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Dressed basis for highly excited molecular vibrations
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Starting from a multiresonance spectroscopic Hamiltonian fit by Baggott to experimental levels of
H,O, an approximate Hamiltonian is devised using a prediagonalized “dressed” zero-order basis,
within which a residual, effective single-resonance coupling operator acts. The dressed basis
incorporates many of the effects of nonintegrability, while the effective resonance furnishes much of
the simplicity of integrable systems. Numerical tests are performed for two distinct dressed bases,
in which different resonance operators are chosen as the residual effective coupling. Excellent
agreement with the energies and eigenvectors of the exact system is obtained for each of the two
dressed bases. @003 American Institute of Physic§DOI: 10.1063/1.1569908

I. INTRODUCTION proximations to the Hamiltonian, in each of which the sys-

In this paper, we investigate a “dressed basis” method iplem s viewed from the perspective of one of the independent

which a many-mode, multiresonance spectroscopic Hamilrésonances. In each approximate Hamiltonian, corresponding

tonian is approximated by a Hamiltonian with a new zero-0 @ chosen resonance couplivg of the original Hamil-

order basis, within which there acts a residual effectiveton'an' there will be an effective resonance COUerd )

single-resonance coupling operator. The dressed zero—ordgﬁiS will act within azero-o'r(jer basis.whi(.:h in_corporates the
basis is prediagonalized with a portion of the original specE ects of the rest of the original Hamiltonian, including bo'th
troscopic Hamiltonian. The dressed basis is intended to initS zero-order“ part an”d aII_ the other resonances besides
corporate many of the effects of nonintegrability, while the ¥i—heNce. a dg?fss‘?d basis. The efiective individual reso-
single effective resonance furnishes much of the simplicitya1c€ operatovy ~will be defined so as to act within “se-
of an integrable system. quences ,Of this baS|§. i

This is motivated by certain results of investigations of O hiS to work, it is necessary to label the zero-order

highly excited molecular vibrations. In a series of pagetd, ~Seduences with a set &f numbers that function like zero-
we have been developing bifurcation analfSioof the order quantum numbers. At best, these will be effective or

Hamiltonian corresponding semiclassically to the spectrof|0m|nal quantum numbers, because they certainly cannot be

scopic quantum fitting Hamiltonian. This identifies the an-m“.e constanis of motion of th? dr.essed z.erojorder basis,
harmonic modes, born in bifurcations of the originalN(3 which has a nonseparable Hamiltonian. But if this much can

—6) low-energy normal modes, that characterize the molPe made to work, we will have an effective Hamiltonian with

ecule at high energy. This kind of procedure, now applied bwonintegrability vig th? _dressed pasis, but retaining as ”.‘“Ch
a number of author$~32started with simple two-mode sys- as possible the simplicity of a single resonance approxima-

. . . ff . .
tems with a single Fermi resonance coupling, but has beefion Via the effective resonana¢™". This procedure will be

successfully extended to more than two modes with multiplé‘serI to the extent that the exact eigenstates of the spectro-
resonances and chabi2:15:23.24.28 scopic Hamiltonian are approximated by those of the new

One of the most salient findintfshas been that the bi- effective Hamiltonian. Detailed construction and testing of

furcations of most molecules can be decomposed into a Séi_ressed basis sets will be presented in Sec. V and following,

quence of independent two-mode bifurcations, similar, deg;1fter some useful preliminaries concerning the spectroscopic

spite the nonintegrability and chaos of the system, to thosblamiltonian and its structure.

observed for systems of a single resonance between two

modes. The dressed basis is a computational method that. SPECTROSCOPIC HAMILTONIAN

mirrors this approximate classical decomposability into sys- . . . . L
tems of quasi-independent resonances. The dressed basis This section describes the spectroscopic Hamiltonian in
method is not difficult to apply and may find use as a praC_sufficient detail for the later discussion of the dressed basis

tical tool, as briefly described in the concluding section.  S€tS:

The Hamiltonian is a spectroscopic fitting Hamiltonian
1. DRESSED BASIS SETS AND EFFECTIVE for a bent triatomiC, with parameters Optlmlzed by Bagﬁott
RESONANCE to give the best match to available data foy(H In the

o ) ) normal modes representation, the form of the Hamiltonian is
The observed decomposability into effective single-

. . N_ N N N
resonance systems suggests a systematic collection of ap- H " =Hg+Vpp+Ve. (1)
H{ is a zero-order Hamiltonian diagonal in normal-mode
dElectronic mail: kellman@oregon.uoregon.edu quantum numbergsg, n,, andny for symmetric stretch, an-
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tisymmetric stretch, and bend. The coupling§, and V}

are resonance terms between the normal modfs. is a
Darling—Dennison couplinj between the symmetric and
antisymmetric stretch, andy is a 2:1 Fermi resonance cou-
pling between the symmetric stretch and bend. This Hamil-
tonian is block diagonal in sets of the same total or polyad
guantum numbeP =ng+ ny+ny/2.

In this paper, we will actually work in a representation
with local O—H bond mode stretches, rather than the normal
stretch modes of the representation of Ef. The transfor-
mation between normal and local representations of the
three-mode Hamiltoniail) with bend has been carried out
by Baggott3.3 After this transformation, in which the desig-  (80)0-(71)0-+(62)0 -+ (53)0 +--(44)0 -+-(35)0 -+~ (26)0----{17)0 - (08)0
nation of the bend remains unchanged, the Hamiltonian be-

(00)16

(a) (10)14-{01)14

(20)12+-++-(11)12 - (02)12

(30)10 ~+--(21)10+---(12)10---(03)10
(40)8 -+ (31)8 = (22)8 e (13)8 - (04)8

(5006 -+~ (41)6 -~ (32)8 ~~~(23)8 - (14)8 - (05)6

(60)4 eroe (518 creene(82)4 +-r(33)4 c-onr (24)4 -ove- (15)4 wovnee (06)4

(70)2 wrve (61)2+-+e(52)2 e+ (43)2 re- (38)2 -0+ (25)2 -een{16)2 wnr (OT)2

-— 1:1 + 2:2 Stretch Coupling —

comes
HL=H|6+VIL1+V|§:2+VI2':1! 2
(00)16
where (b)
(10014 (0114
Hp= +l + +1 + +1 / / N \9:’
0= Wo| M 2| T ®o nz 2| T @b Np 2 SR (20012 (1112 (02)12 /%%
2 2 1\2 ,\o°; (3010 (21)10 (12)10 (03)10 % %,
tasgl Mt S| Ftag Nt 5| Fap| Nyt 5 &S N7\ /\N/\ X3
NIS (408 (318 (22)8 (13)8 (04)8 %,
1 1 1 1 " (5043 \(41)/6 \(32>é >23)é >4)é (\05)6
tasqmt 3]ty *“sb”ﬁz(”b*z Y INJNINININSN N
(60)4 (51)4 (424 (334 (24)4 (154  (06)4
1 1 N/\N/N\N/N\N/N\N/\/ \
+ agy n2+§ nb+§ , 3 (70)2  (61)2 (52)2 (43)2 (34)2 (25)2 (16)2 (07)2
/S N/ \N/N/N/N/N/\/
. (80)0  (7T1)0 (620 (53)0 (44)0 (3500 (26)0 (17)0 (08)0
Vli;lz AN+N'(ng+ny+ 1)+ N np+ > (3-13-;"'3-23-1), FIG. 1. Coupling and subpolyad structure of the zero-order spectrum, de-

(4) scribed in Sec. Il and Ref. 13. Zero-order states are labeled by the quantum
numbers Q4 ,n,)n, . (a) Structure of the stretch—stretch couplifiig) struc-

L _ Tt tat ture of the stretch—bend coupling.
V3= y(a1218a; + a,a,3,a,), 5 Ping

and
o) (nq1,ny)ny,. In the local representation, the couleQSacts
Vs, =2 (a,alal +a,apal +a,alal+a,asal). (6  within zero-order local mode stretch-stretch subpolyads, as
2\2 shown schematically in Fig.(8). It links sequences obtained

Heren, andn, refer to the number of quanta in the local @S subpolyads or “slices” of the zero-order polyad. The
O-H stretch modes anai, to the number of quanta in the Stretch—bend coupliny’;.; is more complicated. As seen
bend mode.V}, is the 1:1 coupling between the local from Eq.(6), by symmetry there actually are two stretch—
stretches. It is primarily responsible for the coupling thatPend Fermi couplings in the local representation, so the ac-
gives normal modes. The 2:2 coupling;., arises in the tion of the couplings does not divide neatly into independent
transformation from the normal to local representatfbit slices. Rather, the structure is the “net” depicted in Figh)1

of the Darling—Dennison Hamiltonian. Typically, it is small

for stretches. The values for the normal-mode and Iocaliv FAILURE OF THE ZERO-ORDER

mode spectroscopic constants fogGHare given in Ref. 33. ’ .

Both str%tch—streFt)ch couplingéL(fiandv'g:2 act within sets - DEPENDENT-RESONANCE APPROXIMATIONS AND

. THE NEED FOR THE DRESSED BASIS
of zero-order states with bend quantum numipgconstant,

so we can combine them into a single stretch—stretch cou-

Next, in the course of introducing some notation that

pling
Vss= Vi + V5., (7

will be useful later, we establish that the individual zero-
order resonances are nowhere near an adequate approxima-
tion to the spectrum and eigenvectors of the full multireso-

The structure of the couplings in the Hamiltonian leadsnance Hamiltonian.
naturally to schemes of zero-order sequences or subpolyads We have examined energy levels and eigenvector over-
that will be useful later in defining the dressed basis setdaps of each of four possible independent resonance approxi-
Polyad P=8 is shown schematically in Fig. 1. The zero- mations. [We call these ‘“independent’ rather than
order basis states are labeled with their quantum numbersingle”-resonance approximations, because of the two-
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resonance net structure of the stretch-bend Fermi interaction

: . o dr _
in the local representation seen in Figb)]. The four ap- HoL—Ho"‘i;a Vi. (13
proximate Hamiltonians are
HE=H5+VE, (8) The_ eigenstates dﬁglfl give a dressed z_ero—ordgr basis. This
basis, in analogy to its counterp&tt,, will be assigned a set
HY=H{+VF, (9)  of N nominal or effective zero-order quantum numbers. How

this key step is to performed will be specified later in each
case with great care; it is emphaticalipt just a matter of
H§S= HB+V§S, (10 taking overlaps of the dressed basis states with the states of
N N UN the zero-ordeH,. In terms of theseN labels, zero-order
Hpp=Ho+ Voo, (11) sequences or subpolyads are defined within which a given
with stretch—stretch coupling. The last two Hamiltonians acVS'" acts. Unlike the case with the original zero-order basis,
tually are completely equivalent, being different representatheN quantum numbers are rightly called “nominal.” This is
tions of the same Hamiltonian, as described in Refs. 1 and decause the new zero-order states are dressed by all the other
All four Hamiltonians(8)—(11) are listed because potentially resonances of the spectroscopic Hamiltonian, so the nominal
each is associated with the construction of a distinct dresseguantum numbers do not correspond to classical constants
basis Hamiltonian, as will become clear shortly. rigorously obtainable in any way of which we are aware; at
As expected, we found that all four independent-best, they are approximate effective quantum numbers.
resonance approximations give results, for the energies and As in Refs. 11 and 13, for numerical testing we focus in
especially the eigenvectors, that are poor for many of théletail on the polyad®=8 and just briefly summarize lower
levels. While each of the simple Hamiltoniai@®—(11) gives  polyads(where the results are as good or bett#ve chose
reasonable results for some levels, none gives good resulk=8 in Refs. 11 and 13 because it is in the region where
for all portions of the spectrum. This is not surprising, be-both resonances come strongly into play.
cause multip_le—reso_nange couplings generally are added t02 p1athod 1: Dressed local stretch modes with
spectroscopic Hamiltonian only when they become neceSsfrective stretch—bend resonance
sary to account for the experimental data.

with stretch—bend coupling, and

The first Hamiltonian, by analogy to the naive indepen-
dent resonance approximatiéd), has a dressed zero-order
V. CONSTRUCTING AND TESTING THE DRESSED basis of local stretches, with an effective residual stretch—

BASES bend Fermi coupling:

We now describe the various dressed basis sets and ef-
fective independent-resonance operators. Our goal is to de-

vise approximations to the full Hamiltonign™" which are  The problem is to specifyl) how H59" is defined with its

simple, in the sense of being analogs of the zero-ordefressed basig2) how the basis is assigned nominal zero-
independent-resonance Hamiltonians order quantum numbers, ar(@ how matrix elements of
H,=Hq+V, (12 VE ®'"are defined in terms of the nominal quantum numbers.

Following the general forngl3), we defineH('gFdr as

HE I =HEI+VEeT, (14)

of Eqgs.(8)—(11), yet which capture as much as possible the
complexity of the nonintegrable, multiresonance Hamil- H5 =Hb+ Vie. (15)
tonian H!". In analogy to the naive zero-order resonance
HamiltoniansH , of the previous section, we will refer to That is, the original local stretches tb‘fl(; are dressed by
these various dressed HamiltoniansH{ . Vse=VI.1+ V5., of Eq. (7), the stretch—stretch coupling in
We chose to work from the local mode form of the the local basis.
Hamiltonian (2) because the Fermi coupling happens to  The next step is to assign nominal zero-order local-mode
come into play strongly in polyad 8 for states where thequantum numbers to the basis of the dressed zero-order
stretch dynamics are best described by local modes. We hawamiltonian H(L,Fdr. This is the most problematic aspect of
therefore investigated two different dressed basis Hamiltoeur investigation, because there is no question of the nominal
nians, which we now describe as methods 1 and 2, which arguantum numbers actually being rigorous constants for the
analogous to the two naive independent-resonance Hamiltdasis states. We will work in each case by describing the
nians Eqs(8) and(10). actual procedure and the rationale for its use. While the
Each dressed Hamiltonian will take the form of a nominal assignment procedures certainly do not have a rig-
dressed zero-order Hamiltoni&mgg plus a residual, effec- orous justification, numerically their success far exceeds ex-
tive independent-resonance couplih’@”. The task is to pectations, lending confidence that the basic idea is on the
give explicit formulation to the dressed zero-order Hamil-right track. It should be mentioned that the procedures for
tonian and the residual independent resonance. In generalssigning nominal quantum numbers that will be described
the dressed zero-order Hamiltonialgg will be defined as a here are closely related to methods for assigning quantum
sum of the zero-order Hamiltonidth, plus all the zero-order numbers to spectra using diabatic correlation diagrams.
resonance¥; except theV,, intended to be replaced by the These were developed by Rose and Kellfidor H,O, then
residualve'": applied®~38to the more complex £, system.
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We now describe the detailed procedure followed in ¢
method 1. The dressed zero-order Hamiltonka§™" con-  (cm ™) Method 1
tains the stretch—stretch couplih@s, and though its eigen- 9998 a0
states have fixed bend quantum numbgr they are strong 27004
mixtures of the original zero-order basistdf . In fact, from B0 9984 a2
previous resonance analysis of coupled stret¢fié$, we 9998 sayo
know that they do not all retain local-stretch-mode character. 22 a2
Within a sequence with fixed,, the lower states have local- 4, 0098 o
mode character and fall into near-degenerate local mode dou 9999 ( 2 —— B4
blets, while the upper levels have normal-mode character. A '9843\\ P
This mixture of two dynamical classes induced within the ' P
subpolyad by the coupling is the essential difficulty. Classi- 25500 w2
cally, there is a separatrix between local- and normal-mode 789 880
regions in phase space. It is therefore not possible rigorously o0 e2 —— (32)8
to assign a single set of stretch quantum numbers to all the 6509 N 'z—z‘;%(sn'u 8782 e
states. We nonetheless will assign a single set of nomina o8 V0 N
zero-order quantum numbers,(,n,,n,)"°™ We do this by 2609 7 N\ go0s \
a diabatic correlation diagram technique similar to the pro- o e
cedure used in Ref. 13. For example, consider the sequenc \
of dressed states with fixed,,=0. The original zero-order 9957 o4 pacalie et
states have good quantum numbens,(,,0)". When the 25500 - // 9996
coupling V§sis turned on to give the dressed basis, we fol- %%(70)“2 T aiys
low the zero-order states (8,0;0)(7,1,0), ...,(4,4,0) s 2 oys G
diabatically as they are carried over to the states that we labe 10000 7/ '
(8,0,0)°"°™ (7,1,0)°"°™, ... ,(4,4,0) "™ (It turns out iN 25000 4 10900 % °
the present case that the nominal quantum numbers assigne (') é "‘ é é

in this way preserve the original energy orderjngntu- n
itively, it is plausible that the character of the states may not

change too much in the diabatic correlation, so that the nomiFIG. 2. Results of method 1 for energies and eigenvectors, as described in
nal zero-order assignments possess a physical meaninaec. V A; see Table | for complete results for the=8 polyad. The hori-

. . ontal lines are exact energies; the diamonds are energies of the effective
roughly, of a bend mode being coupled to a stretching mozo- & " X a \ g a

. . . . Hamiltonian de' of method 1. Next to each level is given its nominal
tion with about twice the frequency of the bend, with not t00eftective quantum number assignment, from Table I. The overlap of the
great a consequence from the precise nature, normal or locaigenvector of the effective Hamiltonian with the exact eigenvector is given

of the stretching. Everything hinges on whether this leads tdith each level. The “arches” of levels connected by angled lines are sub-

. . . . eff . . polyads or sequences of the stretch—bend Fermi resonance, described in Sec.
an effective Hamiltonian with a/ , such that. |t§ matrix g
structure and values of the matrix elements mimic the start-

ing Hamiltonian. Proof for this will rest on numerical testing.

The final step is then to define matrix elements of thisl. Results of method 1
Vg e This if very straightforward. By analogy with Eq. Figure 2 and Table | show the results of method 1. The
(6), we takeVE®'' to be of the form spectrum and overlaps of eigenvectors of the effective

L eff
VL eff— sbb

2:1_2\/5

(a;ala)+apanal +a,alal +ayamal),

Hamiltonian are compared with the thoserd"!". The hori-
zontal levels in Fig. 2 give the energies of the exact eigen-
states oH™!". The diamond symbols in Fig. 2 are the ener-

(16 gies of the eigenstates bllt dr In all cases, the approximate
and exact energies are very close. The overlaps oHl}h%’
eigenvectors with the exact vectors ldf"!' are given adja-
cent to each level. For the most part, there is remarkably

nb’ood agreement, with overlaps above 0.97, and often much
better, in all but four exceptional cases. Apart from these

where the operators; andaiT now have the action of raising
and lowering operators on tllressedbasis, with matrix el-
ements determined by the nominal zero-order quantum nu

bers and the strengt@.,5/"/2\/2 of the effective coupling—

€.9. exceptional cases, the numerical results justify the hypoth-
((ny—1),n,,(Ny+2)[VE ¢ ny,ny, npymem esis that the eLx(?ct system can be mimicked by the effective
HamiltonianHg " with nominal assignments of the dressed
'S-b%” — zero-order basis and residual effective resonance. We now
Zﬁ\/nl(nﬁ 1)(ny+2)"°M (170 examine the reason and cure for the exceptional cases.

We need to choose the strength®@f,5/". One could try to 2. Mixing of accidental near degeneracies and

optimize this, but in this test we choose simply to use thedynamical tunneling
values from the starting Hamiltonian of Eq®)—(6); i.e., we The worst cases in Fig. 2 are the pair (6,2) and
take Q5.5 "= Qqpp. (3,2)”6, with overlaps with the corresponding exact eigen-
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TABLE |. Results of the dressed basis Hamiltonians, described in Sec. V. Upper section, exact and approximate levels by methods 1 andH®'Under “
are exact levels oH™". The quantum number assignments (n,)n, are obtained by continuing the diabatic assignments of the dressed basis to the
complete Hamiltoniar ™""; this is the method of effective nominal quantum numbers used by Rose and Kellman for the full Hamiltonian in Fig. 8, right of
Ref. 13. Under “Methods 1 and 2" are approximate energies of the corresponding levels for each method and overlaps of approximate and ex@acseigenvec
Pairs of levels marked by letters a—f were subjectedX@ 2orrections in methods 1 and 2. In lower section, results o2 2orrections are summarized.
Exact levels are in left bottom section; results for energies and overlaps of the corresponding approximate stax? eftee@ions to methods 1 and 2 are
given in the next two sections to the right.

yful Method 1 Method 2

(level Energy Assignment Energy Overlap Energy Overlap
1 20945.50 (00j16 20961.67 0.9990 20946.74 1.0000
2 22248.09 (10y14 22247.81 0.9971 22300.63 0.9999
3 22344.96 (10)14 22344.98 1.0000 22294.70 1.0000
4 23364.61 (20512 23361.36 0.9977 23362.16 0.9997
5 23410.02 (20)12 23412.42 0.9995 23409.25 0.9999
6 23602.73 (11512 23615.07 0.9985 23609.14 0.9997
7 24256.23 (30y10 24252.77 0.9978 24262.22 0.9964
8 24267.71 (30)10 24267.83 0.9995 24261.59 0.9985
9 24525.49 (21910 24529.09 0.9955 24611.61 0.9962
10 24682.45 (21)10 24681.55 0.9987 24600.71 0.9983
11 24894.53 (40)8 24892.63 0.9973 24893.41 0.9996
12 24896.15 (40)8 24895.54 0.9988 24895.11 0.9995
13 25044.66 (80)0 25044.93 1.0000 25044.96 0.9999
14 25044.66 (80)0 25044.93 1.0000 25044.96 0.9999
15 25258.10 (50)6 25260.73 0.9836 a 25260.35 0.9786 a
16 25259.35 (508 25261.11 0.9985 25260.69 0.9958
17 25302.96 (31)8 25298.34 0.9775 a 25298.85 0.9756 a
18 25373.53 (70)2 25372.12 0.9740 b 25374.15 0.9737 b
19 25374.64 (70)2 25371.96 0.9961 25374.15 0.9899
20 25391.17 (31)8 25395.41 0.9724 b 25387.50 0.9767 b
21 25573.86 (60)4 25566.69 0.9996 25565.03 0.9918
22 25573.93 (60)* 25566.79 0.9997 25565.05 0.9917
23 25603.72 (22)8 25611.34 0.9964 25616.39 0.9985
24 25877.82 (4196 25871.54 0.9947 25893.18 0.9859
25 25905.59 (41 25906.83 0.9995 25890.67 0.9895
26 26099.67 (71)0 26100.51 0.9986 26100.94 0.9943
27 26100.17 (71)0 26100.87 0.9999 26100.99 0.9979
28 26159.58 (32)6 26173.19 0.8782 c 26268.51 0.9318 c
29 26198.24 (51)4 26197.68 0.9988 26197.88 0.9641
30 26200.60 (51)4 26190.50 0.8810 c 26193.29 0.9337 c
31 26350.20 (32)6 26350.07 0.7882 d 26254.51 0.7562 d
32 26351.11 (61)2 26343.63 0.9970 26346.27 0.9797
33 26356.02 (61)2 26347.38 0.7892 d 26346.24 0.7644 d
34 26599.90 (42)4 26596.25 0.9962 26596.62 0.9851
35 26714.96 (42—-4 26721.59 0.9989 26709.46 0.9902
36 26828.04 (62)0 26827.04 0.9948 26841.84 0.9156 e
37 26851.47 (62)0 26852.52 0.9999 26849.47 0.9835
38 26898.70 (52)2 26890.60 0.9843 e 26914.20 0.9077 e
39 26939.37 (52)2 26937.49 0.9998 26911.77 0.9680
40 26940.75 (33)4 26940.91 0.9833 e 26956.30 0.9685
41 27161.25 (43)2 27166.28 0.9989 27269.83 0.9304
42 27251.26 (53)0 27248.09 0.9996 27251.31 0.9445
43 27346.97 (43)2 27343.82 0.9984 27255.11 0.8776 f
44 27399.93 (53)0 27405.93 0.9986 27371.84 0.8995 f
45 27608.05 (44)0 27608.91 0.9998 27619.13 0.9975

Method 1 corrected Method 2 corrected

15 25258.10 (50)6 25258.04 0.9994 a 25260.26 0.9985 a
17 25302.96 (31)8 25302.67 0.9932 a 25304.05 0.9954 a
18 25373.53 (70)2 25373.51 0.9997 b 25381.46 0.9598 b
20 25391.17 (31)8 25391.70 0.9979 b 25392.05 0.9614 b
28 26159.58 (32)6 26161.06 0.9957 c 26154.96 0.9878 c
30 26200.60 (51)4 26201.09 0.9973 c 26193.69 0.9889 c
31 26350.20 (32)6 26350.10 0.9963 d 26340.68 0.8628 d
33 26356.02 (61)2 26355.41 0.9964 d 26353.04 0.8684 d
36 26828.04 (62)0 26854.37 0.9333 e
38 26898.70 (52)2 26898.22 0.9975 e 26913.42 0.9282 e
40 26940.75 (33)4 26939.11 0.9958 e
43 27346.97 (43)2 27317.98 0.9662 f
44 27399.93 (53)0 27391.16 0.9920 f
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E degenerate approximate states, which unavoidably leads to a
(em™ Method 1 strong mixing of the approximate states, no matter how good
998 aayo 2x2 corrections the approximate Hamiltonian. Indeed, it has been noted by
27500 oo Keshavamurthy and EZA®* that the mixing of the states
— (B0 9984 under consideration is due primarily to dynamical tunneling,
296 530 5089 rather than effects of classical chaos.
—— (43)72
0 one — '_—i?—i{_awz)"z X2 (aaya L )
:(sz/ro 9975\ s 3. Intensities in the dressed basis
8 \ prvwals Method 1 has worked remarkably well for the energies
26500 ' and overlaps, which are 0.993 or greater for all states after
9964 0963 correction for unavoidable near degeneracies. An important
oo V2 —— (28 question is how well the eigenstates of the effective Hamil-
6609 k '2—2%51)*4 9957 ove tonian can reproduce observable properties of eigenstates of
955 710 A the full Hamiltonian, other than the energies. An obvious
26000 N\ 9995 \ example is intensities. To test this, we modeled the intensities
o “e of absorption spectra, supposing that the entire transition mo-
\ ment is contained in the pure zero-order stretch overtones
997 coya 9984 oys 18,0,0),|0,8,0). This results in the intensities shown in Fig.
25500 _ / 9996 4(a). (Note the log, scale, for a vast range of intensities.
9961 .9979 } . . . ", .
oo 7072 95 BV For method 1 without 2 corrections, the intensities given
// :2_22%‘5"“ e by the pure overtone model are shown in Fi¢o)4For the
1 0000 most part, the intensities agree well with those Hof!".
25000 1 10900 o0 © However, there are some notable exceptions. In particular, in
(’) é "1 é é the two “bad” pairs discussed above, the intensity of one of

each pair is seriously underestimated. When tkhe 2orrec-
tions are applied, the resulting intensities, shown in Fig),4
FIG. 3. Results of method 1 corrected witlx2 matrices, as described in  gre greatly improved_ The remaining anomalies are for a few
S £ S of feel coreted 12 melices re ndled I extremely weak transitons.

' ' ' The foregoing has demonstratét) that the effective
Hamiltonian of method 1 reproduces the eigenenergies of the

vectors of 0.7892 and 0.7882. The other bad cases afdll Hamiltonian very well,(2) the eigenvectors have excel-
(5,1)" 4 and (3,2) 6, with overlaps 0.8810 and 0.8782. The lent overlap with the eigenvectors of the full Hamiltonian in
main cause of the problem is evident: in each case, the ned0St casesi3) in the exceptional cases of near degeneracy,
degeneracy of a pait;), |#;). In the 2x2 basis of exact the overlaps are dramatically improved with the use &R2
states ¢;), | ), any diﬁerenjce betweerd ! andHef will matrices, related to dynamical tunneling; adg most inten-

1/ il . . .
lead to mixin]g of the exact states by off-diagonal matrixs't"_as are reproduced extremely well by the effective Hamil-

elements(y;|H™"—H®"y,). If the exact pair were truly ~tOnian. hensi _ s for al th
degenerate, any mixing, no matter how small, would lead to ~OF comprehensiveness, we summarize results for all the

overlaps with theH®'" eigenstates of 12; this nearly hap- polyadsP=1-8 in Table Il. For each polyad, we report the
pens with (6,1)2 and (3,2 6. root-mean-square overlap of the eigenvectors of the dressed

basis Hamiltonian with those of the spectroscopic Hamil-
<¢ieff|HfuII_ Heff| wfff) of the near-degenerate pair of eigen- tonian. The results are completely consistent with those pre-

states ofH®'" should give states very close to the pair of sent_ed in detail for polyad 8. Not surprisingly, the rms over-
exact eigenstatelsy;), |¢) of HIU We tested this in the lap is better for lower polyads, where the symmetric stretch
i/ j :

present case by diagonalizing<2 matrices constructed in and bend are less well tuned to 2:1 resonance.
the basis of eigenstates’'" of H'f, with diagonal and off-
diagonal elements computed fdwy?"|H™"—He" o).
The overlaps for the two exceptional pairs improve dramati-B. Method 2: Dressed local stretch—bend modes with
cally, as shown in Fig. 3 and Table I, to 0.9964, 0.9963 anceffective stretch—stretch resonance
0.9973, 0.9957. We experimented with improving three other
pairs of levels in this way, obtaining enhanced results in eacyhd
case, as shown in Fig. 3 and Table I. We also experimentege
with applying this procedure t0>383 and larger matrices. As
expected, the results with these larger matrices were not dr
matically better, and are not shown.

There is a close connection of this situation with “dy- Ldr eildr oL eff

namical tunneling®®*° between a pair of accidentally near-  Hss =HgsstVss - (18)

This can be turned around to say thak2 mixing

The second Hamiltonian, by analogy to the naive
ependent-resonance approximatici0), has a dressed
ro-order basis with bends and local stretches coupled by
the stretch—bend Fermi interaction and an effective residual
retch—stretch coupling:
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TABLE II. Root-mean-square overlap of eigenvectors of the dressed basis
Hamiltonian with those of the spectroscopic Hamiltonian for polyads
pP=1-8.

Polyad No. rms overlap

1.0000
0.9999
0.9996
0.9994
0.9964
0.9944
0.9911
0.9824

O~NOO O WN B

We follow the same three steps as in method 1. Following
the general definitior{13), we defineH5! as the original
zero-orderH{ dressed bk, the stretch—bend coupling in

the local basis:
Hoss=Hg+VE . (19)

The next step is to assign nominal zero-order local-mode
quantum numbers to this dressed basis. Since the dressed
zero-order Hamiltonian contains the stretch—bend coupling
VE, though its eigenstates have good total stretch—bend
polyad quantum numberng+n,+n,/2), they are strong
mixtures of the original zero-order stretch—bend basis states.
From our earlier single-resonance analysi§we know that
they do not all have stretch and bend mode character. Within
a sequence with fixedng+n,+ny/2), some of the states
have undergone a transition to a type of motion called “reso-
nant modes.” As in method 1, we nonetheless want to assign
a single set of nominal quantum numbers; (n,,n,)"°™
to the dressed zero-order basis. For example, con-
sider the sequence withn{+n,+n,/2)=8. The states of
the dressed basis are assigned as (800)
(7,0,2y-"°M .. ,(0,0,16) "°™ As in method 1, we do this
following a correlation diagram procedure, this time exactly
the one used in Ref. 13. The coupliWg is turned on and the
labels (,,n,,n,) " carried diabatically from the zero-order
basis forH§ to the dressed basiéThis is the procedure of
nominal assignments followed in Fig. 8 of Ref. 13 going
from the left to the center of the diagram.

The final step is to define matrix elements\d§&'" in
terms of the nominal quantum number assignments. By anal-
ogy with Egs.(4), (5), and(7), we takeV5E' to be of the
form

Vss"=vi Vs (20
where
l nom
Vi eif= )\+)\’(n1+n2+1)+)\”(nb+§
X (a,ah+azal) (21)

FIG. 4. Comparison of intensities for exact and effective Hamiltonians.gnd

Section V A 3 describes model for calculating intensiti@s.Intensities of

the exact Hamiltonian(b) intensities calculated in method (&) intensities VIE:ZHZ y(alalaZaZ—f— azazalal), (22)
calculated in method 1 with>2 corrections. Some key levels are identified

by their assignments, which may be compared with Figs. 2 and 3 andvith the parameters\,\’,\",y taken from the fit of

Table I. Baggott®® analogous to method 1.
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E resonancegor resonances, by extension to molecules with
(cm™) Method 2 many couplings However, the still impressive success of
995 (aayo method 2 shows that if desired, one can also choose to dress
27500 4 oo with the weak coupling and retain the strong coupling as the
—— (63)0~ 8778 1ay2 residual effective resonance. This flexibility in choosing the
9485 sayrl o residual coupling can be important depending on the kinds of
— 432 guestions one is asking about the system.
270007 .9835 / ﬁ_?j_‘o(sz)*'z %5—(33)‘4
—=—(62)"0 9077 \
155 \ B2 VI. WHAT DO THE NOMINAL EFFECTIVE QUANTUM
10N NUMBERS MEAN?
—— (42)'4
26500 - - ros2 As emphasized in Sec. Il, the nominal effective quantum
el Gl — (32y8 numbers are not rigorous constants. A key issue then is, what
NN _9%_13 2y’ is their status in light of the numerical results on the dressed
j—:{;g 710 SN basis sets? First, it is necessary to reiterate a crucial distinc-
26000 NN 0895 \ tion between two different uses of the term “nominal assign-
ol ment” in this paper. First, there are the nominal quantum
\ numbers of the dressexro-orderbasis. Second, as in Table
BT e 9985 oye | and Figs. 2-5 and earlier in Refs. 11, 13, and 36—-38, we
25500 - // 9918 made nominal assignments of thlegenstatesof the full
.9899 9767 y . . . . -
o 702 ooss el DL spectroscopic Hamllto.man. We will assess the utility of the
e (506 @18 nominal assignments in both senses.
9990 (/so)"o
25000 -| 9909 ! : : A. Assigning the dressed zero-order basis
0 2 6 8

The zero-order nominal assignments for each dressed
basis slice the polyad in various ways into subpolyads in
FIG. 5. Results for energies and eigenvectors using method 2 with effectivevhich an effective resonance acts. The surprisingly good nu-
HamiltonianHsg", described in Sec. V B. See Fig. 2 caption for further merical results demonstrate the utility of the nominal zero-
explanation of symbols. order assignments. This supports the conceptual hypothesis
behind the nominal assignments, presented in Sec. V A, that

Figure 5 and Table | show the results of method 2. Thehe character of the zero-order basis state$lgfdoes not
spectrum and eigenvectors idf %" are compared with those change too much in the diabatic correlationH§'.
of H'U"". The agreement of the exact and effective energies,
as well as the eigenvector overlaps, is again excellent in most
cases, though not as good as with method 1. There are sorBe Classifying the eigenstates
cases in Fig. 5 of serious discrepancies in the energies, in
particular (4,3y2 and (3,2) 6. Correction of problematic
cases with X2 matrices again leads to improved results,
though not quite as good as in method 1. The reason for th
errors in the energies before th& 2 corrections is that "
and He'T differ slightly for these states, so non-negligible
diagonal matrix elements @iy |H™!"'— He™ 42 arise in
the correction procedure. The results witlk2 corrections
are given in Table I, but not shown pictorially.

Now we turn to the related procedure of making nominal
assignments ofigenstatesused here and earlier in Refs. 11,
13, and 36—38. These are a complete s& gfiantum labels
§nd therefore useful for identifying analogs of sequences and
progressions in the eigenstate spectrum. Here, they are ob-
tained by continuing the nominal assignments of the zero-
order dressed basis along the diabatic curves of the correla-
tion diagram as the remainder of the full Hamiltonian is
turned on.

With the assignment of nominal quantum numbers, we
can slice the spectrum of eigenstates in various ways into
sequences with a fixed value of one of tieominal quan-

The numerical tests have shown that the dressed basiem numbers. For example, one type of sequence division,
approach gives a surprisingly good approximation to the exinto stretch—stretch subpolyads, is given by the columns with
act Hamiltonian in both methods. What lessons can we dravixed nominal bend quantum numbey in Figs. 2, 3, and 5.
from this? Another type of division, into stretch—bend Fermi sequences,

Method 1 works best for the eigenstates because it coris given by the “arches” of levels connected in the figures by
structs the zero-order basis by dressing with 8tong  straight line segments. The spectral pattern within columns
stretch—stretch coupling. The weaker Fermi resonance isxhibits the division between local and normal character of
then accounted for approximately as a residual effectivehe stretches; the arches exhibit the influence of the stretch—
Fermi coupling. The lesson is that in constructing the zerobend Fermi resonance known from earlier single-resonance
order dressed basis, it works best to include the strongesinalysis®

C. Choice of method
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These spectral patterns are an indication that the nominalonstruct the dressed zero-order basis, with a given polyad-
eigenstate assignments in Refs. 11, 13, and 36—38 are idebreaking resonance treated as an effective residual operator.
tifying slicings or sequences of the spectrum in which the
eigenstates are approximately characterized by an indepeACKNOWLEDGMENT
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