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Dressed basis for highly excited molecular vibrations
Michael E. Kellman,a) Mark W. Dow, and Vivian Tyng
Department of Chemistry and Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403

~Received 18 January 2000; accepted 5 March 2003!

Starting from a multiresonance spectroscopic Hamiltonian fit by Baggott to experimental levels of
H2O, an approximate Hamiltonian is devised using a prediagonalized ‘‘dressed’’ zero-order basis,
within which a residual, effective single-resonance coupling operator acts. The dressed basis
incorporates many of the effects of nonintegrability, while the effective resonance furnishes much of
the simplicity of integrable systems. Numerical tests are performed for two distinct dressed bases,
in which different resonance operators are chosen as the residual effective coupling. Excellent
agreement with the energies and eigenvectors of the exact system is obtained for each of the two
dressed bases. ©2003 American Institute of Physics.@DOI: 10.1063/1.1569908#
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I. INTRODUCTION

In this paper, we investigate a ‘‘dressed basis’’ method
which a many-mode, multiresonance spectroscopic Ha
tonian is approximated by a Hamiltonian with a new ze
order basis, within which there acts a residual effect
single-resonance coupling operator. The dressed zero-o
basis is prediagonalized with a portion of the original sp
troscopic Hamiltonian. The dressed basis is intended to
corporate many of the effects of nonintegrability, while t
single effective resonance furnishes much of the simplic
of an integrable system.

This is motivated by certain results of investigations
highly excited molecular vibrations. In a series of papers,1–17

we have been developing bifurcation analysis5,6 of the
Hamiltonian corresponding semiclassically to the spec
scopic quantum fitting Hamiltonian. This identifies the a
harmonic modes, born in bifurcations of the original (3N
26) low-energy normal modes, that characterize the m
ecule at high energy. This kind of procedure, now applied
a number of authors,18–32started with simple two-mode sys
tems with a single Fermi resonance coupling, but has b
successfully extended to more than two modes with mult
resonances and chaos.11,12,15,23,24,28

One of the most salient findings12 has been that the bi
furcations of most molecules can be decomposed into a
quence of independent two-mode bifurcations, similar,
spite the nonintegrability and chaos of the system, to th
observed for systems of a single resonance between
modes. The dressed basis is a computational method
mirrors this approximate classical decomposability into s
tems of quasi-independent resonances. The dressed
method is not difficult to apply and may find use as a pr
tical tool, as briefly described in the concluding section.

II. DRESSED BASIS SETS AND EFFECTIVE
RESONANCE

The observed decomposability into effective sing
resonance systems suggests a systematic collection o

a!Electronic mail: kellman@oregon.uoregon.edu
9510021-9606/2003/118(21)/9519/9/$20.00
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proximations to the Hamiltonian, in each of which the sy
tem is viewed from the perspective of one of the independ
resonances. In each approximate Hamiltonian, correspon
to a chosen resonance couplingVi of the original Hamil-
tonian, there will be an effective resonance couplingVi

e f f .
This will act within a zero-order basis which incorporates t
effects of the rest of the original Hamiltonian, including bo
its zero-order part and all the other resonances bes
Vi—hence, a ‘‘dressed’’ basis. The effective individual res
nance operatorVi

e f f will be defined so as to act within ‘‘se
quences’’ of this basis.

For this to work, it is necessary to label the zero-ord
sequences with a set ofN numbers that function like zero
order quantum numbers. At best, these will be effective
nominal quantum numbers, because they certainly canno
true constants of motion of the dressed zero-order ba
which has a nonseparable Hamiltonian. But if this much c
be made to work, we will have an effective Hamiltonian wi
nonintegrability via the dressed basis, but retaining as m
as possible the simplicity of a single resonance approxim
tion via the effective resonanceVi

e f f . This procedure will be
useful to the extent that the exact eigenstates of the spe
scopic Hamiltonian are approximated by those of the n
effective Hamiltonian. Detailed construction and testing
dressed basis sets will be presented in Sec. V and follow
after some useful preliminaries concerning the spectrosc
Hamiltonian and its structure.

III. SPECTROSCOPIC HAMILTONIAN

This section describes the spectroscopic Hamiltonian
sufficient detail for the later discussion of the dressed ba
sets.

The Hamiltonian is a spectroscopic fitting Hamiltonia
for a bent triatomic, with parameters optimized by Baggo33

to give the best match to available data for H2O. In the
normal modes representation, the form of the Hamiltonian

HN5H0
N1VDD

N 1VF
N . ~1!

H0
N is a zero-order Hamiltonian diagonal in normal-mo

quantum numbersns , na , andnb for symmetric stretch, an-
9 © 2003 American Institute of Physics
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9520 J. Chem. Phys., Vol. 118, No. 21, 1 June 2003 Kellman, Dow, and Tyng
tisymmetric stretch, and bend. The couplingsVDD
N and VF

N

are resonance terms between the normal modes.VDD
N is a

Darling–Dennison coupling34 between the symmetric an
antisymmetric stretch, andVF

N is a 2:1 Fermi resonance cou
pling between the symmetric stretch and bend. This Ham
tonian is block diagonal in sets of the same total or poly
quantum numberP5ns1na1nb/2.

In this paper, we will actually work in a representatio
with local O–H bond mode stretches, rather than the nor
stretch modes of the representation of Eq.~1!. The transfor-
mation between normal and local representations of
three-mode Hamiltonian~1! with bend has been carried ou
by Baggott.33 After this transformation, in which the desig
nation of the bend remains unchanged, the Hamiltonian
comes

HL5H0
L1V1:1

L 1V2:2
L 1V2:1

L , ~2!

where

H0
L5v0S n11

1

2D1v0S n21
1

2D1vbS nb1
1

2D
1asS n11

1

2D 2

1asS n21
1

2D 2

1abS nb1
1

2D 2

1assS n11
1

2D S n21
1

2D1asbS n11
1

2D S nb1
1

2D
1asbS n21

1

2D S nb1
1

2D , ~3!

V1:1
L 5Fl1l8~n11n211!1l9S nb1

1

2D G~a1a2
†1a2a1

†!,

~4!

V2:2
L 5g~a1a1a2

†a2
†1a2a2a1

†a1
†!, ~5!

and

V2:1
L 5

Qsbb

2A2
~a1ab

†ab
†1ababa1

†1a2ab
†ab

†1ababa2
†!. ~6!

Here n1 and n2 refer to the number of quanta in the loc
O–H stretch modes andnb to the number of quanta in th
bend mode.V1:1

L is the 1:1 coupling between the loc
stretches. It is primarily responsible for the coupling th
gives normal modes. The 2:2 couplingV2:2

L arises in the
transformation from the normal to local representation1,3,35

of the Darling–Dennison Hamiltonian. Typically, it is sma
for stretches. The values for the normal-mode and loc
mode spectroscopic constants for H2O are given in Ref. 33.
Both stretch–stretch couplingsV1:1

L andV2:2
L act within sets

of zero-order states with bend quantum numbernb constant,
so we can combine them into a single stretch–stretch c
pling

VSS
L 5V1:1

L 1V2:2
L . ~7!

The structure of the couplings in the Hamiltonian lea
naturally to schemes of zero-order sequences or subpol
that will be useful later in defining the dressed basis s
Polyad P58 is shown schematically in Fig. 1. The zer
order basis states are labeled with their quantum num
Downloaded 14 May 2003 to 128.223.22.131. Redistribution subject to A
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(n1 ,n2)nb . In the local representation, the couplingVSS
L acts

within zero-order local mode stretch-stretch subpolyads
shown schematically in Fig. 1~a!. It links sequences obtaine
as subpolyads or ‘‘slices’’ of the zero-order polyad. T
stretch–bend couplingV2:1

L is more complicated. As see
from Eq. ~6!, by symmetry there actually are two stretch
bend Fermi couplings in the local representation, so the
tion of the couplings does not divide neatly into independ
slices. Rather, the structure is the ‘‘net’’ depicted in Fig. 1~b!.

IV. FAILURE OF THE ZERO-ORDER
INDEPENDENT-RESONANCE APPROXIMATIONS AND
THE NEED FOR THE DRESSED BASIS

Next, in the course of introducing some notation th
will be useful later, we establish that the individual zer
order resonances are nowhere near an adequate appro
tion to the spectrum and eigenvectors of the full multires
nance Hamiltonian.

We have examined energy levels and eigenvector o
laps of each of four possible independent resonance app
mations. @We call these ‘‘independent’’- rather tha
‘‘single’’-resonance approximations, because of the tw

FIG. 1. Coupling and subpolyad structure of the zero-order spectrum,
scribed in Sec. III and Ref. 13. Zero-order states are labeled by the qua
numbers (n1 ,n2)nb . ~a! Structure of the stretch–stretch coupling,~b! struc-
ture of the stretch–bend coupling.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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resonance net structure of the stretch-bend Fermi interac
in the local representation seen in Fig. 1~b!#. The four ap-
proximate Hamiltonians are

HF
L5H0

L1VF
L , ~8!

HF
N5H0

N1VF
N , ~9!

with stretch–bend coupling, and

HSS
L 5H0

L1VSS
L , ~10!

HDD
N 5H0

N1VDD
N , ~11!

with stretch–stretch coupling. The last two Hamiltonians
tually are completely equivalent, being different represen
tions of the same Hamiltonian, as described in Refs. 1 an
All four Hamiltonians~8!–~11! are listed because potential
each is associated with the construction of a distinct dres
basis Hamiltonian, as will become clear shortly.

As expected, we found that all four independe
resonance approximations give results, for the energies
especially the eigenvectors, that are poor for many of
levels. While each of the simple Hamiltonians~8!–~11! gives
reasonable results for some levels, none gives good re
for all portions of the spectrum. This is not surprising, b
cause multiple-resonance couplings generally are added
spectroscopic Hamiltonian only when they become nec
sary to account for the experimental data.

V. CONSTRUCTING AND TESTING THE DRESSED
BASES

We now describe the various dressed basis sets an
fective independent-resonance operators. Our goal is to
vise approximations to the full HamiltonianH f ull which are
simple, in the sense of being analogs of the zero-or
independent-resonance Hamiltonians

Ha5H01Va ~12!

of Eqs.~8!–~11!, yet which capture as much as possible t
complexity of the nonintegrable, multiresonance Ham
tonian H f ull . In analogy to the naive zero-order resonan
HamiltoniansHa of the previous section, we will refer to
these various dressed Hamiltonians asHa

dr .
We chose to work from the local mode form of th

Hamiltonian ~2! because the Fermi coupling happens
come into play strongly in polyad 8 for states where t
stretch dynamics are best described by local modes. We
therefore investigated two different dressed basis Ham
nians, which we now describe as methods 1 and 2, which
analogous to the two naive independent-resonance Ham
nians Eqs.~8! and ~10!.

Each dressed Hamiltonian will take the form of
dressed zero-order HamiltonianH0a

dr plus a residual, effec-
tive independent-resonance couplingVa

e f f . The task is to
give explicit formulation to the dressed zero-order Ham
tonian and the residual independent resonance. In gen
the dressed zero-order HamiltonianH0a

dr will be defined as a
sum of the zero-order HamiltonianH0 plus all the zero-order
resonancesVi except theVa intended to be replaced by th
residualVa

e f f :
Downloaded 14 May 2003 to 128.223.22.131. Redistribution subject to A
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H0a
dr 5H01(

iÞa
Vi . ~13!

The eigenstates ofH0a
dr give a dressed zero-order basis. Th

basis, in analogy to its counterpartH0 , will be assigned a se
of N nominal or effective zero-order quantum numbers. H
this key step is to performed will be specified later in ea
case with great care; it is emphaticallynot just a matter of
taking overlaps of the dressed basis states with the state
the zero-orderH0 . In terms of theseN labels, zero-order
sequences or subpolyads are defined within which a gi
Va

e f f acts. Unlike the case with the original zero-order bas
theN quantum numbers are rightly called ‘‘nominal.’’ This i
because the new zero-order states are dressed by all the
resonances of the spectroscopic Hamiltonian, so the nom
quantum numbers do not correspond to classical const
rigorously obtainable in any way of which we are aware;
best, they are approximate effective quantum numbers.

As in Refs. 11 and 13, for numerical testing we focus
detail on the polyadP58 and just briefly summarize lowe
polyads~where the results are as good or better!. We chose
P58 in Refs. 11 and 13 because it is in the region wh
both resonances come strongly into play.

A. Method 1: Dressed local stretch modes with
effective stretch–bend resonance

The first Hamiltonian, by analogy to the naive indepe
dent resonance approximation~8!, has a dressed zero-orde
basis of local stretches, with an effective residual stretc
bend Fermi coupling:

HF
L dr5H0F

L dr1VF
L e f f . ~14!

The problem is to specify~1! how H0F
L dr is defined with its

dressed basis,~2! how the basis is assigned nominal zer
order quantum numbers, and~3! how matrix elements of
VF

L e f f are defined in terms of the nominal quantum numbe
Following the general form~13!, we defineH0F

L dr as

H0F
L dr5H0

L1VSS
L . ~15!

That is, the original local stretches ofH0
L are dressed by

VSS
L 5V1:1

L 1V2:2
L of Eq. ~7!, the stretch–stretch coupling i

the local basis.
The next step is to assign nominal zero-order local-mo

quantum numbers to the basis of the dressed zero-o
HamiltonianH0F

L dr . This is the most problematic aspect
our investigation, because there is no question of the nom
quantum numbers actually being rigorous constants for
basis states. We will work in each case by describing
actual procedure and the rationale for its use. While
nominal assignment procedures certainly do not have a
orous justification, numerically their success far exceeds
pectations, lending confidence that the basic idea is on
right track. It should be mentioned that the procedures
assigning nominal quantum numbers that will be describ
here are closely related to methods for assigning quan
numbers to spectra using diabatic correlation diagra
These were developed by Rose and Kellman13 for H2O, then
applied36–38 to the more complex C2H2 system.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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We now describe the detailed procedure followed
method 1. The dressed zero-order HamiltonianH0F

L dr con-
tains the stretch–stretch couplingVSS

L , and though its eigen
states have fixed bend quantum numbernb , they are strong
mixtures of the original zero-order basis ofH0

L . In fact, from
previous resonance analysis of coupled stretches,1,3,5,6 we
know that they do not all retain local-stretch-mode charac
Within a sequence with fixednb , the lower states have loca
mode character and fall into near-degenerate local mode
blets, while the upper levels have normal-mode charac
This mixture of two dynamical classes induced within t
subpolyad by the coupling is the essential difficulty. Clas
cally, there is a separatrix between local- and normal-m
regions in phase space. It is therefore not possible rigoro
to assign a single set of stretch quantum numbers to all
states. We nonetheless will assign a single set of nom
zero-order quantum numbers (n1 ,n2 ,nb)nom. We do this by
a diabatic correlation diagram technique similar to the p
cedure used in Ref. 13. For example, consider the sequ
of dressed states with fixednb50. The original zero-order
states have good quantum numbers (n1 ,n2,0)6. When the
couplingVSS

L is turned on to give the dressed basis, we f
low the zero-order states (8,0,0)6,(7,1,0)6, . . . ,(4,4,0)1

diabatically as they are carried over to the states that we l
(8,0,0)6nom,(7,1,0)6nom, . . . ,(4,4,0)1nom. ~It turns out in
the present case that the nominal quantum numbers ass
in this way preserve the original energy ordering.! Intu-
itively, it is plausible that the character of the states may
change too much in the diabatic correlation, so that the no
nal zero-order assignments possess a physical mea
roughly, of a bend mode being coupled to a stretching m
tion with about twice the frequency of the bend, with not t
great a consequence from the precise nature, normal or l
of the stretching. Everything hinges on whether this lead
an effective Hamiltonian with aVe f f, such that its matrix
structure and values of the matrix elements mimic the st
ing Hamiltonian. Proof for this will rest on numerical testin

The final step is then to define matrix elements of t
VF

L e f f . This is very straightforward. By analogy with Eq
~6!, we takeVF

Le f f to be of the form

V2:1
L e f f5

Qsbb
L e f f

2A2
~a1ab

†ab
†1ababa1

†1a2ab
†ab

†1ababa2
†!,

~16!

where the operatorsai andai
† now have the action of raising

and lowering operators on thedressedbasis, with matrix el-
ements determined by the nominal zero-order quantum n
bers and the strengthQsbb

L e f f/2A2 of the effective coupling—
e.g.,

^~n121!,n2 ,~nb12!uVF
L e f fun1 ,n2 ,nb&

nom

5
Qsbb

L e f f

2A2
An1~nb11!~nb12!nom. ~17!

We need to choose the strength ofQsbb
L e f f . One could try to

optimize this, but in this test we choose simply to use
values from the starting Hamiltonian of Eqs.~2!–~6!; i.e., we
takeQsbb

L e f f5Qsbb.
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1. Results of method 1

Figure 2 and Table I show the results of method 1. T
spectrum and overlaps of eigenvectors of the effect
Hamiltonian are compared with the those ofH f ull . The hori-
zontal levels in Fig. 2 give the energies of the exact eig
states ofH f ull . The diamond symbols in Fig. 2 are the ene
gies of the eigenstates ofHF

L dr . In all cases, the approximat
and exact energies are very close. The overlaps of theHF

L dr

eigenvectors with the exact vectors ofH f ull are given adja-
cent to each level. For the most part, there is remarka
good agreement, with overlaps above 0.97, and often m
better, in all but four exceptional cases. Apart from the
exceptional cases, the numerical results justify the hypo
esis that the exact system can be mimicked by the effec
HamiltonianHF

L dr with nominal assignments of the dress
zero-order basis and residual effective resonance. We
examine the reason and cure for the exceptional cases.

2. Mixing of accidental near degeneracies and
dynamical tunneling

The worst cases in Fig. 2 are the pair (6,1)22 and
(3,2)26, with overlaps with the corresponding exact eige

FIG. 2. Results of method 1 for energies and eigenvectors, as describ
Sec. V A; see Table I for complete results for theP58 polyad. The hori-
zontal lines are exact energies; the diamonds are energies of the effe
Hamiltonian HF

L dr of method 1. Next to each level is given its nomin
effective quantum number assignment, from Table I. The overlap of
eigenvector of the effective Hamiltonian with the exact eigenvector is gi
with each level. The ‘‘arches’’ of levels connected by angled lines are s
polyads or sequences of the stretch–bend Fermi resonance, described i
VI B.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



er ‘‘
to the
ight of
genvec
.
e

9523J. Chem. Phys., Vol. 118, No. 21, 1 June 2003 Highly excited molecular vibrations
TABLE I. Results of the dressed basis Hamiltonians, described in Sec. V. Upper section, exact and approximate levels by methods 1 and 2. UndH f ull ’ ’
are exact levels ofH f ull . The quantum number assignments (n1 ,n2)6nb are obtained by continuing the diabatic assignments of the dressed basis
complete HamiltonianH f ull ; this is the method of effective nominal quantum numbers used by Rose and Kellman for the full Hamiltonian in Fig. 8, r
Ref. 13. Under ‘‘Methods 1 and 2’’ are approximate energies of the corresponding levels for each method and overlaps of approximate and exact eitors.
Pairs of levels marked by letters a–f were subjected to 232 corrections in methods 1 and 2. In lower section, results for 232 corrections are summarized
Exact levels are in left bottom section; results for energies and overlaps of the corresponding approximate states after 232 corrections to methods 1 and 2 ar
given in the next two sections to the right.

H f ull

~level Energy Assignment

Method 1 Method 2

Energy Overlap Energy Overlap

1 20945.50 (00)116 20961.67 0.9990 20946.74 1.0000
2 22248.09 (10)114 22247.81 0.9971 22300.63 0.9999
3 22344.96 (10)214 22344.98 1.0000 22294.70 1.0000
4 23364.61 (20)112 23361.36 0.9977 23362.16 0.9997
5 23410.02 (20)212 23412.42 0.9995 23409.25 0.9999
6 23602.73 (11)112 23615.07 0.9985 23609.14 0.9997
7 24256.23 (30)110 24252.77 0.9978 24262.22 0.9964
8 24267.71 (30)210 24267.83 0.9995 24261.59 0.9985
9 24525.49 (21)110 24529.09 0.9955 24611.61 0.9962
10 24682.45 (21)210 24681.55 0.9987 24600.71 0.9983
11 24894.53 (40)18 24892.63 0.9973 24893.41 0.9996
12 24896.15 (40)28 24895.54 0.9988 24895.11 0.9995
13 25044.66 (80)10 25044.93 1.0000 25044.96 0.9999
14 25044.66 (80)20 25044.93 1.0000 25044.96 0.9999
15 25258.10 (50)16 25260.73 0.9836 a 25260.35 0.9786 a
16 25259.35 (50)26 25261.11 0.9985 25260.69 0.9958
17 25302.96 (31)18 25298.34 0.9775 a 25298.85 0.9756 a
18 25373.53 (70)22 25372.12 0.9740 b 25374.15 0.9737 b
19 25374.64 (70)12 25371.96 0.9961 25374.15 0.9899
20 25391.17 (31)28 25395.41 0.9724 b 25387.50 0.9767 b
21 25573.86 (60)14 25566.69 0.9996 25565.03 0.9918
22 25573.93 (60)24 25566.79 0.9997 25565.05 0.9917
23 25603.72 (22)18 25611.34 0.9964 25616.39 0.9985
24 25877.82 (41)16 25871.54 0.9947 25893.18 0.9859
25 25905.59 (41)26 25906.83 0.9995 25890.67 0.9895
26 26099.67 (71)10 26100.51 0.9986 26100.94 0.9943
27 26100.17 (71)20 26100.87 0.9999 26100.99 0.9979
28 26159.58 (32)16 26173.19 0.8782 c 26268.51 0.9318 c
29 26198.24 (51)24 26197.68 0.9988 26197.88 0.9641
30 26200.60 (51)14 26190.50 0.8810 c 26193.29 0.9337 c
31 26350.20 (32)26 26350.07 0.7882 d 26254.51 0.7562 d
32 26351.11 (61)12 26343.63 0.9970 26346.27 0.9797
33 26356.02 (61)22 26347.38 0.7892 d 26346.24 0.7644 d
34 26599.90 (42)14 26596.25 0.9962 26596.62 0.9851
35 26714.96 ~42!24 26721.59 0.9989 26709.46 0.9902
36 26828.04 (62)10 26827.04 0.9948 26841.84 0.9156 e
37 26851.47 (62)20 26852.52 0.9999 26849.47 0.9835
38 26898.70 (52)12 26890.60 0.9843 e 26914.20 0.9077 e
39 26939.37 (52)22 26937.49 0.9998 26911.77 0.9680
40 26940.75 (33)14 26940.91 0.9833 e 26956.30 0.9685
41 27161.25 (43)12 27166.28 0.9989 27269.83 0.9304
42 27251.26 (53)10 27248.09 0.9996 27251.31 0.9445
43 27346.97 (43)22 27343.82 0.9984 27255.11 0.8776 f
44 27399.93 (53)20 27405.93 0.9986 27371.84 0.8995 f
45 27608.05 (44)10 27608.91 0.9998 27619.13 0.9975

Method 1 corrected Method 2 corrected

15 25258.10 (50)16 25258.04 0.9994 a 25260.26 0.9985 a
17 25302.96 (31)18 25302.67 0.9932 a 25304.05 0.9954 a
18 25373.53 (70)22 25373.51 0.9997 b 25381.46 0.9598 b
20 25391.17 (31)28 25391.70 0.9979 b 25392.05 0.9614 b
28 26159.58 (32)16 26161.06 0.9957 c 26154.96 0.9878 c
30 26200.60 (51)14 26201.09 0.9973 c 26193.69 0.9889 c
31 26350.20 (32)26 26350.10 0.9963 d 26340.68 0.8628 d
33 26356.02 (61)22 26355.41 0.9964 d 26353.04 0.8684 d
36 26828.04 (62)10 26854.37 0.9333 e
38 26898.70 (52)12 26898.22 0.9975 e 26913.42 0.9282 e
40 26940.75 (33)14 26939.11 0.9958 e
43 27346.97 (43)22 27317.98 0.9662 f
44 27399.93 (53)20 27391.16 0.9920 f
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vectors of 0.7892 and 0.7882. The other bad cases
(5,1)14 and (3,2)16, with overlaps 0.8810 and 0.8782. Th
main cause of the problem is evident: in each case, the
degeneracy of a pairuc i&, uc j&. In the 232 basis of exact
statesuc i&, uc j&, any difference betweenH f ull andHe f f will
lead to mixing of the exact states by off-diagonal mat
elements^c i uH f ull2He f fuc j&. If the exact pair were truly
degenerate, any mixing, no matter how small, would lead
overlaps with theHe f f eigenstates of 1/A2; this nearly hap-
pens with (6,1)22 and (3,2)26.

This can be turned around to say that 232 mixing
^c i

e f fuH f ull2He f fuc j
e f f& of the near-degenerate pair of eige

states ofHe f f should give states very close to the pair
exact eigenstatesuc i&, uc j& of H f ull . We tested this in the
present case by diagonalizing 232 matrices constructed in
the basis of eigenstatesc i

e f f of He f f, with diagonal and off-
diagonal elements computed for^c i

e f fuH f ull2He f fuc j
e f f&.

The overlaps for the two exceptional pairs improve dram
cally, as shown in Fig. 3 and Table I, to 0.9964, 0.9963 a
0.9973, 0.9957. We experimented with improving three ot
pairs of levels in this way, obtaining enhanced results in e
case, as shown in Fig. 3 and Table I. We also experimen
with applying this procedure to 333 and larger matrices. As
expected, the results with these larger matrices were not
matically better, and are not shown.

There is a close connection of this situation with ‘‘d
namical tunneling’’39,40 between a pair of accidentally nea

FIG. 3. Results of method 1 corrected with 232 matrices, as described i
Sec. V A. The pairs of levels corrected in 232 matrices are indicated in
Table I. See Fig. 2 caption for explanation of symbols.
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degenerate approximate states, which unavoidably leads
strong mixing of the approximate states, no matter how go
the approximate Hamiltonian. Indeed, it has been noted
Keshavamurthy and Ezra23,24 that the mixing of the states
under consideration is due primarily to dynamical tunnelin
rather than effects of classical chaos.

3. Intensities in the dressed basis

Method 1 has worked remarkably well for the energ
and overlaps, which are 0.993 or greater for all states a
correction for unavoidable near degeneracies. An impor
question is how well the eigenstates of the effective Ham
tonian can reproduce observable properties of eigenstate
the full Hamiltonian, other than the energies. An obvio
example is intensities. To test this, we modeled the intens
of absorption spectra, supposing that the entire transition
ment is contained in the pure zero-order stretch overto
u8,0,0&,u0,8,0&. This results in the intensities shown in Fi
4~a!. ~Note the log10 scale, for a vast range of intensities!
For method 1 without 232 corrections, the intensities give
by the pure overtone model are shown in Fig. 4~b!. For the
most part, the intensities agree well with those ofH f ull .
However, there are some notable exceptions. In particula
the two ‘‘bad’’ pairs discussed above, the intensity of one
each pair is seriously underestimated. When the 232 correc-
tions are applied, the resulting intensities, shown in Fig. 4~c!,
are greatly improved. The remaining anomalies are for a
extremely weak transitions.

The foregoing has demonstrated~1! that the effective
Hamiltonian of method 1 reproduces the eigenenergies of
full Hamiltonian very well,~2! the eigenvectors have exce
lent overlap with the eigenvectors of the full Hamiltonian
most cases,~3! in the exceptional cases of near degenera
the overlaps are dramatically improved with the use of 232
matrices, related to dynamical tunneling; and~4! most inten-
sities are reproduced extremely well by the effective Ham
tonian.

For comprehensiveness, we summarize results for all
polyadsP5128 in Table II. For each polyad, we report th
root-mean-square overlap of the eigenvectors of the dre
basis Hamiltonian with those of the spectroscopic Ham
tonian. The results are completely consistent with those p
sented in detail for polyad 8. Not surprisingly, the rms ov
lap is better for lower polyads, where the symmetric stre
and bend are less well tuned to 2:1 resonance.

B. Method 2: Dressed local stretch–bend modes with
effective stretch–stretch resonance

The second Hamiltonian, by analogy to the nai
independent-resonance approximation~10!, has a dressed
zero-order basis with bends and local stretches coupled
the stretch–bend Fermi interaction and an effective resid
stretch–stretch coupling:

HSS
L dr5H0SS

L dr1VSS
L e f f . ~18!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 4. Comparison of intensities for exact and effective Hamiltonia
Section V A 3 describes model for calculating intensities.~a! Intensities of
the exact Hamiltonian,~b! intensities calculated in method 1,~c! intensities
calculated in method 1 with 232 corrections. Some key levels are identifie
by their assignments, which may be compared with Figs. 2 and 3
Table I.
Downloaded 14 May 2003 to 128.223.22.131. Redistribution subject to A
We follow the same three steps as in method 1. Follow
the general definition~13!, we defineH0SS

L dr as the original
zero-orderH0

L dressed byVF
L , the stretch–bend coupling in

the local basis:

H0SS
L dr5H0

L1VF
L . ~19!

The next step is to assign nominal zero-order local-mo
quantum numbers to this dressed basis. Since the dre
zero-order Hamiltonian contains the stretch–bend coup
VF

L , though its eigenstates have good total stretch–b
polyad quantum number (n11n21nb/2), they are strong
mixtures of the original zero-order stretch–bend basis sta
From our earlier single-resonance analysis,3,5,6 we know that
they do not all have stretch and bend mode character. Wi
a sequence with fixed (n11n21nb/2), some of the states
have undergone a transition to a type of motion called ‘‘re
nant modes.’’ As in method 1, we nonetheless want to ass
a single set of nominal quantum numbers (n1 ,n2 ,nb)nom

to the dressed zero-order basis. For example, c
sider the sequence with (n11n21nb/2)58. The states of
the dressed basis are assigned as (8,0,0)6nom,
(7,0,2)6nom, . . . ,(0,0,16)1nom. As in method 1, we do this
following a correlation diagram procedure, this time exac
the one used in Ref. 13. The couplingVF

L is turned on and the
labels (n1 ,n2 ,nb)6 carried diabatically from the zero-orde
basis forH0

L to the dressed basis.~This is the procedure o
nominal assignments followed in Fig. 8 of Ref. 13 goin
from the left to the center of the diagram.!

The final step is to define matrix elements ofVSS
L e f f in

terms of the nominal quantum number assignments. By a
ogy with Eqs.~4!, ~5!, and ~7!, we takeVSS

L e f f to be of the
form

VSS
L e f f5V1:1

Le f f1V2:2
L e f f , ~20!

where

V1:1
L e f f5Fl1l8~n11n211!1l9S nb1

1

2D Gnom

3~a1a2
†1a2a1

†! ~21!

and

V2:2
L e f f5g~a1a1a2

†a2
†1a2a2a1

†a1
†!, ~22!

with the parametersl,l8,l9,g taken from the fit of
Baggott,33 analogous to method 1.

.

d

TABLE II. Root-mean-square overlap of eigenvectors of the dressed b
Hamiltonian with those of the spectroscopic Hamiltonian for polya
P51 – 8.

Polyad No. rms overlap

1 1.0000
2 0.9999
3 0.9996
4 0.9994
5 0.9964
6 0.9944
7 0.9911
8 0.9824
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Figure 5 and Table I show the results of method 2. T
spectrum and eigenvectors ofHF

L dr are compared with thos
of H f ull . The agreement of the exact and effective energ
as well as the eigenvector overlaps, is again excellent in m
cases, though not as good as with method 1. There are s
cases in Fig. 5 of serious discrepancies in the energies
particular (4,3)62 and (3,2)66. Correction of problematic
cases with 232 matrices again leads to improved resul
though not quite as good as in method 1. The reason for
errors in the energies before the 232 corrections is thatH f ull

and He f f differ slightly for these states, so non-negligib
diagonal matrix elements of^c i

e f fuH f ull2He f fuc i
e f f& arise in

the correction procedure. The results with 232 corrections
are given in Table I, but not shown pictorially.

C. Choice of method

The numerical tests have shown that the dressed b
approach gives a surprisingly good approximation to the
act Hamiltonian in both methods. What lessons can we d
from this?

Method 1 works best for the eigenstates because it c
structs the zero-order basis by dressing with thestrong
stretch–stretch coupling. The weaker Fermi resonanc
then accounted for approximately as a residual effec
Fermi coupling. The lesson is that in constructing the ze
order dressed basis, it works best to include the stron

FIG. 5. Results for energies and eigenvectors using method 2 with effe
HamiltonianHSS

L dr , described in Sec. V B. See Fig. 2 caption for furth
explanation of symbols.
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resonance~or resonances, by extension to molecules w
many couplings!. However, the still impressive success
method 2 shows that if desired, one can also choose to d
with the weak coupling and retain the strong coupling as
residual effective resonance. This flexibility in choosing t
residual coupling can be important depending on the kind
questions one is asking about the system.

VI. WHAT DO THE NOMINAL EFFECTIVE QUANTUM
NUMBERS MEAN?

As emphasized in Sec. II, the nominal effective quant
numbers are not rigorous constants. A key issue then is, w
is their status in light of the numerical results on the dres
basis sets? First, it is necessary to reiterate a crucial dis
tion between two different uses of the term ‘‘nominal assig
ment’’ in this paper. First, there are the nominal quantu
numbers of the dressedzero-orderbasis. Second, as in Tabl
I and Figs. 2–5 and earlier in Refs. 11, 13, and 36–38,
made nominal assignments of theeigenstatesof the full
spectroscopic Hamiltonian. We will assess the utility of t
nominal assignments in both senses.

A. Assigning the dressed zero-order basis

The zero-order nominal assignments for each dress
basis slice the polyad in various ways into subpolyads
which an effective resonance acts. The surprisingly good
merical results demonstrate the utility of the nominal ze
order assignments. This supports the conceptual hypoth
behind the nominal assignments, presented in Sec. V A,
the character of the zero-order basis states ofH0 does not
change too much in the diabatic correlation toH0

dr .

B. Classifying the eigenstates

Now we turn to the related procedure of making nomin
assignments ofeigenstates, used here and earlier in Refs. 1
13, and 36–38. These are a complete set ofN quantum labels
and therefore useful for identifying analogs of sequences
progressions in the eigenstate spectrum. Here, they are
tained by continuing the nominal assignments of the ze
order dressed basis along the diabatic curves of the cor
tion diagram as the remainder of the full Hamiltonian
turned on.

With the assignment of nominal quantum numbers,
can slice the spectrum of eigenstates in various ways
sequences with a fixed value of one of theN nominal quan-
tum numbers. For example, one type of sequence divis
into stretch–stretch subpolyads, is given by the columns w
fixed nominal bend quantum numbernb in Figs. 2, 3, and 5.
Another type of division, into stretch–bend Fermi sequenc
is given by the ‘‘arches’’ of levels connected in the figures
straight line segments. The spectral pattern within colum
exhibits the division between local and normal character
the stretches; the arches exhibit the influence of the stret
bend Fermi resonance known from earlier single-resona
analysis.10

ve
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These spectral patterns are an indication that the nom
eigenstate assignments in Refs. 11, 13, and 36–38 are
tifying slicings or sequences of the spectrum in which
eigenstates are approximately characterized by an inde
dent effective resonance. The calculations here give num
cal evidence that further supports this idea.

VII. SUMMARY AND CONCLUSIONS

This paper has shown how to construct dressed or
diagonalized bases, in each of which a multiresona
Hamiltonian is successfully approximated by a single eff
tive resonance. This largely incorporates the effects of n
integrability, while furnishing much of the simplicity of in
tegrable, single-resonance systems. This mirrors
observed decomposability11,12 of the bifurcation structure o
the multiresonance spectroscopic Hamiltonian into a
quence of simple single-resonance bifurcations. Numerica
the success of the method far exceeds expectations.

It would be very useful if one could use various choic
of dressed zero-order basis and residualVi

e f f to give effective
Hamiltonians amenable to simplified single-resonance bi
cation analysis. By combining the perspectives of seve
dressed bases, each with its own effective resonanc
would be possible to simplify interpretation of the standa
multiresonance spectroscopic Hamiltonian, where bifur
tion analysis is feasible,12,15 but rapidly becomes very com
plicated with increasing system size. We are now testing
on C2H2 spectra and investigating the dynamical knowled
that can be obtained.

The ability to slice the system in different ways, ea
associated with its own dressed basis and subpolyad
which there acts an effective residual resonance coupl
suggests that it may be useful to think of energy trans
pathways or ‘‘channels.’’ The effective coupling is confine
within a channel by its effective single-resonance structu
for time scales less than the time scale for which the dres
basis approximation is valid. This may find use for analyz
intramolecular energy transfer processes.

The dressed basis approach as developed so far ha
sumed the existence of a polyad number, corresponding t
approximate constant of motion valid for short time scales
intramolecular energy flow. The true molecular Hamiltoni
undoubtedly contains terms which break the polyad num
at longer time scales, corresponding to finer levels of de
in the spectrum. Associated with their inclusion is a lar
increase in basis size, because the block diagonalizatio
the polyad number is lost. However, the basic polyad spec
pattern may not be greatly altered.41 This suggests an ap
proach in which the entire polyad Hamiltonian is used
Downloaded 14 May 2003 to 128.223.22.131. Redistribution subject to A
al
en-
e
n-

ri-

e-
e
-

n-

e

-
y,

r-
al

it

-

is
e

in
g,
r

e,
ed
g

as-
an
f

er
il

e
of
al

construct the dressed zero-order basis, with a given poly
breaking resonance treated as an effective residual oper
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