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Abstract

We report a refined potential energy function for the ground electronic state of CS, based on a least-squares fitting
to several low-lying experimental vibrational frequencies. Energy levels up to 20,000 cm ~ ' have been obtained on this
empirical potential using the Lanczos algorithm and potential optimized discrete variable representation. Among
them, 329 levels below 10,000 cm ~! are assigned with approximate normal mode quantum numbers (n,, n9, ), based
on expectation values of one-dimensional (1D) reference Hamiltonians. An effective Hamiltonian is extracted from
these assigned levels. The agreement with experimental data, including those of several isotopically substituted species,
is excellent. In addition, some Fermi and anharmonic resonances are analyzed. The nearest neighbor level spacing and
A, distributions indicated that the vibrational spectrum of CS, is largely regular in the energy range up to 20,000
cm ~!. Semiclassical phase space analysis, including bifurcation analysis of the spectroscopic Hamiltonian, is used to
interpret subtle anomalies signaled by expectation values used in normal mode assignments. The meaning of Fermi
resonance is clarified by contrasting the semiclassical analysis of CS, and CO,. © 2002 Published by Elsevier Science
B.V.

Keywords: Quantum; Empirical potential; Fermi resonance

1. Introduction spectra of linear polyatomic molecules. It has a
deep (~ 36,000 cm~") potential well, which is

The carbon disulfide (CS,) molecule has been a well-separated from electronic excited states [1,2].
prototype for studying vibrational and rotational A large body of spectroscopic data for various

isotopomers has been obtained from a wide range
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pumping [14-16], and other techniques [17-20].
In particular, we note the recent publications by
Pique and co-workers [11,12,21], by Liou and
Huang [16], and by Brasen and Demtroder [13],
which provide a large number of ro-vibrational
levels up to 20,000 cm~!. The analysis of the
ro-vibrational levels has led to the determination
of anharmonic force fields [22-24], as well as
spectroscopic Hamiltonians [3,8,13,16]. Like the
extensively studied CO, system [25-28], the vibra-
tional spectrum of CS, is affected by the 1:2
Fermi resonance between the symmetric stretch-
ing and bending modes [29]. As a result, it is
sometimes more appropriate to describe the spec-
trum of a 1:2 resonant system with emphasis on
the polyad number P =n, +n,/2, as has been
recognized for CS, [30,31]. Due to the large fre-
quency mismatch between the two modes (658 vs
802 cm~'), however, the Fermi interaction is
ineffective in mixing states belonging to the same
polyad, at least at low energies [29]. For the
highly excited vibrational levels, on the other
hand, the aforementioned and other anharmonic
resonances make the assignment very difficult. In
addition, there has been some discussion on the
existence of vibrational chaos [11-13,16,21],
which may further complicate the analysis.
Several near-equilibrium potential energy func-
tions have been developed by fitting to low-lying
experimentally observed frequencies [32—34] or ab
initio data [35]. Variational calculations of the
ro-vibrational levels of CS, have been reported,
but none reached beyond 5000 cm ~!. This is in
sharp contrast to the wealth of experimental data
extending from the zero-point energy to 20,000
cm~ !, An accurate theoretical characterization of
highly excited vibrational spectrum of polyatomic
molecules such as CS, is of great importance for a
number of reasons. First, it provides valuable
information for understanding intermodal cou-
pling, Fermi and anharmonic resonances, large
amplitude vibrational dynamics, and ultimately
intramolecular vibrational energy redistribution.
It is also useful for semiclassical analysis of vibra-
tional dynamics, applied specifically to CS, [31],
using techniques developed for spectroscopic
Hamiltonians used to fit the detailed spectrum
[36—40], whether from experiment or from varia-

tional calculations as used here. Second, knowl-
edge of vibrational levels on the ground electronic
state helps to elucidate the vibrational structure of
the excited electronic states, in the context of
emission/Raman spectroscopy [9,41,42]. Also, the
theoretical calculation is capable of generating a
complete spectrum for the statistical analysis of
quantum stochasticity in the vibrational spectrum
of this triatomic system.

The major difficulties in a quantum mechanical
calculation of the CS, ro-vibrational spectrum are
the lack of a global potential energy surface (PES)
of spectroscopic accuracy and the large number of
basis functions (or grid points) needed to con-
verge the energy levels of this relatively massive
molecule. Its density of states is a few times higher
than its more extensively studied cousin CO,.
Recent progress in the recursive solution of eigen-
problems has offered an opportunity to examine
the highly excited vibrational spectrum of small
polyatomic molecules with reasonable computer
power [43-50]. In this work, we report a new
empirical PES for CS,(X' X;), constructed from
a least-squares fitting to experimental vibrational
band origins up to 6000 cm ~!. Vibrational energy
levels up to 20,000 cm ~! are then determined on
this PES using the Lanczos method, which relies
on recursive matrix-vector multiplication. Com-
bined with the discrete variable representation
(DVR) [51], the Lanczos method is capable of
extracting relevant eigenvalues of a Hamiltonian
matrix with a dimension of a few millions
[46,48,50]. Indeed, our calculation reported here
can in principle be extended to calculate much
higher energy levels, as shown in our recent work
[49]. However, uncertainties of the potential en-
ergy function at high energies, strong vibrational -
rotational coupling, and the possible mixing with
low-lying excited electronic state above 23,000
cm ~ ! render such an undertaking less meaningful.
This work is organized as follows. The fitting of
the PES is briefly discussed in Section 2. The
Lanczos method and symmetry adaptation are
detailed in Section 3. The results, including prop-
erties of the potential, ro-vibrational energy levels
for different isotopomers, assignment and the infl-
uence of Fermi/anharmonic resonances, are pre-
sented and discussed in Section 4. Section 5
concludes.
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2. Computation details
2.1. Optimization of the potential energy function

The three-dimensional (3D) potential energy
function is expressed as a polynomial expansion
(Cyr = Cjye due to symmetry):

V(Vlrzﬁ)zz Cgfkyliyzlyga (1)
ik

where the Morse transformed stretching displace-

ments and the angular displacement are

—o(ry —re)
b

n=1l-—e
yp=l—e ), @
y3=cos § —cos 0.

Here, r, and r, are the C-S bond lengths, and 0
is the enclosed bond angle. The equilibrium values
of the three coordinates were adopted from exper-
imental data: r, = 1.5526 A and 0. = 180° [8]. The
use of cosine function ensures the symmetry of the
system at the equilibrium. The Morse exponential
coefficients were taken from the work of Kol-
buszewski et al. [33]. (¢, =0, =1.75 A~"). This
form is expected to be flexible enough to describe
the near equilibrium region of the potential, but
unlikely to be accurate in the dissociation
asymptotes.

The determination of the expansion coefficients
was carried out using a least-squares method, which
minimizes the following object function:

f=2 (E5— E™), A3)

in which E°% are the experimentally determined
energy levels and ES are the calculated ones
obtained using a variational method [52]. The
internal coordinate Hamiltonian [53] was used in
the calculation and its eigenvalues and eigenstates
were obtained by standard diagonalization. The
Hellmann—Feynman theorem was then used to
evaluate the derivatives (Jf/0Cy).

2.2. Calculation of highly-excited vibrational
levels

The calculation of the highly-excited vibrational

levels on the refined PES was carried out using the
Lanczos algorithm [54,55], which is based on the
following three-term recursion relation:

Wi 1> = EHW> — o> — B[ 1) B
k=1K 4)

At the kth propagation step, one calculates

Oy = <¢k 1:]|¢k>’ (Sa)
Br= ||ﬁ|¢k> - “k|¢k> — P l|¢k—l>||s
Lo=0. (5b)

The above Lanczos algorithm reduces a large
Hermitian Hamiltonian matrix (H) to a smaller real
symmetric tridiagonal matrix:

[T = 00pne + Brdss 1+ Prdr 4 100 (6)

which can be readily diagonalized to give approx-
imate eigenvalues of the Hamiltonian. For suffi-
ciently large K, the Lanczos eigenvalues provide a
good approximation to all eigenvalues of H [55]. As
shown in Eq. (4), the major computation in this
approach is the matrix-vector (Hy) multiplication.
Consequently, it has much more favorable scaling
laws, which make large systems tractable.

In this work, we use the Radau coordinates
(R, R,, 7) because of the simplicity of the kinetic
energy operator [56]. For symmetric isotopomers,
the problem can be further simplified by symmetriz-
ing the radial coordinates: R, =(R, iRz)/ﬁ.
The corresponding Hamiltonian can then be ex-
pressed as follows (h=1):

H=(T, +V )+(T_+V_)
+[B(R., R_)/BJ(B.T,+V,) ()
+{V(R,,R_,;)—V,—-V_
—[B(R,R_)/B]V,}
=h,+h_+[B(R,,R_)BJh,+V,
where

~ 1 02
T

£ T R

N | 0
T,= _sinxé‘x<smxﬁx>’ (8b)

(8a)
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2 (R2 +R2)

B(R,,R_)=— "+ F 1)

(R, R_) m, (R%. — R2)?
B.=B(R,,R )|, (8¢)

The reference potentials are defined as the 1D cuts
of the 3D potential when the remaining two coor-
dinates are fixed at their equilibrium. The Hamil-
tonian expressed in the above form facilitates the
use of the potential-optimized discrete variable
representation (PODVR) [57,58]. The PODVR
grids were determined by diagonalizing appropri-
ate coordinate matrices spanned by the eigenfunc-
tions of 1D reference Hamiltonians (ﬁ). A 3D
direct-product grid was used in evaluating Hy in
the Lanczos recursion. The factorizable form of
the first three terms in Eq. (7) allows the construc-
tion of the Hamiltonian on-the-fly, thus avoiding
the storage of the large matrix. The use of partial
summation allows a semi-linear scaling for the
Hy operation [44,59—61]. The action of the non-
separable potential energy operator was readily
accomplished by multiplication in the DVR since
V" is diagonal on the grid. The convergence of an
eigenvalue was ascertained by monitoring the first
and last elements of the corresponding Lanczos
eigenvector [55,62]. Whenever needed, the eigen-
function can be regenerated by an extra
propagation.

A primary reason for using the symmetrized
radial Radau coordinates is that the symmetriza-
tion of the Hamiltonian and wavepacket can be
readily implemented. In particular, only roughly
half (n _ /2 or (n_ + 1)/2) for even and odd n_) of
the wavepacket in the R_ coordinate is needed
for each exchange symmetry. The corresponding
even/odd 1D reference Hamiltonian matrices
(h*°) are readily constructed as follows:

Y, =h_ L j £ A _Liw 10
ii'=1,2,...,n_/2, )

where the middle point of the grid (R_ = 0) is not
included in the above symmetrization. Two Lanc-
zos propagations are needed for the two symme-
try species. However, the symmetrized scheme is
much more efficient because it not only includes
half of the original grid, but also significantly
reduces the number of propagation steps thanks
to the decreased density of states in each species.

The above PODVR form also allows the easy
analysis of the vibrational assignment. As illus-
trated in earlier work [63], the expectation value
of a 1D reference Hamiltonian for the entire
spectrum can be calculated from an extra Lanczos
propagation, with a perturbation proportional to
h. The evaluation of 7 is trivial in direct product
PODVR. As such, the assignment of vibrational
quantum numbers associated with the degrees of
freedom on which the PODVRs are defined can in
principle be carried out for all the vibrational
levels without the explicit calculation of the wave
functions.

3. Numerical results and discussion

3.1. Refined potential energy function and
low-lying levels

Low-lying vibrational band origins of CS, have
been reported by several groups with various pre-
cision, due to different experimental techniques
used in the measurement. In order to have an
unbiased fit, we have used the experimental values
(/=0) of Brasen and Demtroder [13]. It has been
shown that this spectroscopic Hamiltonian gives a
reasonably accurate and balanced representation
of the CS, vibrational spectrum up to 20,000
cm ~ ', In this work, only energy levels below 6000
cm ! were included in the fitting. Although there
exist more experimental frequencies at higher en-
ergies, it becomes difficult to make assignment in
the fitting due to the increasing density of states.

The fitting was done with a Hamiltonian in a
product finite basis representation [52]. One hun-
dred Legendre polynomials were used for the
bending coordinate and 35 1D radial basis func-
tion for each of the two stretching coordinates.
The latter were obtained by solving the 1D
stretching eigen-equation in the region (1.5, 5.0)
a,. Up to 5000 of the lowest basis functions were
used in constructing the Hamiltonian matrix. Ex-
pansion coefficients in Eq. (1) up to fourth order
were fitted using a least-squares method. The
initial expansion coefficients were determined
from the ab initio force constants of Martin et al.
[35].
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In practice, the coefficients below the third or-
der were first fitted to energies below 5000 cm ~!.
The fourth order coefficients were then deter-
mined by fitting to all energies below 6000 ¢cm ~ !,
with the lower order coefficients fixed. The final
converged result has a root-mean-square (rms)
error of 0.20 cm ! for 86 levels included in the
fitting. The optimized expansion coefficients are
given in the Table 1. The overall agreement be-
tween the calculated vibrational energies and
those from those spectroscopic Hamiltonian of
Brasen and Demtroder is quite satisfactory as the
difference seldom exceeds 10 cm~! for levels up
to 10,000 cm ~'. The refined PES is well-behaved
near the equilibrium, as shown by contours in
Fig. 1. The force constants of the refined potential
are compared in Table 2 with those obtained from
experimental and ab initio data. It can be seen
that the agreement is also quite satisfactory, par-
ticularly at low-orders.

The calculated vibrational (/=0) energies are
compared with experimental band origins in
Table 3. All calculated energy levels below 5000
cm ! are listed, while only those corresponding
to available experimental values are given between
5000 and 10,000 cm ~'. These levels are assigned

Table 1
Expansion coefficients of the refined potential energy function

! J k Cye (em™")

0 0 1 28646.6842

0 0 2 13690.3840

1 0 1 —21015.4410

1 1 0 10568.1750

2 0 0 64740.8474

0 0 3 9468.89921

1 0 2 —13073.4584

1 1 1 18598.0445

2 0 1 —7131.57823
2 1 0 —2556.00644
3 0 0 —5004.25190
1 0 3 —11661.5846

1 1 2 22405.6539

2 0 2 19863.5620

2 1 1 4833.18830
2 2 0 —101.829156
3 0 1 —8409.28223
3 1 0 707.741471
4 0 0 454.792439

T T
1.251.501.752.002.25

ro/A

6/rad

Fig. 1. Contour of the refined potential energy function.
Upper panel: the stretch—stretch potential in the two bond-
length coordinates (r,, r, at 6 =180°). Lower panel: the
stretch—bend potential r_ = 0.

with conventional normal mode quantum num-
bers (ny, n,, n3). As shown below, such assign-
ments are quite reasonable for low-lying levels.
The overall agreement between the calculated and
observed energies is quite remarkable and rather
even in the entire energy range. The largest differ-
ences are associated with the low-resolution emis-
sion data reported in Ref. [10]. Energy levels with
/=1 have also been calculated up to 4000 cm '
and listed in Table 4. Although none of the levels
were included in the fitting, the agreement be-
tween the calculated and observed values is quite
good throughout the energy range. This lends
further support to the reliability of the refined
potential.

Experimental vibrational frequencies have been
reported for a number of isotopomers of CS,. In
order to examine the suitability of our potential
for heavier carbon disulfides, we have computed
vibrational energy levels up to 4000 cm~—!' for
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several isotopically substituted species. As shown
in Table 4, the level of agreement with available
experimental data is consistent with the normal
isotope. These results indicate that the effect of
isotope substitution on the potential is relatively
insignificant (Table 5).

The vibrational energy levels (/=0) listed in
Table 3 were used to determine spectroscopic
constants of an effective Hamiltonian using a
least-squares method [13,19]. The diagonal ele-
ment of the effective Hamiltonian are expressed
as a Dunham expansion:

<nla nIZn n3 |H| n, n129 n3>

di d,’ d
= Z o, <n,— + 2> + E} x5 <n,. + 2) <nj + 2’>

1 3
+J’111<n1 +2> + Yom(n, + 1)3

1 3
+y333<”13+2> +g2212. (10)

where d; denotes the degeneracy. The off-diago-
nal elements due to the 1:2 Fermi resonance are
given as below:

<nla nés ns |H| n; + ls (n2 - 2)]s n3>

— 3/l 27— 7] (i

Table 2
Comparison of the quartic force fields in internal coordinates
of CS,

Force This work Ab initio [35] Exp. [22]
constants

frr 7.87731 7.77669 7.8808
S 0.64292 0.56792 0.6472
Joo 0.56906 0.57839 0.5698
Srvr —44.5515 —43.66658 —44.0946
Srere —2.79447 —1.009687 —1.01
Jro0 —0.73057 —0.73804 —0.7396
Srver 204.464 195.53266 181.704
Sorrr 7.58632 1.85889 —8.9604
Srvrr 2.84549 1.23631 —6.984
Srro0 0.41078 0.77225 1.0876
Srro0 1.13143 1.65808 1.5910
Soo00 1.06268 4.43938 0.8112

Units are aJ, A, and Radian.

k 1
[ — 24 i+ (s +2) + /13<n3 + 2)

2

+ Appny(ny + 2)

1 1
+ )»13nl<n3 + 2> + 223(}’12 + 2) <n3 + 2> + y12:|

This effective Hamiltonian describes the calcu-
lated energy levels very well, the rms error is
0.08 cm~! for /=0 levels. The parameters are
compared in Table 6 with those obtained from
experimental measurements. The harmonic fre-
quencies (w;), first anharmonicities (x;) and the
Fermi coupling constant (k,,,) are all in excel-
lent agreement with experimental data.

3.2. Highly excited vibrational levels

Highly excited energy vibrational levels of CS,
up to 20,000 cm~! have been determined using
the Lanczos algorithm. The system can be accu-
rately represented by 70 x 40 x 50 PODVR grid
in the symmetrized Radau coordinates
(R, , R_, ) (note that only half of the R_ grid
was used in each symmetry-adapted propaga-
tion). The basis convergence was ascertained by
comparing with results obtained from a smaller
grid. The potential cutoff was at 50,000 cm !,
which, combining with the PODVR energy cut-
offs, gave a spectral range of ~ 177,000 cm~'.
The convergence with regard to the propagation
steps was also checked by the smallness of the
last element of the corresponding Lanczos eigen-
vector [55], calculated using a modified QL
method [64]. Tt was found that 4000 steps were
sufficient for energy levels up to 20,000 cm !
above the zero point energy. Only energy levels
with zero vibrational angular momentum (/= 0)
were calculated.

A total of 2339 vibrational levels were found
below 20,000 cm~!, among which 1283 (1056)
levels are (anti-)symmetric with respect to the
exchange of the two C-S bonds. The complete
list of the energy levels can be obtained from
the corresponding author. Fig. 2 displays the
number of levels up to energy E (the staircase
function N(E)) for the even species. This func-
tion can be readily fitted by a third-order poly-
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Table 3
Comparison of the calculated and observed energy levels (cm ') of CS, (/= 0)

n, n, ny E E°bs Ref. n, n, n3 E E°bs Ref. n, n, ny E E°Y Ref.
1 0 0 658.048 658.00 a 1 6 1 456727 4566.81 ¢ S 10 0 719798 71969 b
0 2 0 801.900 801.3 b 0 4 2 4627.11 4627 d 1 16 0 732459 73241 b
2 0 0 1313.82 131370 ¢ 6 2 0 464740 - - 4 12 0 741937 74188 b
1 2 0 144721 14474 b 1 10 0 475281 4750.2 b 2 8 2 745596 74543 b
0 0 1 153545 153535 ¢ 5 0 1 476133 - - 0 18 0 7607.14 7608.8 b
0 4 0 1619.82 1619.78 ¢ 0 8 1 4776.04 - - 7 8§ 0 761145 7609 e
3 0 0 1967.22 196697 ¢ 5 4 0 4783.73 4781 d 3 14 0 7659.69 7661 e
2 2 0 2090.67 2094 d 4 2 1 4863.01 - - 1 10 2 7670.66 7669.5 b
1 0 1 218560 218547 ¢ 4 6 0 4952.68 49509 b 6 10 0 7807.59 7806.5 Db
1 4 0 225545 225470 b 3 0 2 497722 49713 b 0 12 2 7906.17 79050 b
0 2 1 232457 232455 ¢ 0 12 0 4997.14 4998 e 2 16 0 791799 79187 b
0 6 0 2450.09 2450.05 ¢ 2 2 2 5091.12 5087 d S5 12 0 802393 8020.7 b
4 0 0 2618.11 2616 d 3 8 0 514755 5149 e 3 8 2 8058.39 80575 Db
3 2 0 273232 2727 d 1 0 3 5201.60 5201.15 ¢ 1 18 0 8194.00 81941 b
2 0 1 283341 283319 ¢ 1 4 2 5246.88 5247 d 8 8 0 822525 8224 e
2 4 0 2889.62 2889.7 b 7 2 0 528284 5282 d 4 14 0 825890 8261 e
1 2 1 296191 2961.76 ¢ 0 2 3 5330.82 5330.78 ¢ 2 10 2 826731 82657 b
0 0 2 3057.84 3057.63 ¢ 2 10 0 5365.02 5362.9 b 7 10 0 841662 84156 b
1 6 0 307742 30774 b 6 4 0 541245 5413 e 1 12 2 8496.71 8496.5 b
0 4 1 312996 312998 ¢ 0 6 2 5432.63 5431.8 b 0 20 0 848790 84864 b
5 0 0 3266.31 3269 d 5 6 0 557556 5573.2 b 3 16 0 8511.64 85125 b
0 8 0 3290.63 329120 b 1 12 0 560324 56029 b 6 12 0 8628.00 86279 b
4 2 0 337225 - - 4 0 2 5611.73 5611 d 0 14 2 874583 87448 b
3 0 1 3478.74 347839 ¢ 3 2 2 571684 5714 d 2 18 0 8781.30 87822 b
3 4 0 352237 - - 4 8 0 576481 5765 e 9 8 0 8838.19 8833 e
2 2 1 359738 3597.04 ¢ 0 14 0 586l.16 5860.6 b S5 14 0 885782 88588 b
1 0 2 3700.11 - - 2 4 2 5865.18 5862 d 8 10 0 902494 9024 e
2 6 0 3703.62 3703.2 b 8 2 0 591697 5914 d 1 20 0 9068.33 9068.3 b
1 4 1 3757.65 375747 ¢ 3 10 0 5976.64 5977 e 2 12 2 9087.04 9085.5 b
0 2 2 383420 3832 d 7 4 0 6039.94 6037 d 4 16 0 910534 91070 b
1 8§ 0 391045 3910.8 b 1 6 2 06044.17 6043 d 7 120 9231.57 9232 e
6 0 0 391165 - - 0 0 4 606354 6061 d 1 14 2 932998 93271 b
0 6 1 394783 - - 6 6 0 619736 6198 e 318 0 936795 9370 e
5 2 0 401057 - - 2 12 0 6209.03 6208.7 b 0 22 0 937452 93727 b
4 0 1 412144 - - 5 4 1 6254.12 62482 b 6 14 0 945635 94564 Db
0 10 0 4140.01 4141 d 5 8 0 6381.22 6380.1 b 9 10 0 9632.62 96303 b
4 4 0 4153.72 41537 b 1 14 0 6460.77 6460.5 b 2 20 0 964949 96513 b
3 2 1 4231.05 - - 3 4 2 6482.06 6481 d 3 12 2 9676.63 96750 b
3 6 0 432870 4328 e 4 10 0 6587.63 6588 e S 16 0 9699.02 97002 b
2 0 2 433995 4335 d 0 16 0 673137 6730.6 b 7 10 1 983481 9834.1 b
2 4 1 438387 - - 3 12 0 681429 6813.8 b 2 14 2 991396 99125 b
1 2 2 4463.60 4465 d 1 8 2 6852.68 6851.3 b 1 22 0 9946.03 9945 e
2 8 0 452942 4526.6 b 6 8 0 6996.77 6995.6 b 4 18 0 995855 99609 b
7 0 0 455390 - - 2 14 0 7060.29 7058.2 b

0 0 3 4567.17 - - 0 10 2 7073.46 70724 b

a: Ref. [17]; b: Ref. [13]; c: Ref. [3]; d: Ref. [10]; e: Ref. [11].

nomial, consistent with the three degrees of free- reported by Sitja and Pique [12]. The reported
dom of the system [65]. We found no evidence of transition is later attributed to pumping contami-

a transition from a E? dependence to a E* one, as nation [21].
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3.3. Quantum stochasticity

There has been some controversy over the ex-
perimental ‘detection’ of the vibrational chaos in
CS,. Pique and co-workers earlier presented evi-
dence of a regular-to-chaotic transition near
12,000 cm~!' [11,12,30]. However, it was later
suggested that an impure excitation was responsi-
ble for the ‘chaotic’ behavior of the spectrum [21].
The recent work by Brasen and Demtroder found
no sign of chaos in the CS, vibrational spectrum
[13]. On the other hand, Liou and Huang have
observed significant irregularities above 12,000
cm~! in their two-dimensional (2D) trajectory
study [16]. We focus here on two statistical mea-
sures of the spectral fluctuation [66,67]. The
nearest neighbor level spacing (NNLS) distribu-

Table 4
Comparison of the calculated and observed energy levels
(ecm™H of CS, (I=1)

n n, ny Ec E°Y Ref.
0 1 0 396.25 396.10 a
1 1 0 1046.80 1046.67 b
0 3 0 1207.17 1206.10 b
2 1 0 1695.06 1694.87 b
1 3 0 1847.16 1846.94 b
0 1 1 1925.19 1925.10 b
0 5 0 2031.83 2031.74 b
3 1 0 2340.94

2 3 0 2485.44

1 1 1 2567.73 2567.54 b
1 5 0 2663.03

0 3 1 2723.52 2723.47 b
0 7 0 2867.62

4 1 0 2984.35

3 3 0 3122.04

2 1 1 3207.89 3207.55 b
2 5 0 3292.92

1 3 1 3355.52 3355.30 b
0 1 2 3441.06

1 7 0 3491.01

0 5 1 3535.73 3534 c
5 1 0 3625.23

0 9 0 3712.87

4 3 0 3756.99

3 1 1 3845.60

3 5 0 3921.51

2 3 1 3985.81

a: Ref. [16]; b: Ref. [3]; c: Ref. [11].

tion provides information on the short range level
repulsion [68,69]. The A, distribution, which is the
ensemble averaged least-squares deviation of the
number of levels from a straight line, is an indica-
tor of the long range correlation [70].

To calculate these two distributions, the spec-
trum was first unfolded to remove the secular
contributions [71]. As the insert in Fig. 2 suggests,
the unfolded energy spectrum provides an unbi-
ased averaged level density throughout the spec-
tral range. The NNLS distribution of the
unfolded levels with even exchange symmetry is
plotted in the upper panel of Fig. 3 as a function
of the level separation (s). The Wigner and Pois-
son distributions plotted in the same figure corre-
spond, respectively to the chaotic and regular
limits. It is clear that the CS, vibrational spectrum
can be reasonably well described by the Poisson
distribution, although some nearest neighbor level
repulsion does exist. The level repulsion is pre-
sumably due to the state mixing by intermodal
interactions, particularly at high energies. This
short range regularity is supported by the long
range A, distribution, which is shown in the lower
panel of the same figure. At small r (average
number of levels), the A, distribution follows
closely the line characterizing a regular system,
rather than the curve in the Gaussian orthogonal
ensemble (GOE) limit. It eventually levels off due
to the saturation effect [69]. Overall, our results
indicate that the presence of the vibrational irreg-
ularity is limited in CS,, consistent with the con-
clusion reached recently by several experimental
groups [13,21]. However, as will be seen below, at
the level of spectroscopic assignment, CS, defin-
itely shows effects of irregularities due to anhar-
monic resonances which are subtle but
nonetheless can be interpreted in detail.

3.4. Vibrational assignment and Fermi resonance

The assignment of vibrational quantum num-
bers to a large number of levels can be a daunting
task if one relies on the inspection of the corre-
sponding wave functions. In this work, we at-
tempt to carry out the assignment in terms of the
expectations values of three 1D reference Hamil-
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Comparison of the calculated and observed vibrational energy levels (in cm ') for three isotopomers of CS,

n 7y /R 13CS, 348C328 38C328
E*ca E°bs Ref. Ec3 E°Ys Ref. Ecd E°bs Ref.

1 0 0 657.289 657.24 a 648.658 648.37 b 653.243
0 2 0 776.583 776.55 a 799.627 800.726
2 0 0 1311.95 1311.80 a 1295.20 1304.30
1 2 0 1421.08 1420.93 a 1435.91 1441.41
0 0 1 1485.44 1485.33 a 1532.00 1531.89 c 1533.67 1533.57 c
0 4 0 1569.29 1596.22 a 1614.85 1617.25
3 0 0 1963.76 1963.47 a 1939.55 1953.07
2 2 0 2063.65 2070.43 2080.30
1 0 1 2135.02 2134.86 a 2172.92 2172.77 b 2179.10 2178.95 d
1 4 0 2204.35 2241.59 2248.34
0 2 1 2250.18 2250.13 a 2318.86 2321.62
0 6 0 2374.04 2442.24 2446.04
4 0 0 2612.40 2581.62 2599.46
3 2 0 2704.43 2703.22 2717.41
2 0 1 2781.86 2781.61 a 2811.66 2822.27
2 4 0 2837.88 2866.96 2878.00
1 2 1 2886.95 2886.78 a 2947.32 2954.42
0 0 2 2958.70 2958.47 a 3050.97 3054.30
1 6 0 3001.12 3060.77 3068.86
0 4 1 3031.26 3121.58 3125.63
0 8 0 3188.69 3221.29 3243.32
5 0 0 3257.52 3279.81 3285.05
4 2 0 3343.62 3334.33 3352.83
3 0 1 3425.71 3425.30 a 3448.13 3463.07
3 4 0 3469.92 3490.96 3506.27
2 2 1 3521.81 3521.45 a 3574.00 3585.39
1 0 2 3600.58 3678.23 3690.59
2 6 0 3626.96 3684.18 3691.93
1 4 1 3658.64 3740.52 3748.84
0 2 2 3711.63 3825.09 3829.50
1 8 0 3808.61 3858.51 3884.57
0 6 1 3824.47 3890.87 3900.38
6 0 0 3898.73 3936.59 3942.03
5 2 0 3891.39 3963.89 3986.68

a: [5]; b: [23]; c: [4]; d: [18].

tonians. As mentioned above, these expectation
values can be readily obtained in PODVR by
additional Lanczos propagations with / added as
a perturbation term [63]. In particular, the 1D
reference potential was chosen as the cut of the
3D potential with the other two coordinates fixed
at their equilibrium values. The symmetrized
Radau coordinates are a good representation of
the three normal modes near the equilibrium ge-
ometry. This is evidenced by the fact that the
fundamenal frequencies of the three 1D systems

(671, 809, 1570 cm ~ ') are very close to the corre-
sponding 3D ones (658, 802, and 1536 cm —!).
Fig. 4 displays the expectation value of the
anti-symmetric stretching mode reference Hamil-
tonian, </ ), for the even exchange symmetry.
Most levels, particularly the low-energy ones,
have one of several quantized <ﬁ _ > values with
an interval of ~ 3100 cm ~!. The even n; is due to
the symmetry in exchanging the two C-S bond. It
is quite obvious that the antisymmetric stretch is
largely decoupled from the other two vibrational
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modes. Consequently, the assignment of 75 can be
made unambiguously for most levels below 12,000
cm~ !, consistent with experimental observations
[11,12]. At higher energies, however, the assign-
ment becomes difficult due to mixing of states by
anharmonic resonances. We will have more to say
about assignment in the presence of these reso-
nances in the semiclassical analysis in Section 3.6.

Now we concentrate on the vibrational levels
corresponding to ny; = 0. Fig. 5 plots the expecta-
tion values for the symmetric stretching and bend-
ing modes, <hA+> and <h;>, below 15,000 cm ~!.
The regularity in these plots is quite apparent,
particularly for levels below 10,000 cm ~!. Due to
the strong coupling between these two coordi-
nates, these expectation values do not fall in
straight lines, as in the case of (/_ . However, it
is not difficult to identify the corresponding nor-
mal mode quantum numbers. In the upper panel,
for example, one can assign the bottom points to
the (0, n,, 0) progression; and the top points to the
(ny, 0, 0). From these expectation values, 329 en-
ergy levels with zero vibrational angular momen-
tum (/=0) below 10,000 cm~! have been
assigned with the three normal mode quantum
numbers. Some of them are listed in Table 3. The

Table 6
Parameters for the effective Hamiltonian (in cm~!)

This work Exp. [16] Exp. [13]
W, 671.942 672.276 672.848
w, 398.262 398.019 398.099
[ON 1558.939 1558.680 1558.787
X —0.849470 —0.981 —1.028600
X5 —3.296208 —2.952 —3.150430
X3 —7.532798 —7.669 —7.648050
X5 1.252846 1.218 1.212950
X3 —6.479642 —6.453 —6.445290
X33 —6.669706 —6.536 —6.534490
Vi —0.004572 —0.000939
Vor —0.006890 —0.00637 —0.005297
V33 0.023238 —0.002108
ki 39.818659 41.369 41.476040
A 0.311117 0.493641
2> 0.413486 0.459236
A5 —0.128042 —0.050351
Aa 0.012359 0.005724
A3 —0.019593 —0.002625
A3 —0.003142 0.001455

complete list of assigned energy levels can be
obtained from the corresponding author.

From the same figures, one can further identify
the polyad number P =n, + n,/2 and the corre-
sponding members. Indeed, the (/i o+ <h}> val-
ues are quite similar for members of the same
polyad (note that only even n, are allowed be-
cause /=0). In Fig. 6, the wave functions of the
P =9 family are plotted in the (cos y and R )
coordinates. The stretch-bend coupling is quite
obvious from these skewed shaped wave func-
tions. It is apparent that all the wave functions
possess clear nodal structures. The nodal planes
are rather curved due to the coupling, but not
nearly so much as the case of CO, and other
Fermi resonance systems [72]. This does not, how-
ever, mean that the coupling among the levels of
CS, is weak. To understand this paradox, we
recall that a simple two-state perturbation theory
attributes the mixing of two near degenerate
states to the coupling matrix element as well as
the energy gap. Although the coupling constant
for the 1:2 Fermi resonance is not small (40
cm ~ ) for CS,, the relatively large frequency mis-
match between the two modes (658 vs 802 cm ~ 1)
renders the intra-polyad mixing rather inefficient.
We will have much more to say about the detailed
state-by-state manifestations of the Fermi reso-
nance, and also about the contrast with the
strongly resonant CO,, in the semiclassical analy-
sis in Section 3.6.

The increasing level density at higher energies
makes state mixing more frequent. For example,
it can be seen from Fig. 3 that there are four pairs
of levels with <hA _ > values between 0 and 3000
cm !, as highlighted as filled cycles. The lower
members are also highlighted in Fig. 4 and they
exhibit notable deviations from the regular pat-
tern. The deviation from the quantized expecta-
tion values indicates significant state mixing. The
identity of these pairs can be determined from
Figs. 3 and 4 as (5, 14,0)/(3, 12, 2), (6, 14,0)/
4,12,2), (7,14,0)/(5,12,2), and (8, 14,0)/
(6, 12,2), near 8858, 9456, 10,056 and 10,653
cm ~ !, respectively. Apparently, such three-mode
anharmonic resonances depend on a higher order
coupling term than the intra-polyad 1:2 Fermi
resonance. However, the former is amplified by
the small energy gaps, tuned by the increasing n,.
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Fig. 2. Staircase function of the even CS, energy levels as a function of the energy, with the third-order polynomial fit represented
by a line. The insert displays the staircase function as a function of the unfolded energy (E’).

Similar mixing of states becomes much more
prevalent above 12,000 cm ~ !, which leads to the
destruction of the regular structure in Fig. 4. Tt
should however be stressed that the calculated
results presented here are not expected to be
spectroscopically accurate. Since state mixing de-
pends sensitively on the energies, it is not realistic
to compare them with experimental data.

3.5. Anomalies of the normal mode assignments

The lower energy states plotted in Fig. 5 fall
into clear polyad ‘bands’, especially below 10,000
cm~ !, and the analysis in terms of symmetric
stretch and bend content is fairly consistent with a
conventional normal mode assignment in terms of
quantum numbers (1, n9, n;). Nonetheless, there
are some evident irregularities within the polyads,
even when the polyads themselves are quite dis-
tinct. We have already considered the four states
labeled with black filled symbols in Figs. 4 and 5,
associated with breaking of the n; quantum num-
ber. Another irregularity appears starting at
about polyad P =28 or 9. A ‘kink’ is evident at the

top of the polyad, where the states take the maxi-
mal value of the symmetric stretch quantum num-
ber n,. For P =29, there are two states with almost
the same expectation value of the symmetric
stretch, indicating that n, and n, cannot truly be
approximate integer quantum numbers. The kink
persists to higher P.

Another anomaly is seen in Fig. 6. The maxi-
mum or ‘ridge’ of the wave function for the state
assigned (9,0,0) does not fall along the pure
symmetric stretch coordinate R, but rather has
apparent bend character. The ridge of the full
wave function, with the bend coordinate reflected
across the cosy= —1 plane, has a ‘hairpin’
shape. In contrast, for lower values of P, the ridge
falls clearly along the symmetric stretch. Recall
from Fig. 5 that P=9 is also where the kink in
<ﬁ+> and <h;> sets in, for the same state (9, 0, 0).
We will present an explanation in Section 3.6 of
these anomalies in the patterns of Figs. 5 and 6 in
terms of a semiclassical phase space analysis of
the spectroscopic Hamiltonian.

Eventually, a region is reached in Fig. 5 where
the polyad bands are no longer distinct, indicating
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Fig. 3. Nearest neighbor level spacing and A, distributions for
the even CS, energy levels below 20,000 cm ~ 1.

polyad mixing with the breakdown of the polyad
number. This happens at approximately the same
energy ( ~ 12,000 cm ~ ') where widespread break-
down of the n; quantum number is evident in Fig.
4. The phenomena are the same: the polyad num-
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energy levels up to 20,000 cm —!. The filled triangles denote
the resonances discussed in text.

ber P =n, + ny/2 is broken by resonances which
mix in states with different n;. The emergence of
multiple important resonances, in addition to the
1:2 Fermi resonance that dominates at lower en-
ergy, signals the onset of significant chaos. We
will not have much to say about this in terms of
semiclassical analysis, because the effective single
resonance Hamiltonian used here is not general
enough for a quantitative account of this disor-
dered, multiresonant spectral region. However,
methods are now available [73—-75] for classifying
patterns of spectra which are significantly influ-
enced by chaos, when a multiresonance effective
Hamiltonian is available.

3.6. Semiclassical phase space analysis

To understand the patterns in Figs. 4-6, we
make use of tools of nonlinear dynamics devel-
oped for analysis of vibrational spectra. The moti-
vation for these dynamical methods is that in
highly excited states, the internal motions of
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molecules change in a fundamental way from the
standard low-energy normal modes. Several di-
dactic reviews of these new methods are available
[76—78]. The tools used in this paper include a
semiclassical phase space representation of spectra
called the polyad phase sphere, and analysis of
bifurcations of the low-energy normal modes.

The phase sphere is a way of representing and
visualizing the vibrational spectrum. In molecular
vibrational problems, the phase sphere was first
developed for a system of two coupled stretch
modes exhibiting the transition from normal to
local modes [37]. Formally, this is equivalent to
the construct familiar in physics as the Bloch
sphere, which has ubiquitous applications, for
example, in Bose—FEinstein condensates [79]. In
molecular problems, the phase sphere has been
generalized [38] to systems with Fermi resonance,
e.g. the 1:2 resonance treated here. Review presen-
tations can be found in Refs. [77,78].

Each polyad is represented by a separate
sphere. On a given polyad sphere, each level of
the polyad is represented by a semiclassical trajec-
tory. The phase spheres are computed using a
well-defined procedure [37] from the spectroscopic
Hamiltonian with its parameters optimized to fit
the spectrum, in the present case, those in Table 6.

Fig. 7 shows the sphere for polyad P =12. The
effects of the Fermi resonance coupling are clearly
evident. If there were only diagonal, zero-order
contributions to the Hamiltonian, the quantum
energy levels would be represented by regular
azimuthal circles, like the latitudinal parallels on a
globe of the earth, circling around the north and
south poles (which represent, respectively the pure
symmetric stretching and bending overtones of
the polyad). Instead, Fig. 7 shows that the flow
lines are ‘off-axis’, with a distinct ‘marbled’ ap-
pearance at the top.

This accounts, as follows, for the kink at the
top of the polyad 12 band in Fig. 5 (top) and at
the bottom of the polyad 12 band in Fig. 5
(bottom). Trajectory 2 (second lowest in energy)
in Fig. 7 goes almost right through the north pole
(pure symmetric stretch), and plausibly has more
symmetric stretching character than trajectory 1.
Consistent with this, in Fig. 5, level 2 has the
maximal value of <A +» (top panel) and minimal

value of </;Z>. We have analyzed this correspon-
dence quantitatively with the phase sphere by
computing the symmetric stretching energy as an
expectation value <h,> for each eigenvector from
the fit:

</;S>=<w1n1+x11nf+ymn?>. (12)

The results, shown in Fig. 8, confirm our interpre-
tation. The overall similarity is evident between
Figs. 8 and 5 (top), the latter being from the ab
initio wave functions. (The reasons for the differ-
ences between the two figures—mainly, the
greater simplicity of Fig. 8—will be discussed
later, but it is worth remembering that Fig. 8
comes from a fit of only a part of the spectrum
with a very simple, single Fermi resonance effec-
tive Hamiltonian.)

Next, we interpret the ‘marbled’ appearance of
the sphere in Fig. 7 in terms of bifurcation analy-
sis. The interplay of anharmonicity and the Fermi
resonance coupling in the spectroscopic Hamilto-
nian gives rise to bifurcations of the normal
modes. In a bifurcation, a normal mode abruptly
branches into new anharmonic modes. The best-

Polyad 12

North Pole

Fig. 7. Polyad phase sphere for polyad P=12 CS,. The
contour lines correspond semiclassically to levels of the
polyad, numbered in order of increasing energy.
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levels of polyad 12 are numbered as on the phase sphere in Fig. 7.

known example is probably the birth of local
modes in a bifurcation from one of the normal
modes [38,77]. The overall bifurcation structure
can be neatly described using a tool of bifurcation
analysis known as the catastrophe map, adapted
to molecular spectroscopy [28,72]. Fig. 9 shows a
portion of the catastrophe map for the 1:2 Fermi
resonance. Each polyad is represented by a point
on the map. Fig. 9 shows the polyads of CS,, and
also of CO,, which offers an illuminating com-
parison, which we will take up after discussing the
semiclassical analysis of CS,. The map shows that
polyads 1 and 2 of CS, lic in Zone I and the
remaining polyads in Zone II. Briefly, the mean-
ing of these zones is the following [28]. In Zone I
there are normal stretching and bending modes; in
Zone II, a bifurcation has taken place in which
the north pole becomes a cusp, signaling the onset
of instability in the symmetric stretch. A new
stable mode is formed, displaced from the original
north pole. The effects are evident in the phase
sphere of Fig. 7. In coordinate space, this new
mode has the shape of a hairpin. Not surprisingly,
this will turn out to be closely related to the
‘hairpin’ wave function (9, 0, 0) in Fig. 6: the ride
of the wave function follows the underlying hair-
pin mode, a well-known phenomenon, see Ref.

[72]. This new mode born in the bifurcation of the
symmetric stretch is closely related to the kinks in
Figs. 8 and 5 (top). For example, in Fig. 8, levels
1 and 2, which form the kink of polyad P =12,
are the levels most affected by the bifurcation on
the sphere in Fig. 7.

-6 T . zone | T

Fig. 9. Catastrophe map classifications of polyads of CS,
(circles) and CO, (triangles). Each polyad with its phase sphere
is represented by a point on the map. The coordinates are a
scaled Fermi coupling strength p and asymmetry parameter /'
(related to the zero-order normal mode frequencies). See Ref.
[28]. for detailed exposition of the catastrophe map.
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We claim in fact that the cusp bifurcation and
transition from normal mode (Zone I) dynamics
to resonant (Zone II) dynamics accounts for all of
the anomalies we have noted: the kinks in Fig. 5
starting at about P =9, the marbled appearance
of the phase sphere in Fig. 7, and the hairpin
wave function of Fig. 6 for the state labeled
(9, 0, 0). But, in the catastrophe map of Fig. 9, the
bifurcation to Zone II dynamics actually begins
with P=3. Then why donot the effects of the
bifurcation show up until P =9?

To answer this, and to further establish the
comprehensive role of bifurcation phenomena in
understanding all the anomalies, we make use of
the pseudo-potential [80—82], a technique used in
the bifurcation analysis which is also extremely
useful as an interpretive tool. The pseudo-poten-
tial originates from the fact that the bifurcations
of the polyad Hamiltonian all occur on a single
great circle on the phase sphere [38] [78]. The
bifurcation analysis is therefore performed by an-
alyzing the Hamiltonian plotted just on this great
circle. This is the pseudo-potential. The critical
points of the pseudo-potential —maxima, minima,
and points of inflection—give the periodic orbits,
that is to say anharmonic modes of the system:
the normal modes, and the new modes born in
bifurcations.

Fig. 10 shows the pseudo-potentials for polyads
2, 5,9, and 12. For P =2 there are two critical
points, labeled s and b corresponding to the sym-
metric stretch and the bend. No bifurcation has
yet taken place. At P =5 a very small maximum
has developed at the north pole, and the mini-
mum formerly at the north pole has been slightly
displaced. This signals the onset of the cusp bifur-
cation (which actually has occurred by P =3, as
indicated on the catastrophe map, but the mini-
mum in the P = 3 pseudo-potential is impercepti-
ble) in which the stretch (north pole) becomes
unstable, and a new stable mode (resonant hairpin
mode, labeled h in Fig. 10) is born, and immedi-
ately starts to be displaced from the north pole.
(The bend, which has not bifurcated, is very
slightly displaced from its zero-order position at
the south pole.)

This bifurcation still does not produce at P =5
either the kinks in Figs. 5 and 8 or the hairpin

wave function for the state labeled (9, 0, 0) in Fig.
6. The reason why can be seen by plotting the
quantum energy levels in the pseudo-potential. At
P =35, the lowest level is still above the tiny
minimum formed in the pseudo-potential when
the bifurcation takes place. In contrast, by P =9,
the lowest level is ‘trapped’ in the minimum—
which corresponds to the resonant hairpin orbit.
This is reflected in the kink for P =9 in Figs. 5
and 8: the lowest energy level 1 has less symmetric
stretching character than level 2, because level 1 is
trapped in the resonant minimum, away from the
north pole. The trapping of level 1 is also reflected
in the hairpin shape of the wave function labeled
(9, 0, 0) in Fig. 6. Finally, the pseudo-potential for
P =12 casts further light on the phase sphere of
Fig. 7 and the kink of P =12 in Figs. 5 and 8.
Level 1 is trapped in the minimum corresponding
to the hairpin mode; level 2 touches the ‘lip’ of the
well. This is reflected perfectly on the sphere, Fig.
7, and the kink in Figs. 5 and 8 with the lesser
symmetric stretch content of level 1.

The appearance of bifurcations of the normal
modes and the existence of wave functions such as
the hairpin state assigned (9, 0, 0) in Fig. 6 raises
the questions whether a normal mode assignment
is really appropriate at all for a molecule like CS,.
Two of the present authors have argued [72,82,83]
that in resonant systems, a new assignment should
be used, with quantum numbers suited to the new
modes born in the bifurcations; and that this new
assignment is reflected in the phase spheres,
catastrophe map analysis, and new types of spec-
tral patterns. In fact, an alternative assignment to
that of the normal mode assignment for CS, made
here can be carried out, and does show the pre-
dicted [83] associated spectral patterns. However,
we do not pursue this, for reasons we will now
discuss, which also involve some illuminating dif-
ferences between CS, and CO, as regards their
polyads classified on the catastrophe map.

In the catastrophe map of Fig. 9 the polyads of
CS, straddle the boundary of Zones I and II in
Fig. 9, whereas those of CO, are firmly in Zone
II. This suggests that CS, is only weakly influ-
enced by the 1:2 Fermi resonance. This is reflected
in the fact that the phase sphere of Fig. 7 is
affected by the bifurcation, but mainly near the
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north pole; and in the weak effects of the Fermi
resonance seen in the pseudo-potentials of Fig. 10.
We can say that CS, is only weakly, or even just
barely, a Fermi resonance molecule. A new as-
signment based on the bifurcation analysis would
be proper, but not more illuminating than what
has already been said here, e.g. about the hairpin

state assigned conventionally as (9, 0, 0). In con-
trast, CO, displays strongly resonant dynamics as
clearly reflected in its phase spheres, spectral pat-
terns, wave functions, and quantum number as-
signments, as discussed in Ref. [83]. The
difference is due to the fact that in CO,, there is a
very close 1:2 resonance in the zero-order stretch
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and bend frequencies. This is reflected in the
catastrophe map, Fig. 9, where it is seen that for
CO,, all the polyads have nearly zero asymmetry
parameter f’. The result is that the Fermi reso-
nance dominates the vibrational dynamics in CO,,
with a profound reorganization of the phase
space.

This is about as far as we can go in extracting
meaning from the effective Fermi resonance
Hamiltonian of Section 3.1 by means of semiclas-
sical analysis. The more disordered spectra that
set in at about 12,000 cm ~!, as well as a few of
the lower-lying levels as discussed above, require a
multiresonance Hamiltonian, corresponding to
chaotic classical dynamics, to get a good fit to the
detailed levels. When such an effective Hamilto-
nian is available, there are now methods for clas-
sifying patterns even of spectra, which are
significantly influenced by chaos [73-75].

4. Summary

In this study, we have developed an empirical
PES for CS,(X) by fitting experimental vibra-
tional band origins below 6000 cm ~!. The prop-
erties of the potential, such as force constants, are
in good agreement with known values obtained
from previous spectroscopic and ab initio work.
Low-lying ro-vibrational energies for CS, (/=0.1)
and those for three isotopic substitutions '*CS,,
38C*S and **SC*S were obtained from this PES
and found in good experiment with experimental
values. This PES was then used to calculate highly
excited vibrational spectrum of CS, up to 20,000
cm !, using PODVRs in the symmeterized Radau
coordinates and the Lanczos algorithm. A total of
2339 vibrational levels have been identified. Statis-
tical analysis indicated the CS, vibrational spec-
trum in this energy range is largely regular,
consistent with the latest experimental data. It
was shown that normal mode assignment can be
readily made for low-lying levels with the help of
the expectation values of 1D reference Hamiltoni-
ans. The antisymmetric stretching mode is effec-
tively decoupled from the remaining two modes
up to 15,000 cm ~!. A spectroscopic fitting Hamil-
tonian with 1:2 Fermi resonance coupling was

constructed by fitting the calculated spectra up to
the energy where multiple resonances begin to
affect the spectrum. Despite strong intermodal
coupling between the symmetric stretching and
bending modes, no strong intra-polyad Fermi and
anharmonic resonances were found to increase
with the density of states. Detailed analysis shows
that some subtle anomalies are signaled by the
detailed tools used to make the normal modes
assignment, specifically, the normal modes quan-
tum content of the states. These anomalies are
interpreted in terms of semiclassical analysis, in-
cluding bifurcation analysis of a semiclassical ver-
sion of the spectroscopic fitting Hamiltonian. This
accounts for the anomalies, and also some subtle
incongruous patterns in some wave functions, in
terms of a bifurcation of the symmetric stretching
mode, which takes place due to the Fermi cou-
pling. However, the molecular phase space is only
weakly affected by this bifurcation. This clarifies
the meaning of ‘Fermi resonance’, by the contrast
with CO,, where the close 1:2 resonance in the
zero-order stretching and bending frequencies
means that the Fermi coupling dominates the
vibrational dynamics, with massive reorganization
of the semiclassical phase space and the structure
of wave functions.
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