @ H 0 = @ ¿i are tuned towards the integer ratio m i which is specified in a given

resonance. At the exact integer ratio, ! i satisfy [119]:

X
i

m i

@ H 0

@ ¿i
= 0 (5.17)

The vector with integer components f m 1 ;m 2 ;m 3 ;m 4 ;m 5 g corresponds to the res-

onance vectors mentioned in x 2.1. In this case they are:

K 1 1 = 3 3 : f 2;0;¡ 2;0 ;0 g ; K 3 = 2 4 5 : f0 ;¡ 1 ;1;¡ 1;¡ 1g ; K 1 = 2 4 4 : f 1;¡ 1;0;¡ 2;0g ;

K 1 = 2 5 5 : f 1;¡ 1;0;0 ;¡ 2 g ; K 1 4 = 3 5 : f 1 ;0;¡ 1;1;¡ 1g

For each resonance, the center of its resonance zone is a 4-dimensional

hypersurface in the f ¿1 ;¿2 ;¿3 ;¿4 ;¿5 g space. However because of the conservation

of P and R , only 3 of the actions can be independently varied within a polyad. It
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is therefore possible to represent these hypersurfaces as 2-dimensional surfaces,

which are referred to as resonance planes in a 3-dimensional volume (J 1 , J 2 , J 3 )

J 1 = ¿1 ¡ ¿3 2 [¡ R ;R ] (5.18)

J 2 = ¿2 2 [0 ;R ] (5.19)

J 3 = ¿4 ¡ ¿5 2 [¡ 2R ;2R ] (5.20)

which is also constrained by the requirement that all the ¿i are non-negative.

Fig. 5.5 depicts the 2D resonance planes in (J 1 ;J 2 ;J 3 ) that satisfy eqn. (5.17)

for each resonance. The panels in this figure indicate that the C-H stretch system

(thick line) is first reached by the K 1 1 = 3 3 resonance plane (red). The K 1 1 = 3 3 plane

is next intersected by the K 1 = 2 4 4 plane (magenta). The K 3 = 2 4 5 and K 1 = 2 5 5 planes

are located at the further side of the (J 1 ;J 2 ;J 3 ) space and can only interact with

the C-H stretch system via K 1 1 = 3 3 and other resonance planes. Because the K 1 4 = 3 5

resonance term vanishes in the absence of bending excitation, the K 1 4 = 3 5 its plane

(navy) also cannot directly interact with the stretch subsystem.

5.3 Critical Points Analysis

Based on the results of x 5.2.2 - 5.2.3, in this subsection we compute critical

points in the following three cases:

1. The (¿1 ;¿3 ) subsystem with K 1 1 = 3 3 resonance;

2. The (¿1 ;¿2 ;¿3 ;¿ 4 ) subsystem with K 1 1 = 3 3 + K 1 = 2 4 4 resonances;



114

FIGURE 5.5 Frequency resonance planes in stretch overtone polyads. Panels (a),
(b) and (c) display the cases with R = 4, 6 and 8, respectively. The color coding
is: K 1 1 = 3 3 (red), K 3 = 2 4 5 (turquoise), K 1 = 2 4 4 (magenta), K 1 = 2 5 5 (green), K 1 4 = 3 5 (navy).
The C-H stretch subsystem is indicated by the thick black line.
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3. The full H sb of eqn. (5.6) with all 7 resonance couplings.

5.3.1 Computational Details

Using the procedure described in Appendix A, a canonical transformation

is selected that expresses the Hamiltonian H sb in the following new action-angle

variables: 3 pairs of trivial action-angle variables (P , µ P , R , µ R , L , µ L ) for the

polyad numbers (defined in 5.7-5.9) and their conjugate angles, and 4 pairs of non-

trivial ones (I1 , ª 1 , I 2 , ª 2 , I3 , ª 3 , I4 , ª 4 ) which span the 8-dimensional reduced

phase space. The angles ª 1 ¡ ª 4 are chosen to correspond to the K 1 1 = 3 3 , K 1 = 2 4 4 ,

K 4 4 = 5 5 and ` resonances, respectively. The simplest canonical transformation we

have found so far is:

I 1 = 1 2¿1 + 8 ¿2 + 11¿ 3 + 2 ¿4 + 2¿5 + 2· 4 + 2 · 5 ; ª 1 = Á 1 ¡ Á 3 (5.21)

I 2 = 6 ¿1 + 3¿+ 6¿3 + ¿4 + ¿5 + · 4 + · 5 ; ª 2 = Á 1 ¡ Á 2 ¡ 2 Á 4 (5.22)

I 3 = 6 ¿1 + 4¿2 + 6 ¿3 + ¿4 + · 4 + · 5 ; ª 3 = Á 4 ¡ Á 5 (5.23)

I 4 = ¡ 1 2¿1 ¡ 8¿2 ¡ 12 ¿3 ¡ 2¿4 ¡ 2¿5 ¡ · 4 ¡ 2· 5 ; ª 4 = Â 4 ¡ Â 5 (5.24)

ª 1 is the relative phase angle between the symmetric ¿1 and antisymmetric ¿3

oscillators. ª 3 and ª 4 are identical to Ã a and Ã b in Chapter 4, respectively.

Critical points in the reduced phase space are defined by:

@ H sb

@ ª 1
=
@ H sb

@ ª 2
=
@ H sb

@ ª 3
=
@ H sb

@ ª 4
= 0 (5.25)

@ H sb

@ I1
=
@ H sb

@ I2
=
@ H sb

@ I3
=
@ H sb

@ I4
= 0 (5.26)
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In eqns. (5.25), ª i only appear in the form of co s functions. Similarly to

the treatment of the pure bending subsystem (x 4.3.1), a sufficient condition for

them to be simultaneously zero is:

sin [2ª 1 ] = sin [ª 2 ] = sin [2 ª 3 ] = sin [2ª 4 ] = sin [ª 2 ¡ 2 ª 3 ]
= cos[ª 1 + ª 3 § ª 4 ]sin [ª 1 + ª 3 ¨ ª 4 ] = sin [ª 1 ¡ ª 2 + ª 3 § ª 4 ] = 0 (5.27)

One can therefore fix ª i to the discrete values satisfying eqn. (5.27), and

solve the remaining 4 equations (5.26) only. The latter are first transformed by

the following substitution:

u 1 =
p
¿1 ;u 2 =

p
¿2 ;u 3 =

p
¿3 ;

u 4 =
p
¿4 + · 4 ;u 5 =

p
¿ 4 ¡ · 4 ;u 6 =

p
¿5 + · 5 ;u 7 =

p
¿5 ¡ · 5 (5.28)

and then multiplying appropriate factors to remove their denominators. The
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result is 7 simultaneous polynomial equations with 7 unknowns u 1 ¡ u 7 :

p
u 1 u 3

@ H

@ I1
(u i) = 0 (5.29)

p
u 1 u 2 u 4 u 5

@ H

@ I2
(u i) = 0 (5.30)

p
u 4 u 5 u 6 u 7

@ H

@ I3
(u i) = 0 (5.31)

p
u 4 u 5 u 6 u 7

@ H

@ I4
(u i) = 0 (5.32)

5u 21 + 3u
2
2 + 5u

2
3 +

1

2
(u 24 + u

2
5 + u

2
6 + u

2
7 ) = P (5.33)

u 21 + u
2
2 + u

2
3 = R (5.34)

u 24 ¡ u 25 + u 26 ¡ u 27 = 0 (5.35)

The unknowns are then solved with PHCpack [98].

Treatment of Subsystems When any of the u i variables vanishes, at least one

of eqns. (5.29-5.32) becomes unphysical . This happens when there is zero action

in any normal mode ¿i, or when ¿j = § · j .

Special consideration is required for these cases. The contributions from

the resonance(s) involved with the vanishing action would also vanish from the

Hamiltonian. The equations defining the critical points have to be adjusted ac-

cordingly. As an example, in the treatment of H2O system, the two O-H normal

stretch critical point families have no bend action [16]. In deriving these families,

the bending-dependent terms including the stretch-bend Fermi resonances have

to be removed. Critical points in the resulting 2 DOF subsystem correspond to

these normal stretch modes.
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In this chapter we only consider the two subsystems outlined at the end

of x 5.2.2. In order to locate all the possible critical points in the stretch-bend

system, theoretically all combinations of u i = 0 have to be considered one by

one. In each case, the relevant zero-order and resonance terms in the classical

Hamiltonian are removed. A new canonical transformation (Appendix A) may

be necessary so that the new angles correspond to the remaining resonances.

5.3.2 Results

The resulting critical points consist of families of curves in the (¿ ;· ) 7-

dimensional action space, parameterized by the polyad number R . Associated

with each family is a discrete set of ª i values. Incidentally, all these solutions

have · 4 = · 5 = 0 . Visualizing the rest of the action space ¿1 ¡ ¿5 is still a

challenging task. In Fig. 5.6, we graph them in 5 separate panels with each ¿i

versus R separately. Only those with significant ¿i are calculated and displayed

here. In the K 1 1 = 3 3 subsystem, ¿ 2 = ¿4 = ¿ 5 = · 4 = · 5 = 0 . In the K 1 1 = 3 3 + K 1 = 2 4 4

subsystem, ¿5 = · 4 = · 5 = 0 .

With R 2 [2;8 ], we found one family for the K 1 1 = 3 3 subsystem correspond-

ing to the local C-H stretch, two families for the (¿ 1 ;¿2 ;¿3 ;¿4 ) system, and two

families for the full Hamiltonian.

When there is only K 1 1 = 3 3 resonance coupling (¿1 ;¿ 3 ), one family of stable
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FIGURE 5.6 Families of critical points in stretch overtone polyads [5R ;R ;0]. Black,
grey and red: critical points in H sb . Navy and magenta: the K 1 1 = 3 3 + K 1 = 2 4 4 system
with ¿5 = 0 . Green: The K 1 1 = 3 3 system, with ¿2 = ¿ 4 = ¿5 = 0 .
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(E) critical points bifurcates out of the ¿3 overtone. The new family has

ª 1 = 0 (5.36)

which is the local C-H stretch mode indicated on the previous Fig. 5.3.

When both K 1 1 = 3 3 + K 1 = 2 4 4 are included and ¿5 = · 5 = 0 , the sub-

Hamiltonian employs four variables (I 1 ;I 2 ;ª 1 ;ª 2 ). Two new families of critical

points are created at:

(ª 1 ;ª 2 ) = (0 ;0);(0;¼ ) (5.37)

the (0;0 ) family has (EE) stability and the (0 ;¼ ) family has (EH) stability. The C-H

stretching motion of these critical points is qualitatively like the local C-H stretch

motion, because the ª 1 value for both families is the same as in eqn. (5.36). The

ª 2 angle, as the phase angle of a three-mode resonance K 1 = 2 4 4 , is not yet given a

clear physical meaning.

In the full H sb , solving the critical point equations (5.29-5.35) results in two

more families of critical points with

(ª 1 ;ª 2 ;ª 3 ;ª 4 ) = (0 ;0 ;0;¼ );(0 ;¼ ;0;¼ ) (5.38)

Although there is no explicit constraint, both of these families have · 4 = · 5 =

0 . The (0;0 ;0 ;¼ ) family start with (EEEE) stability and switches to (EEMM) at

R = 5:45 . The (0;¼ ;0;¼ ) family has (EEEH) stability for up to R = 8. These two

families also have the ª 1 = 0 indicating local-type C-H stretch. The values of two
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other angles ª 3 = 0;ª 4 = ¼ , according to Table 4.2 of Chapter 4, suggest that the

bending motion is of the local type.

A striking feature is that the critical points in both the K 1 1 = 3 3 + K 1 = 2 4 4 and

full Hamiltonian bifurcate out of the local C-H stretch (green line in Fig. 5.6).

The latter then bifurcates out of the ¿ 3 (antisymmetric C-H stretch) overtones. We

believe that the critical points in Fig. 5.6 correspond to novel types of dynamics

in the respective stretch overtone polyads.

Unlike the case of [N b;0] pure bending polyads, these critical points in the

stretch-bend Hamiltonian do not correspond to POs in the full phase space, but

quasiperiodic orbits with 3 frequencies:

_µ P =
@ H s b

@ P
; _µ R =

@ H sb

@ R
; _µ ` =

@ H sb

@ `
(5.39)

This is a direct result of the multiple polyad numbers, as explained in x 3.3.2.

5.4 Summary

A critical points analysis is performed on the C2H2 stretch-bend effective

Hamiltonian in order to clarify the fate of normal C-H stretch mode under in-

creasing excitation. The preliminary results indicate that the antisymmetric nor-

mal C-H stretch -s first destabilized by K 1 1 = 3 3 resonance to produce the local C-H

stretch. Then the local stretch bifurcates into at least 4 families of stretch-bend

critical points at higher excitation, with the inclusion of stretch-bend resonances.
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Such an observation suggests that the stretch-bend dynamics could be influences

by a chain of bifurcations each induced by certain resonances.

We are currently working to clarify the physical meaning of these critical

points, and their role in the classical phase space. In addition, a more complete

classification, including all the subsystems (combinations of ¿i = 0 ) is in progress.
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CHAPTER VI

CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Conclusions

A generalized method of critical points analysis is proposed for analyzing

highly excited intramolecular vibrational dynamics. The classical form of effec-

tive Hamiltonian with polyad numbers is canonically transformed to reduce the

dimensionality. The critical points in the reduced phase space are systematically

found as roots of analytic equations. Their number and stability are followed as

the polyad number(s) is varied, forming a bifurcation structure. Critical points

with all-stable stability type are expected to indicate regions of regular (quasi-

periodic) motion, which correspond to quantum modes of vibration. A change

in the number and/or stability of these critical points, called a bifurcation, consti-

tutes the most important invariant structure in phase space. These bifurcations

indicate qualitative changes in both the classical and quantum dynamics of the

system.

This analysis is carried out in the C2H2 pure bending system. Four new

families of critical points besides the normal mode ones are found to be born

in bifurcations at higher excitation energy. The two bi-stable families L and CR

correspond to the new quantum modes, which dominate the top and bottom
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of the polyad after the normal modes are destabilized by the bifurcations. These

new families are qualitatively interpreted as superpositions of collective resonance

modes caused by DD-I and ` resonances acting individually.

Critical point bifurcation analysis is extended to the stretch-bend effec-

tive Hamiltonian. Preliminary results are presented and discussed for polyads

[5R ;R ;0], which contain the stretch overtones. With increasing stretch polyad

number R , the antisymmetric C-H normal stretch overtone states are first sub-

stituted by the local C-H stretching as the stable mode, in a bifurcation induced

by K 1 1 = 3 3 resonance. Then K 1 = 2 4 4 resonances and other resonance couplings set

in sequentially, creating new families of critical points. These critical points are

expected to correspond to novel modes of stretch-bend vibration.

6.2 Summary of Contributions

In this thesis we have

1. Introduced a generalized critical points analysis method that can explore

systems beyond the scope of existing methods. The cases with multiple

polyad numbers are explicitly considered in the analysis for the first time.

2. Found four important modes of vibration in the acetylene pure bending sys-

tem, and provided a qualitative explanation in terms of single resonances.

3. Studied for the first time the effect of multiple resonances in the stretch-

bend C2H2 system. The preliminary critical point analysis suggests a series
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of resonances that act sequentially to couple the C-H stretching overtones

to the remaining DOF.

6.3 Future Directions

The comprehensive critical points analysis of the full acetylene stretch-

bend remains to be finished. Then the critical points could be used to assign the

strongly perturbed eigenstates, such as the approximately half of the observed

levels in polyads [4 ;20;0 ]u + and [5 ;25;0 ]u + . These levels appear as neither a

normal ZOS, nor attributable to perturbation from a single resonance [113].

The generalized critical points analysis has opened the door to analyzing

the dynamics of many more systems with polyad structure. These systems in-

clude other C2H2 isotopomers, formaldehyde (H2CO) [120], methane (CH4 ) [121]

and even myoglobin [122]. The last case suggests that even in large molecules, it

is possible for a few coupled modes to be isolated from the rest of the molecule,

for a (relatively) prolonged time. These new systems will greatly expand the

usefulness of the polyad Hamiltonian model.

New mathematical inquiries also arise from this thesis regarding the math-

ematical theory of relative equilibria (see x 3.3.3). Most of the relevant mathemati-

cal studies up to date consider only rigorously conserved symmetries, such as the

angular momentum of an isolated body. However, then considering molecules,

because of the approximate nature of the effective Hamiltonian and polyad num-
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bers, the structural stability of the dynamical features gleaned from the critical

point analysis remain to be clarified. Specifically, it would be of great practical

importance to understand how much the real molecular Hamiltonian with rela-

tively small polyad-breaking terms differ in dynamics, compared to those from

the polyad Hamiltonian.
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APPENDIX A

CANONICAL TRANSFORMATION

This appendix explicitly derives the canonical transformation that results in

a reduction of the classical Hamiltonian with polyad number(s). The application

of eqns. (2.11) to an N -mode quantum effective Hamiltonian (2.1) results in a

classical Hamiltonian with N pairs of action-angle variables (¿i;Á i)

H (¿i;Á i) = H 0 (¿i) + H v (¿i;Á i) (A.1)

Each resonance coupling in H v can be expressed as an N -vector. Let there

be M (M · N ) resonance vectors that are linearly independent of each other:

~V i = f N i1 ;N i2 ;:::;N iN g for i=1 ;:::;M (A.2)

There exist a total number of (N-M) polyad numbers ([25] and [26])

~P j = f P j1 ;P j2 ;:::;P j N g for j=1;:::;(N ¡ M ) (A.3)

which correspond to vectors perpendicular to all ~V i:

~P j ¢ ~V i = 0 (A.4)

The next step in simplifying eqn. (A.1) is finding a canonical transforma-

tion which (1) linearly combines ¿i into M new actions Ii, and (N ¡ M ) polyad
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numbers P j ; (2) linearly combines Á i into M angles ª i conjugate to Ii, and (N ¡ M )

cyclic angle µ j . After this transformation, the Hamiltonian has only 2(N ¡ M )

nontrivial coordinates:

H (Ii;ª i) = H 0 (Ii;P j) + H v (Ii;ª i;P j ) (A.5)

This transformation can be expressed in matrix notation as0BBBBBBBBBBBBBBBBBB@

ª 1
¢¢¢
ª M
µ 1
¢¢¢
µ N ¡ M
I 1
¢¢¢
I M
P 1
¢¢¢
P N ¡M

1CCCCCCCCCCCCCCCCCCA

=

µ
A 0
0 B

¶

0BBBBBBBBBBBBBBBBBB@

Á 1
¢¢¢
¢¢¢
¢¢¢
¢¢¢
Á N
¿1
¢¢¢
¢¢¢
¢¢¢
¢¢¢
¿N

1CCCCCCCCCCCCCCCCCCA

(A.6)

Both A and B are N £ N matrices. The first M rows of A are the ~V i vectors

in eqn. (A.2), while the last (N ¡ M ) rows of B are the ~P j vectors in eqn. (A.3).

Using the symplectic formulation of canonical transformations from Chapter 9.3

of [32], we require:

µ
A 0
0 B

¶µ
0 ¡ E N
E N 0

¶µ
A 0
0 B

¶T
=

µ
0 ¡ E N
E N 0

¶
(A.7)

This can be reduced to the following equations:

A B T = B A T = E N (A.8)



129

In solving for the unknown elements in matrices A and B , there are usually

more unknowns than the number of independent equations. The transformation

then is not uniquely determined.

Nevertheless, the Hamiltonian dynamics cannot be dependent on the

choice of coordinate system. Consider a critical point in coordinates (I i;ª i) where

@ H

@ ª i
=
@ H

@ Ii
= 0 (A.9)

In an alternative coordinate system (J i;© i), the critical point equations can be

derived using the chain rule from calculus:0@ @ H
@ J 1

¢¢¢
@ H
@ J M

1A =

0@ @ I1
@ J 1

¢¢¢ @ IM
@ J 1

¢¢¢ ¢¢¢ ¢¢¢
@ I1
@ J M

¢¢¢ @ IM
@ J M

1A0@ @ H
@ I1

¢¢¢
@ H
@ IM

1A = 0 (A.10)

0@ @ H
@ © 1

¢¢¢
@ H
@ © M

1A =

0@ @ ª 1
@ © 1

¢¢¢ @ ª M
@ © 1

¢¢¢ ¢¢¢ ¢¢¢
@ ª 1
@ © M

¢¢¢ @ ª M
@ © M

1A0@ @ H
@ ª 1

¢¢¢
@ H
@ ª M

1A = 0 (A.11)

The two square matrices are determined by the transformation between (Ii;ª i)

and (J i;© i). Due to eqn. (A.9), the two column vectors in the middle portion of

the above two equations would vanish. Therefore the two column vectors on the

left,
³
@ H
@ J i

´
and

³
@ H
@ © i

´
must also vanish. This shows the critical points are indeed

invariant under an alternative choice of canonical transformation.

Apart from the uncertainty in the canonical transformation, there is also

uncertainty in choosing the polyad numbers P j , which leads to non-unique defin-

ition of the cyclic angles µ j . As an important consequence, the N ¡ M frequencies

_µ mentioned associated with a critical point (see x 3.3.3) are also arbitrary, as
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their values are subject to linear combinations under a different choice of P j . A

preferred definition is not evident from the general consideration 1. Additional

system-specific constraints (such as relating _µ variables to the vibrational frequen-

cies in the Cartesian coordinates) are often necessary to address the choice of a

non-unique set of action-angle variables.

In summary, when reducing the classical Hamiltonian using the polyad

number(s), there are freedom in choosing both the polyad number(s) and the

canonical transformation. However, physical behaviors should not be dependent

on a particular choice of coordinate system. The above analysis shows rigorously

that this is indeed the case: different choices in canonical variables lead to the

same critical points in the reduced phase space.

1The only exceptions are some trivial cases. For example, if a normal mode i
is uncoupled, then intuitively Á i is a preferred cyclic variable.
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APPENDIX B

TOPOLOGY OF [N b;0 ] PURE BENDING PHASE SPACE

B.1. The Poincaré-Hopf Index Theorem

The Poincaré-Hopf Index Theorem [123] was initially proposed by Poincaré

and later extended by Hopf. This theorem provides a constraint on the possible

combination of the critical points in the reduced phase space. It states that “The

index of a vector field with finitely many zeros on a compact, oriented manifold is the

same as the Euler characteristic of the manifold” [36].

In a Hamiltonian system, the manifold is the phase space while the vector

field is the flow generated by the equations of motion. An index g i is assigned

to each critical point (i.e. a zero of the vector field) based on its linear stability.

According to the Poincaré-Hopf index theorem, the sum of all indices g i is equal

to the Euler characteristics Â . Â is also known as the topological index since it is

entirely determined by the topology of the manifold.

A critical point is non-degenerate if all eigenvalues of its stability matrix

A in eqn. (3.13). At such a point, g i = § 1 according to one of the following two

equivalent criteria: (1) (¡ 1)n , with n the number of eigenvalues with positive real
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part; (2) the sign of the determinant of A . Examples of g i in 1-3 DOF Hamiltonian

systems are listed in Table B.1.

TABLE B.1 Stability index of critical points in 1-3 DOF Hamiltonian systems.

Linear Stability g i Linear Stability g i

E +1 EEE +1
H -1 EEH -1
EE +1 EHH +1
EH -1 HHH -1
HH +1 EMM +1
MM +1 HMM -1

On a 2-dimensional manifold, Â is related to the number of “holes” (genus)

h on the manifold:

Â = 2 ¡ 2 h

Therefore a torus (with one “hole”) has Â = 0 while a sphere (with no “hole” )

has Â = 2 . The spherical case has been used by the Kellman group to check the

consistency of critical points on the polyad phase sphere. It is especially helpful

in deducing the stability of critical points at the poles [47]. Fig. B.1 demonstrates

this using the PPS of Fig 3.4 of Chapter 2. Spheres 1 and 4 both have two stable

critical points, while sphere 3 has 3 stable and 1 unstable (H) critical points. In all

three cases, the sum of the stability indices (see Table B.1) equals 2, the topological

index of a sphere.
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FIGURE B.1 Conservation of topological index on the PPS. The phase spheres are
selected from Fig 3.4 of Chapter 3. A large dot indicates a stable (E) critical point
and the “X” in sphere 3 indicates an unstable (H) critical point.

The application of the Poincaré-Hopf Theorem to higher dimensional man-

ifolds is challenging, due the lack of means of direct visualization 1. A few known

cases are summarized in Table B.2.

TABLE B.2 Topological indices of 2- and 4-dimensional manifolds, from [125].

Symbol Manifold Â

S 2 2-sphere 2
T 2 2-torus 0
S 4 4-sphere 2
T 4 4-torus 4

B.2. Topology of [N b;0 ] Bending Phase Space

This subsection proposes a topological description of the critical points

found in the C2H2 pure bending polyads [N b;0 ].

1An exception is in the 3-dimensional configuration space of ab initio electron
density, such as in [124].
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Currently, there is no sign (such as the display of monodromy [126]) that

the topology of C2H2 pure bending phase space changes with the polyad number

N b . First, we consider the low polyad end with N b · 7 , before any bifurca-

tion takes place. At this end, there are no critical points except possibly where

jJ a j + jJ bj = K a . In Chapter 4, these locations appear in Figs. 4.10-4.13 as the

boundary of the diamond-shaped space. Here this space is schematically illus-

trated in Fig. B.2, . Because the coordinate system is singular at these locations,

the Hamiltonian H ben d is transformed to a local-mode representation using the

x-K relationship described in Chapter 7.6 of [93]. The result is shown in Fig. B.2.

It was found that only the four vertices in Fig. B.2 correspond to critical points.

Points A and B (J a = § K a , J b = 0 ) are critical points with (EE) stability; while

points C and D (J a = 0 , J b = § K a ) are critical points with (MM) stability; (3)

other points on the boundary are not critical points.

The two J b = § K a points of (MM) stability correspond to states with

maximum `i in each of the normal mode oscillators: j(N b= 2)§ (N b= 2 );(N b= 2)¨ (N b = 2 )i.

Since `i · n i, there cannot be pure “`i -overtones” in the form of e.g. the ZOS

j0 `4 ;0 0 i. These two families of critical points do not participate in the subsequent

bifurcations.

At each bifurcation for which N b > 0 , the sum of indices will be conserved

if (1) each of the classical normal Trans and Cis motion is doubly-degenerate,
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FIGURE B.2 Critical points in ` = 0 bending Hamiltonian at low N b .

consisting of bending on the x- and y- planes in a given Cartesian coordinate

system and (2) the four new families of critical points in Fig. 4.4, each point

correspond to four degenerate POs. In classical mechanics, the two carbon and

two hydrogen atoms are assumed distinguishable. The quadruply-degenerate

POs are related to each other by both a 90o rotation around the C-C bond and a

mirror plane perpendicular to it.

Then the Poincaré-Hopf index theorem can be satisfied in the following

manner 2. Substituting the stability index of each one and their degeneracy into

2As points C, D do not participate in the bifurcations, we only consider com-
binations of the Trans, Cis against the four new families.
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eqns. (4.53), we have before and after each bifurcation:

L, CR: (EE) ! 4 (EE) + 2(EH) ; (+ 2) = 4 £ (+ 1) + 2 £ (¡ 1 ) (B.1)

Orth: (EH) ! 4 (EH) + 2(HH) ; (¡ 2) = 4 £ (¡ 1) + 2 £ (+ 1 ) (B.2)

Pre: (HH) ! 4 (HH) + 2(EH) ; (+ 2) = 4 £ (+ 1) + 2 £ (¡ 1 ) (B.3)

Hence in all four bifurcations, the sum of stability indices before and after each

bifurcation remains the same.
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