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Moment of inertia, backbending, and molecular bifurcation
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We predict an anomaly in highly excited bending spectra of acetylene with high vibrational angular
momentum. We interpret this in terms of a vibrational shape effect with moment of inertia
backbending, induced by a sequence of bifurcations with a transition from “local” to “orthogonal”
modes. © 2007 American Institute of Physics. [DOI: 10.1063/1.2766936]

Around 25 years ago, it became clear that profound
changes in the vibrational dynamics of molecules occur
when nonlinearities can no longer be treated as perturbative
effects, and the standard picture of anharmonic normal
modes breaks down. This perspective has since been devel-
oped in many studies. Numerous references can be found in
a recent study of acetylene bend spectra1 and a recent
review.”

We have emphasized particularly the role of bifurcations
in the “birth of new modes from the low energy normal
modes.” Spectral phenomena associated with bifurcations
have been predicted and observed. While bifurcation effects
in purely vibrational dynamics and spectra are starting to be
well understood, the interplay of bifurcations and angular
momentum remains mostly a mystery. There has been work
on the effects of angular momentum on vibrational
bifurcations.” Here we will concentrate on the converse: ef-
fects of vibrational bifurcations on the angular momentum
spectrum. We know of one other investigation4 in this vein
and will describe its relation to the work here in due course.

In this paper we want to focus on bifurcation effects in
spectra of as elementary a system as possible. General angu-
lar momentum phenomena will involve the full rotation-
vibration problem. We therefore deliberately seek to mini-
mize rotation-vibration interactions such as Coriolis
couplings. To this end, we consider pure vibrational angular
momentum J=+¢ excitations of a linear molecule in highly
excited bending states. We choose acetylene because it has a
highly refined effective spectroscopic fitting Hamiltonian’
which can be extrapolated to make predictions about high
angular momentum spectra. As desired, the J=¢ pure vibra-
tional angular momentum states are minimally affected by
rotation-vibration interactions.® From the effective fitting
Hamiltonian, we predict clearly anomalous spectral behavior.
To understand this, we investigate a “moment of inertia
backbending” effect as the molecule undergoes a sequence of
bifurcations. Essentially, the molecule undergoes a change in
vibrational “shape” due to the bifurcations while retaining its
linear equilibrium symmetry.

Now we identify the spectral series of interest and
present numerical evidence for anomalous behavior. In C,H,
it turns out empiricallyi7 that to a good approximation there
are pure bending excitations, decoupled from the stretch
modes, with conserved bend quantum number N,. We will
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consider J=¢ angular momentum excitations [N,,€]
=[Ny,0],[Ny, 1] [Ny, €nax)> With € ,,=Np,+2 in each N,
series. The states considered are the ones of lowest energy
for each polyad [N,,{]. Classically, these excitations possess
fully stable character;6 as such, the £=0 members correspond
to the reaction path in the acetylene-vinylidene
isomerization.®

An anomaly in these spectral series is visible as a very
slight undulation in a plot of energy versus € for a given
series [Ny, €]. We do not show this here; instead we analyze
it by plotting energy differences between succeeding levels
in the series. This corresponds semiclassically to a plot of
w=0H/d€ vs €. This is shown for the series N,=18-29 in
Fig. 1. Sharply differentiated sectors are evident in these se-
ries.

To interpret this anomalous behavior, we will consider a
moment of inertia backbending effect and its physical expla-
nation in terms of bifurcations. Backbending involves a se-
ries of angular momentum excitations. A familiar instance is
seen when an ice skater induces “spin up” or “spin down” by
pulling the arms in or out. In classical mechanics, the system
can be viewed as a rotating quasirigid body:
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with effective angular frequency « and moment of inertia /
determined as’

120 | © (cm ™)
100
80 |
60 -
40 |

20 ¢

0 5 10 15 20

FIG. 1. Predicted semiclassical (€, ) from energy level differences of Eqs.
(2) and (3) for N,=18,19,...,29.
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FIG. 2. (Color online) Predicted (w?,]) for polyads [N,.{]

=[28,1],[28,2],...,[28,22] of the N,=28 series. The sectors are L [circles
(red)], OGC [triangles [blue)], and O [squares (green)].
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with J here taken to be the rotational angular momentum in
units of #. For a rigid body, I is of course a constant. For a
semirigid body, I normally increases steadily with & (and w?)
as a result of the centrifugal force. However, in moment of
inertia backbending, the curve of (w?,1) exhibits an S-shaped
segment: the slope suddenly becomes negative at some rota-
tional frequency before resuming the positive slope. There
may be incomplete backbending, sometimes called “upbend-
ing.” Both backbending and upbending have been observed
in nuclei’® and predicted in stars'' and electronic curve
crossings in diatomic molecules.’ However, the situation in
those cases differs in the fundamental respect that the back-
bending is concerned with rotational angular momentum per-
pendicular to the symmetry axis, while here the angular mo-
mentum is parallel to the symmetry axis with J=¢.

Figure 2 shows the predicted (w?,1) plot for the series
with N,=28, calculated by the finite differences on the right
hand side in Egs. (2) and (3). Moment of inertia upbending is
evident. There are clearly three sectors in the figure, labeled
L, OGC, and O for reasons that will become apparent. Figure
3 shows the (w?,1) plot for the series with N,=8-38 col-
lected together. Each series terminates at the maximal value
{=N,+2 allowed for the given N,,. It is evident that all of the
series show upbending, with an abrupt onset of the upper
flattened sector at N,=22 and a sharpening of the lower cor-
ner of the § curve with increasing N,,.

To account for the upbending, we consider the bifurca-
tion behavior of acetylene. A bifurcation is accompanied by a
change of molecular shape (in a special dynamical sense to
be made explicit later; we are not speaking of a change in
equilibrium geometry of the molecule). At low quantum
numbers, the modes are the familiar normal modes. Due to
anharmonicity and couplings, at higher quantum numbers,
the normal modes bifurcate and new modes are formed;
these, in turn, can undergo further bifurcations.
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FIG. 3. Predicted (w?,1) for [N,,{] series with N,=8,10,...,38.

The bifurcation analysis works as follows. A classical
version of the quantum matrix fitting Hamiltonian'? is ob-
tained via the Heisenberg correspondence.13 The effective
Hamiltonian for acetylene5 has N, and ¢ as conserved quan-
tities. We obtain a reduced classical Hamiltonian by project-
ing out these conserved actions and their conjugate angles.
The bifurcation analysis is then performed by finding the
critical points of the reduced Hamiltonian."”'*~'® The critical
points for a given [N,,{] are found by solving analytic alge-
braic equations; there is no need to integrate Hamilton’s
equations. Along a sequence of critical points with fixed N,
and varying ¢, the quantities

= dH/dt, (4)

21= 9¢*oH (5)

are calculated semiclassically according to Egs. (2) and (3) to
give the curves in Figs. 2 and 3.

When € =0, there are four bifurcations in which the trans
bend normal mode spawns new modes called local L, or-
thogonal O, and precessional P, and the cis bend normal
mode bifurcates to give a counter-rotator CR mode. The dra-
matically different nature of these new modes from the nor-
mal modes is seen clearly in still ﬁguresl’2 and web-based
animations.'’

When € >0, bifurcations again give the four new modes
L, O, P, and CR, and in addition,® for some [N,,€] a new
family called “off great circle” OGC. A still figure depiction
of the O mode will be considered below in Fig. 4. At fixed
N, sufficiently large, there is a bifurcation sequence L
—OGC— O in the direction of increasing ¢, in which the L
mode (itself born in a bifurcation of the trans normal mode)
bifurcates to give an OGC mode, which then bifurcates to
give an O mode. [Following the states of the bifurcation
sequence is the same as using the energy level excitation
sequences of Egs. (2) and (3).]

Figures 2 and 3 represent an interpretation of the pre-
dicted vibrational series as rotational excitation of a system
with J=¢€ and moment of inertia / along the molecular axis
and associated rotation frequency w, as given by Egs. (2) and
(3). The crucial observation is that the three distinct regions
of the moment of inertia curves correspond to the three sec-
tors in the bifurcation sequence L — OGC— O. However,
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FIG. 4. (Color online) Time-lapse figure of the precessing orthogonal mode
O for N,=20, {=4, adapted from Ref. 2.

acetylene is a linear molecule, conventionally thought of in
its equilibrium configuration as having zero moment of iner-
tia along the figure axis. Then what meaning is to be attached
to the moment of inertia / and the rotation frequency w in
Figs. 2 and 3?

The moment of inertia can be understood in terms of
breaking of the D.,; molecular symmetry, which of course
occurs with vibrational angular momentum excitation and
associated centrifugal effects. The rapid vibrational motion
with high N, and J=€=0 creates a vibrational shape. The
shape then has slower angular momentum excitations with
J=€#0 along the symmetry axis. A variable moment of
inertia comes about because of the changing shape along the
curves in Figs. 2 and 3 in the sequence L —OGC— O.

A visual image of the molecular shape and its collective
rotation is useful. Figure 4 shows a time-lapse picture of the
orthogonal mode, the O sector in Figs. 2 and 3. At each end,
the H atom of the molecule moves in a rapid trajectory in a
near ellipse. However, instead of closing on itself, the ellipse
precesses. The two ends of the molecule have the elliptical
shapes oriented at right angles to each other, with a definite
fixed angle =~ /2 between the orbits, and the whole system
slowly precessing in phase. Viewed along the figure axis, the
molecule has the rotational symmetry about the D, axis
“spontaneously broken” into a cross shape. It is this symme-
try breaking that enables the whole vibrational shape to ro-
tate collectively about the molecular axis (precession of the
ellipses in phase), thereby restoring the rotational symmetry.

This is readily given a clear mathematical expression.
The cross shape is determined by the fixed angle relationship
of the precessing ellipses, which comes from the critical
point analysis. The frequency of the rapid motion that creates
the shape is the frequency (), of oscillation of the elliptical
orbits. The slower rotational frequency w of the shape is the
frequency of precession of the orbits. These frequencies are
given, respectively, by the partial derivatives of the Hamil-
tonian with respect to the actions N, and ¢:
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FIG. 5. (Color online) Superposition of ellipses of trajectories from mem-
bers [N,,€]=[28,1],[28,2],...,[28,22] of the N,=28 series. The inner
(red), middle (blue), and outer (green) groups of trajectories belong, respec-
tively, to the sectors L, OGC, and O of Fig. 2. Overall precession around the
C—C axis (as in Fig. 4) is eliminated in order to focus on the change in the
elliptic shapes.

O, = dHIN,, Q= w=0HId. (6)

A physical understanding can now be realized of the
S-shaped behavior of the moment of inertia curves. In Fig. 5
for the series N,=28, for each € value in the series, we plot
each classical trajectory (without precession) at both ends of
the molecule. As clearly seen in the resulting collage of tra-
jectories, there are three sectors, corresponding to L, OGC,
and O. This shows how a characteristic vibrational shape is
maintained for each type of critical point and then changes
sharply at the bifurcation points in the L—OGC—O se-
quence. It is noteworthy that the upbending part of the mo-
ment of inertia curve is associated with the OGC segment of
the bifurcation sequence. In phase space, the OGC is a tran-
sitional sector that bridges L and O, which are locked at their
own fixed angles in the phase space.

It is worthwhile to relate this picture to the usual treat-
ment of a linear molecule with doubly degenerate vibrations,
for example, by Herzberg.18 He treats a vibrating linear mol-
ecule as a symmetric top with energy contribution

BJ(J+1) +A¢? (7)

from the angular momentum. This is somewhat different
from Fig. 5 in which the vibrational shape is not necessarily
that of a prolate symmetric top, as is readily seen in the local
mode sector in the figure. In relation to the treatment of Ref.
18, our conception is of a fast vibrational motion that creates
the shape, and a slower but still relatively fast precessional
motion (“rotation” parallel to the figure axis) that restores the
D, prolate symmetric top symmetry, i.e., both frequencies
Q, and Q, are fast compared to the “rotational” frequency
about an axis perpendicular to the molecule. With rotation-
vibration interaction, the symmetric top energy level pattern
is broken by ¢ doubling.18 As discussed above, in the system
here with pure vibrational angular momentum excitations J
={, rotation-vibration effects are minimized (and absent in
the classical limitﬁ). The effective Hamiltonian of Ref. 5 has
no Coriolis terms, and our predicted spectra lack the very
slight expected ¢ doubling; the spectrum is that of a symmet-
ric top. The novelty of the situation described here resides
entirely in the effects of the bifurcations on the spectrum and
associated frequency and moment of inertia plots.

Downloaded 31 Jul 2007 to 128.223.131.107. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



041101-4 V. Tyng and M. E. Kellman

We mentioned at the beginning the work of Ishikawa et
al.* which discusses the observed effects of a saddle-node
bifurcation on the moments of inertia in HCP. In that kind of
bifurcation, a novel mode with its own moment of inertia
erupts “out of nowhere” in phase space. In the situation dis-
cussed in the present work, the bifurcation is of the existing
L mode in a bifurcation sequence, with a gradual transition in
the moment inertia. The difference between the situations in
Ref. 4 and the backbending effect treated here is akin to that
between first and second order phase transitions.

We have use the effective fitting Hamiltonian of acety-
lene to predict a sequence of bifurcations that produces
anomalous spectra with a moment of inertia backbending
effect. An experimental test would be more interesting.

This work was supported by the U.S. Department of En-
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