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Semiclassical techniques are used to analyze highly excited pure bending vibrational dynamics from spectra
of C2H2. An analytic bifurcation approach is developed, based on critical points of a classical version of the
quantum fitting Hamiltonian. At high energy four new types of anharmonic modes are born in bifurcations
of the normal modes: local, orthogonal, precessional, and counter-rotator. Visual insight into their nature is
obtained with the help of computer-generated three-dimensional animations. The connection between the
local mode and the acetylene-vinylidene isomerization “reaction mode” is considered.

I. Introduction

At low energies, near the minimum in the potential energy
surface, the internal vibrational motions of molecules are
described by the normal modes model. At higher energy, due
to the interplay of anharmonicity and resonance couplings, the
normal modes model breaks down. The description of the
vibrational motions, including motions involved in molecular
rearrangements, is then an outstanding problem.

We have been developing an approach1-13 that analyzes the
classical version of the effective quantum Hamiltonian used to
fit experimental spectra, to get knowledge of “new modes” that
describe the motion at high energy. These new modes are born
in bifurcations, or branchings associated with the original normal
modes.

Our approach to the bifurcation problem takes advantage of
simplifications2,9,10,14connected with the polyad number, or total
vibrational quantum number of the fitting Hamiltonian. The
normal modes and associated modes born in bifurcations can
be determinedanalyticallyby solution for the critical points of
the fitting Hamiltonian, suitably reduced in phase space dimen-
sion by means of the polyad number. There is no need for
numerical integration of Hamilton’s equations or searches by
means of surfaces of section in high-dimensional phase spaces.
This approach has been successfully applied to systems of
increasing complexity, including triatomics with multiple Fermi
resonances and classical chaos.9,10,14

The subject of this paper is the systematic analysis of pure
bending spectra of acetylene using the analytical critical points
method, for the extensively measured spectra withl ) 0
vibrational angular momentum. From the spectroscopic fitting
Hamiltonian,15 it is known that the pure bend dynamics are
approximately decoupled from the stretches. This makes for a
very interesting system that represents a new level of complexity
for a molecular application of the analytical critical points
method and a notable way station along the road to analysis of
the full stretch-bend vibrational dynamics. Acetylene dynamics
including the rearrangement to the vinylidene isomer are of great
interest because of their importance in combustion.16

We have several specific aims in performing the bifurcation
analysis of the acetylene bends system. (1) To obtain a
systematic global analysis of the bifurcations that lead to novel
modes. Can we understand the number and character of the new
modes and the role of each in the quantum dynamics? Is there
a unique “evolutionary tree” of new modes, born in bifurcations
of the normal modes? Or are there bifurcations disconnected
from the normal mode “tree” (due to saddle node bifurcations,
as observed in an earlier analysis of HCP11)? (2) To develop
computer animations to depict the new modes in a way that
immediately brings out their physical meaning. (3) To assess
the prospects for further extension of the analytical bifurcation
approach to larger systems.

The dynamics of a classical version of the spectroscopic
fitting Hamiltonian forl ) 0 have been extensively studied by
Taylor and co-workers.17,18By numerical integration of Hamil-
ton’s equation at two different values of the polyad number,
they found evidence for several novel types of modes at high
energy. The analytical bifurcation analysis of the present paper
employs methods complementary to those of refs 17 and 18.
We will seek to uncover further regularities in their important
observations and further systematize the global picture of the
acetylene bend dynamics.

II. Spectroscopic Hamiltonian of C2H2 Bends

In this section we first describe the quantum fitting Hamil-
tonian and then describe the corresponding semiclassical Hamil-
tonian for which we will perform the bifurcation analysis in
later sections.

A. Quantum Fitting Hamiltonian. The full-dimensional
C2H2 stretch-bend system19 has stretch and bend normal modes
with quantum numbersn1, n2, n3, n4, n5 for the symmetric C-H
stretch, C-C stretch, antisymmetric C-H stretch, and trans and
cis bend. Both bends are doubly degenerate; therefore two
additional quantum numbersl4, l5 are introduced to label the
vibrational angular momenta associated withn4, n5 (|li| e ni).
The spectra require resonance couplings in the effective Hamil-
tonian to get a proper fit. These couplings mix the normal mode
zero-order states, thereby destroyingni, li as good quantum
numbers, yet they leave three conserved polyad numbers as
determined by a “resonance vector” analysis20-22
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corresponding to total quantum number, stretch quantum
number, and vibrational angular momentum, respectively. The
inversion symmetry (gerade/ungerade) and parity (() are also
conserved.23 Each polyad of quantum levels can therefore be
labeled as{Nt,Ns,l}g/u,(. Because theg/u,( distinctions are not
important in our classical analysis, we focus primarily on the
three polyad numbers of (1).

Only zero-order states (hereafter ZOS) belonging to the same
polyad{Nt,Ns,l} are mixed by the resonance couplings. A further
simplification makes it possible for us to analyze pure bend
polyads separately from stretch excitations. As shown in detail
elsewhere,8,15 the pure bend ZOS are not coupled to states with
nonzero stretch quanta by any of the couplings needed to fit
the spectrum with the spectroscopic Hamiltonian. Hence, the
pure bending states form a subsystem with separate polyads
{Nt,0,l}. We designate the pure bending polyads by [Nb,l] with

The spectroscopic fit of Jacobson et al.15 is the most
appropriate for investigating the bending dynamics. Its param-
eters were obtained by fitting energy and intensity data, mostly
from dispersed fluorescence spectra. There are more recent
fits19,24for the full stretch-bend system. However, most of the
states they include have only moderate excitation in the bending
modes despite their overall high vibrational energy. Hence the
fit of ref 15 is expected to give the best available representation
of the bending dynamics. In section 6, we will examine how
the bifurcation analysis of these various Hamiltonians compare.

The spectroscopic Hamiltonian specialized to the pure bends
system15 contains a normal-mode zero-order part plus three
coupling terms

The zero-order part has diagonal terms

and three resonance couplings which can be written as

whereR45 ) r45
0 + r445(n4 - 1) + r455(n5 - 1).

As depicted in Figure 1,V̂DDI couples ZOS into columns with
the same (l4,l5), while V̂l couples them into rows with the same
(n4,n5). The V̂DDII resonance is actually composed of two
couplings that run in diagonal directions in Figure 1, so all ZOS
in a polyad are connected in a network. The Hamiltonian
containing these three resonances is therefore not separable.

Alternatively, Ĥ can be expressed in terms of raising and
lowering operators acting on the two isotropic two-dimensional
oscillators corresponding to the trans and cis bends. The
symmetry-adapted operators areâ4d

†, â4g
†, â4d, â4g, and â5d

†,
â5g

†, â5d, â5g, respectively25

for i ) 4, 5.
The resonance terms can be expressed as

B. Semiclassical Correspondence.The next step is to
transformĤ into a semiclassical Hamiltonian. For this purpose
one applies the Heisenberg correspondence principle26-28

for i ) 4d, 4g, 5d, and 5g. Canonically conjugate action-angle
variables in the classical Hamiltonian system are (Ii, φi) with

A simplification becomes possible because there exist two
conserved classical actions corresponding to the two quantum
polyad numbers

Nt ) 5n1 + 3n2 + 5n3 + n4 + n5

Ns ) n1 + n2 + n3

l ) l4 + l5 (1)

Nb ) Nt ) n4 + n5 (2)

Ĥ ) Ĥ0 + V̂DDI + V̂l + V̂DDII (3)

Ĥ0 ) ∑
i)4

5

ωini + ∑
i,j)4;iej

5

xijninj + ∑
i,j,k)4;iejek

5

yijkninjnk +

∑
i,j)4;iej

5

gij lil j (4)

1. Darling-Dennison I (DD-I) resonance

〈n4
l4,n5

l5|V̂DDI|(n4 - 2)l4,(n5 + 2)l5〉 )
S45

4
[(n4

2 - l4
2)(n5 +

l5 + 2)(n5 - l5 + 2)]1/2 (5)

2. l-resonance

〈n4
l4,n5

l5|V̂l|n4
(l4(2),n5

(l5-2)〉 )
R45

4
[(n4 - l4)(n4 ( l4 + 2) ×
(n5 ( l5)(n5 - l5 + 2)]1/2 (6)

3. Darling-Dennison II (DD-II) resonance

〈n4
l4,n5

l5|V̂DDII|(n4 - 2)(l4-2)(n5 + 2)(l5(2)〉 )
R45 + 2g45

16
×

[(n4 ( l4)(n4 ( l4 - 2)(n5 ( l5 + 2)(n5 ( l5 + 4)]1/2 (7)

âid
†|ni

li〉 ) xni + l i + 2

2
|(ni + 1)(li+1)〉

âig
†|ni

li〉 ) xni - l i + 2

2
|(ni + 1)(li-1)〉

âid|ni
li〉 ) xni + l i

2
|(ni - 1)(li-1)〉

âig|ni
li〉 ) xni - l i

2
|(ni - 1)(li+1)〉

V̂DDI ) S45(â4d
† â4g

†â5dâ5g + â4dâ4gâ5d
† â5g

†)

V̂l ) R45(â4dâ4g
† â5d

†â5g + â4d
†â4gâ5dâ5g

†)

V̂DDII )
R45 + 2g45

4
(â4d

† â4d
†â5dâ5d + â4g

† â4g
†â5gâ5g +

â4dâ4dâ5d
† â5d

† + â4gâ4gâ5g
† â5g

†) (8)

âi f xIi e-iφi, âi
† f xIi eiφi (9)

I4d ) (n4 + 1 + l4)/2

I4g ) (n4 + 1 - l4)/2

I5d ) (n5 + 1 + l5)/2

I5g ) (n5 + 1 - l5)/2 (10)

I4d + I4g + I5d + I5g ) n4 + n5 + 2 ) Nb + 2
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A useful canonical transformation then gives new variables

Of the new actions and their conjugate angles (Ka,θa), (Kb,θb),
(Ja,ψa), and (Jb,ψb), the actionsKa andKb are conserved. Their
conjugate anglesθa,θb are cyclic variables that do not appear
explicitly in the Hamiltonian.

Compared to the notation of ref 17, our actions are multiplied
by a factor of 2, while the angles are reduced by a factor of1/2.
Computationally this difference is inconsequential, but our
definition has an advantage for explaining the topology of the
classical phase space, as will be explained in section IV.A.

The resulting classical Hamiltonian for arbitraryl is

with

whereVDDII, VDDII ′ correspond to the two diagonal directions
of the quantum couplingV̂DDII mentioned above in regard to
Figure 1; and withR45 ) r45

0 + r445(Ka + Ja - 2) + r455(Ka -
Ja - 2).

Within each polyad the conservedKa, Kb are held fixed.
Eliminating the conjugate cyclic anglesθa, θb because they play
a trivial role in the dynamics, the reduced phase space is four-
dimensional. The remaining variablesJa, Jb, ψa, ψb evolve
according to Hamilton’s equations of motion

For the case with zero total vibrational angular momentum (l
) 0, Kb ) l/2 ) 0), the Hamiltonian (13) can be simplified to

with

Figure 1. Structure of zero-order states and couplings for the polyad
[Nb,l]g/u ) [8, 0]g. The DD-I, l-resonance, and DD-II couplings are
indicated as lines connecting different pairs of zero order normal mode
states with quantum numbers (n4

l4, n5
l5).

VDDI )
S45

2
[(Ka

2 - Kb
2)2 + (Ja

2 - Jb
2)2 - 2(Ka

2 + Kb
2)

(Ja
2 + Jb

2) - 8KaKbJaJb]
1/2 cos[2ψa]

Vl )
R45

2
[(Ka

2 - Kb
2)2 + (Ja

2 - Jb
2)2 - 2(Ka

2 + Kb
2)(Ja

2 +

Jb
2) - 8KaKbJaJb]

1/2 cos[2ψb]

VDDII )
R45 + 2g45

8
[(Ka + Kb)

2 - (Ja - Jb)
2] cos[2(ψa -

ψb)]

VDDII′ )
R45 + 2g45

8
[(Ka - Kb)

2 - (Ja + Jb)
2] cos[2(ψa +

ψb)]

J̇a ) - ∂H
∂ψa

(14)

J̇b ) - ∂H
∂ψb

(15)

ψ̇a ) ∂H
∂Ja

(16)

ψ̇b ) ∂H
∂Jb

(17)

H ) Hl)0 ) H0 + VDDI + Vl + VDDII + VDDII′ (18)

H0 ) ω4(Ka + Ja - 1) + ω5(Ka - Ja - 1) + x44(Ka + Ja -

1)2 + x45(Ka + Ja - 1)(Ka - Ja - 1) + x55(Ka - Ja -

1)2 + y444(Ka + Ja - 1)3 + y445(Ka + Ja - 1)2(Ka - Ja -

1) + y455(Ka + Ja - 1)(Ka - Ja - 1)2 + y555(Ka - Ja -

1)3 + (g44 - g45 + g55)Jb
2

VDDI )
S45

2
[Ka

4 + (Ja
2 - Jb

2)2 - 2Ka
2(Ja

2 + Jb
2)]1/2 cos[2ψa]

) S1(Ka, Ja, Jb) cos[2ψa]

Vl )
R45

2
[Ka

4 + (Ja
2 - Jb

2)2 - 2Ka
2(Ja

2 + Jb
2)]1/2 cos[2ψb]

) S2(Ka,Ja,Jb) cos[2ψb]

I4d - I4g + I5d - I5g ) l4 + l5 ) l (11)

Ka ) (I4d + I4g + I5d + I5g)/2 ) (n4 + n5 + 2)/2

Kb ) (I4d - I4g + I5d - I5g)/2 ) (l4 + l5)/2

Ja ) (I4d + I4g - I5d - I5g)/2 ) (n4 - n5)/2

Jb ) -(I4d - I4g - I5d + I5g)/2 ) -(l4 - l5)/2

θa ) (φ4d + φ4g + φ5d + φ5g)/2

θb ) (φ4d - φ4g + φ5d - φ5g)/2

ψa ) (φ4d + φ4g - φ5d - φ5g)/2

ψb ) -(φ4d - φ4g - φ5d + φ5g)/2 (12)

Hl(Ka,Kb,Ja,Jb,ψa,ψb) ) H0 + VDDI + Vl + VDDII + VDDII′
(13)

H0 ) ω4(Ka + Ja - 1) + ω5(Ka - Ja - 1) + x44(Ka + Ja -

1)2 + x45(Ka + Ja - 1)(Ka - Ja - 1) + x55(Ka - Ja -

1)2 + y444(Ka + Ja - 1)3 + y445(Ka + Ja - 1)2(Ka - Ja -

1) + y455(Ka + Ja - 1)(Ka - Ja - 1)2 + y555(Ka - Ja -

1)3 + g44(Kb - Jb)
2 + g45(Kb

2 - Jb
2) + g55(Kb + Jb)

2
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We now proceed to the bifurcation analysis of this Hamiltonian.

III. Analytically Scalable Polyad Bifurcation Analysis

In this section we discuss important general features of the
method of the critical points bifurcation analysis, in particular
its analytic and scalable character; in the next section, we present
details of implementation.

The Hamiltonian in (18) is a nonintegrable system. In general,
the dynamics of such a system can only be understood by
numerical integration of Hamilton’s equations and subsequent
analysis, e.g., with sections in phase space. This is possible for
the system here, but with increasing degrees of freedom, it will
quickly become intractable. We therefore pursue a method with
the potential to be extended to larger systems.

We want to take advantage of the fact that the polyad
Hamiltonian affords computation of the large-scale phase space
structure byanalyticmeans, i.e., by solution of simple algebraic
equations related to the Hamiltonian function, rather than
numerical solution of the equations of motion. Specifically, we
seek the critical points of the polyad Hamiltonian, defined in a
phase space naturally reduced in dimension by means of the
conserved polyad numbers. In the case of acetylene bends treated
here, the critical points give periodic orbits (POs) or “vibrational
modes” when the Hamiltonian is expanded back to the full phase
space, including polyad numbers and their conjugate angles.
The critical points are solutions of algebraic equations involving
polynomials and trigonometric functions. Because they are
obtained analytically, it is not necessary to perform numerical
integration of Hamilton’s equation and analysis of surfaces of
section. This is expected to become extremely advantageous as
the number of degrees of freedom and phase space dimensions
increase.

We call the modes obtained by the analytic critical points
method the “primary” modes of the system. We use this
terminology because the primary modes are the lowest period
orbits consistent with the polyad structure. Hence, they are
expected to organize the large-scale structure of the molecular
phase space. We will see that the structure of the Hamiltonian
severely limits the number and character of the primary modes,
and even their location in phase space. (As discussed later, in
more general systems, the critical points may correspond to
higher-dimensional invariant tori rather than one-dimensional
modes, but these structures are still expected to organize the
phase space.) The critical points approach has been developed
and applied to systems with two5-8,11-13,29-31 and three9,10,14

coupled modes. In the exposition here we build up from these
simpler systems to make the generalization to the acetylene
bends system as clear as possible.

First, consider a two-mode system with a single resonance
coupling and a conserved polyad numberI conjugate to the
cyclic variableθ

with Poisson bracket

Regarding the polyad numberI as a fixed parameter, this
Hamiltonian is a function in the reduced phase space with
variables (J,ψ). According to Hamilton’s equations, the critical
points of this Hamiltonian satisfy

The physical meaning of a critical point (J0,ψ0) at polyadI0 is
seen by considering the full phase space with canonical
coordinates (I,θ,J,ψ). Only the cyclic variableθ varies with time,
with a constant frequency (∂H/∂I)I0,ψ0. Therefore, the critical
point in the reduced phase space corresponds to a PO in the
full phase space. This might be one of the low-energy normal
modes of the system, but with the presence of the resonance
coupling in the Hamiltonian, it might be a new mode born in a
bifurcation.

This analysis easily generalizes2,10 to a nonintegrable Hamil-
tonian with N degrees of freedom andN - 1 independent
resonances, so that there is a conserved polyad number. This
has been exploited to analyze the bifurcations of the H2O
spectroscopic Hamiltonian and assign quantum spectra.9,10,14,32

Here we generalize the analysis further to include systems
with more than one polyad number. This is of concern for us,
because the acetylene stretch-bend Hamiltonian has three
polyad numbers20,21,33 (see eq 1); the pure bends system has
two polyad numbers,Nb and l. Consider then anN-mode
Hamiltonian withM polyad numbers

with (i ) 1, 2, ...,M; k ) M + 1, ...,N). A critical point in the
reduced phase space (Jk,ψk) satisfies

It has up toM nonzero cyclic frequencies in the full phase
space: (θ̇1, ..., θ̇M). When the number of polyad numbers isM
) 1, this gives a closed PO, one of the primary modes.

When the number of polyad numbers isM > 1 and none of
theM frequencies is commensurate, the full trajectory in general
comprises motion on anM-dimensional torus, defined by the
M angles conjugate to the polyad numbers. This is a situation
not to our knowledge analyzed previously in a molecular setting;
it will have real implications for the bifurcation analysis of full
stretch-bend acetylene dynamics, as discussed briefly in the
closing section.

In the C2H2 pure bending system with polyad numbersNb )
2Ka - 2, l ) 2Kb, a critical point in the reduced phase space
corresponds, except in special cases, to motion on a two-
dimensional invariant torus in the full phase space. The torus
is parametrized byθa, θb. The motion is typically quasi-periodic
since the frequenciesθ̇a andθ̇b are usually noncommensurate.
This situation will in fact arise and be very important in the
full stretch-bend acetylene dynamics, as discussed briefly in
the concluding section.

However, in the general case of systems withM > 1, there
are special cases when (1) one or more of the cyclic angles has
zero frequency, (2) some of the frequencies are locked in integer
ratios (commensurate) for special physical reasons, or (3) the
torus thickness goes to zero for special values of the actions
(this possibility does not pertain to the problem here with
vibrational angular momental4, l5). In these cases the full
trajectory of a critical point has fewer thanM independent
frequencies. Thel ) 0 polyad series analyzed here forms a

VDDII )
R45 + 2g45

8
[Ka

2 - (Ja - Jb)
2] cos[2(ψa - ψb)]

) S3(Ka,Ja,Jb) cos[2(ψa - ψb)]

VDDII′ )
R45 + 2g45

8
[Ka

2 - (Ja + Jb)
2] cos[2(ψa + ψb)]

) S4(Ka,Ja,Jb) cos[2(ψa + ψb)]

H ) H0(I,J) + V(I,J,ψ) (19)

{H,I} ) 0 (20)

J̇ ) 0, ψ̇ ) 0 (21)

H ) H0(Ii,Jk) + V(Ii,Jk,ψk) (22)

J̇ ) 0, ψ̇k ) 0 for k ) M + 1, ...,N (23)
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special case for type 1. As described in the following sections,
all except two physically unimportant critical points in this series
turn out to have

so the full trajectories of these critical points reduce to closed
POs parametrized byθa. Hence they are either normal modes
or new anharmonic modes born in bifurcations.

In the remainder of this paper, we shall be concerned with
the pure bends system, with conserved polyad numbersNb )
2Ka - 2, l ) 2Kb ) 0. In future work we will consider the
interesting problem of dynamics of systems withl * 0 or stretch
excitation, where bifurcations of the normal modes do not in
general give new periodic orbits but rather higher-dimensional
tori.

IV. Implementation of the Bifurcation Analysis

We consider first the search for the critical points and then
the analysis of their stability character.

A. Search for the Critical Points. In our system, with
conserved polyad actionsKa, Kb and conjugate anglesθa, θb,
the dynamics of the reduced Hamiltonian are contained in the
behavior of the phase space variables (Ja, Jb, ψa, ψb). This can
be represented in constant energy surfaces of section mapped
on two spherical phase space surfaces, one a “DD-I sphere”
with variablesJa,ψa and the other an “l-resonance sphere” with
variablesJb,ψb. The allowed phase space for a given energy
partially or fully covers the phase space spheres. The phase space
spheres and their coordinates are illustrated in Figure 2. (These
phase space spheres are constant energy surfaces of section and
should not be confused with the related, but distinct, “polyad
phase sphere”,5,8 with constant polyad number rather than
constant energy. The latter applies in a variety of contexts
including coupled oscillators, dynamical “self-trapping”,34,35

Bose-Einstein condensates,36 and other seemingly unrelated
applications.)

The critical points of the reduced Hamiltonian are solutions
of Hamilton’s equations that satisfy

Substituting the classical Hamiltonian from (18), the first two
of these equations have the form

The analytical expressions for (27 and 28) are also listed in
detail in an unpublished dissertation.37 A sufficient, but not
necessarycondition for these two equations to be simultaneously
satisfied is

or

These sufficiency conditions correspond to great circles on
the phase space spheres of Figure 2. It is notable that for single
resonance systems, the solutions for the critical points of the
polyad Hamiltoniannecessarilylie on great circles on the phase
space sphere.13 An important question is whether this generalizes
empirically to systems with more degrees of freedom and
multiple resonances, where great circle conditions on the critical
points such as (32) are not necessary. Satisfaction of the great
circle conditions relates to the primacy of certain individual
resonances, since the great circles are defined on phase space
spheres whose coordinates are defined by individual resonances,
as in Figure 2 for the DD-I andl-resonance spheres. Location
of critical points on great circles was found empirically for
multiresonant triatomic Hamiltonians.10 It is not clear a priori
that this should generalize to the acetylene bends system,
because the DD-II coupling is not linearly independent of the
DD-I and l-resonance couplings; it is even less clear whether
the great circles feature will hold in a future treatment of the
full acetylene stretch-bend system, which has a great multiplic-
ity of couplings that are not independent.

For the present bends system, we have done a comprehensive
search off the great circles for critical points but found that none
exists. The reason is apparently that the DD-II coupling is
relatively weak, so the terms in (29 and 30) that mixψa, ψb are
small.

Thus, every critical point in the bends system treated here
will lie simultaneously on a great circle from each of the spheres.
With two circles on each of two spheres, there are four possible

Figure 2. Coordinates for the phase space spheres. There are two
spheres, one for the phase space variablesJa,ψa and one for the variables
Jb,ψb, see (12) and following for definitions. Each sphere has its own
Ji,ψi. For each sphere, the great circles on which critical points lie are
indicated by dashed lines, at the indicated values ofψ ) ψa or ψb.

θ̇b ) 0 (24)

J̇a ) - ∂H
∂ψa

) 0 (25)

J̇b ) - ∂H
∂ψb

) 0 (26)

ψ̇a ) ∂H
∂Ja

) 0 (27)

ψ̇b ) ∂H
∂Jb

) 0 (28)

- ∂H
∂ψa

) 2S1 sin[2ψa] + 2S3 sin[2(ψa - ψb)]

+ 2S4 sin[2(ψa + ψb)] ) 0 (29)

- ∂H
∂ψb

) 2S2 sin[2ψb] - 2S3 sin[2(ψa - ψb)]

+ 2S4 sin[2(ψa + ψb)] ) 0 (30)

sin[2ψa] ) sin[2ψb] ) 0 (31)

(ψa,ψb) ) (mπ
2

,
nπ
2 ) with m, n ) 0, 1, 2, 3 (32)
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combinations of these circles. Furthermore, because of symmetry
each critical point is accompanied by another on the opposite
side of the circle:ψa T ψa + π andψb T ψb + π. There are
therefore 16 combinations of angles describing four physically
distinct (modulo symmetry) possible angular locations of critical
points on the great circlessone physically distinct situation for
each of the following equations:

The remainder of the critical points problem is to solve the last
two equations of (25-28) for the actionsJa, Jb as the polyad
numberNb is continuously varied, holding the angles at the
above combinations.

A simplification comes from the observation that with the
discreteψa, ψb values, (28) can be rewritten as

For the entire accessible range ofJa, Jb, and whenψa, ψb are
constrained to values in (33-36), the factor between the curly
brackets was numerically verified to be always nonzero.
Therefore (28) has the very simple solution

After substitution forJb ) 0, the remaining condition (27)
becomes an easily solved quadratic equation. The results are
listed in Table 1. The detailed meaning of these results is
discussed in section 5 in relation to the bifurcation diagram
Figure 6; in the remainder of the present section, we outline
some technical aspects with the aid of a visually accessible
approach to the search and then discuss the stability analysis
of the critical points once they have been found.

The solution of (27, 28) can be visualized in the following
way. If one plots the reduced Hamiltonian as a function of the
canonical actionsJa, Jb while holding (ψa,ψb) fixed at the four
physically distinct conditions (33-36), critical points correspond
to the flat spots (minima, maxima and saddle points) on these
plots. This is a generalization of the “pseudopotential” picture

discussed in refs 11 and 38 expanded from a one-dimensional
potential to two-dimensional.

Before illustrating this for specific polyads, it is helpful to
discuss the coordinates used, with reference to Figure 3. In the
l ) 0 polyads, the values of actionsJa, Jb are restricted by

In Figures 3 and 4, we rescale the actions toJa/Ka, Jb/Ka to
give the same range [-1, 1] for different polyads
Nb ) 2Ka - 2. The points on the boundary of Figure 3 have

Physically, points A, B at the corners correspond to the planar
trans and cis bend overtones, and corner points C, D correspond
to states with maximum difference in vibrational angular
momental4,l5, e.g.

Points A-D are critical points of the coupled Hamiltonian as
well as the zero-order Hamiltonian. The reason is that the
couplings vanish at these points. A and B retain their identity
as trans and cis normal modes, though they change stability at
various bifurcation points. C and D, however, are not anhar-
monic modes, but rather are two-tori for states such as those in
(41). They never bifurcate. As such, the critical points C and D
are trivial for our analysis and are not considered further.

Figure 4 shows pseudopotential plots of the reduced Hamil-
tonian, on squares with the same coordinates as Figure 3, for
the examples of polyadNb ) 6 with Ka ) (Nb + 2)/2 ) 4, and
polyadNb ) 22 with Ka ) 12. As discussed in section 5, atNb

) 6 none of the bifurcations has occurred; atNb ) 22 all of the
bifurcations have occurred. In Figure 4a-d for Nb ) 6, the only
critical points are at the corners of the four squares, previously
labeled A-D in Figure 3; the corner points A, B on each square
correspond to the trans and cis overtones.

TABLE 1: Analytical Solutions of Bifurcation Results in Figure 6a

mode (ψa, ψb) Ja

local (0, 0) 42.3217- 0.583914Ka - 0.268961(16255.7+ 84.8109Ka - Ka
2)1/2

orthogonal (0,π/2) 49.7629- 0.49687Ka - 0.822458(2130.16+ 65.1370Ka - Ka
2)1/2

precessional (π/2, 0) 21.8360- 0.563978Ka - 0.460473(-1106.54+ 186.865Ka - Ka
2)1/2

counter-rotator (π/2, π/2) -36.6246- 0.536648Ka + 0.634238(1237.94+ 287.074Ka - Ka
2)1/2

a The values ofJa are also constrained by-Ka e Ja e Ka.

Figure 3. Coordinates of the pseudopotential plots. The scaled
coordinatesJa/Ka, Jb/Ka show the accessible range of classical actions
Ja, Jb for a given polyadNb ) 2Ka - 2. Points A, B, C, and D are
critical points for all coupling strength, as discussed in section IV.A.
A and B are theTrans andCis critical points.

(ψa,ψb) ) (0,0), (0,π), (π,0), (π,π) (33)

(ψa,ψb) ) (0,
π
2), (0,

3π
2 ), (π,

π
2), (π,

3π
2 ) (34)

(ψa,ψb) ) (π2, 0), (π2, π), (3π
2

, 0), (3π
2

, π) (35)

(ψa,ψb) ) (π2,
π
2), (π2,

3π
2 ), (3π

2
,
π
2), (3π

2
,
3π
2 ) (36)

∂H
∂Jb

) Jb{2(g44 - g45 + g55) -

(Ka
2 + Ja

2 - Jb
2)(S45 cos[2ψa] + R45 cos[2ψb])

xKa
4 + (Ja

2 - Jb
2)2 - 2Ka

2(Ja
2 + Jb

2)
-

R45 + 2g45

2
cos[2ψa] cos[2ψb]} ) 0 (37)

Jb ) 0 (38)

|Ja| + |Jb| e Ka (39)

|Ja| + |Jb| ) Ka (40)

C: |11,11 11-11〉, D: |11-11, 1111〉 (41)
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In parts e and f of Figure 4,Nb ) 22, critical points occur as
before at the corners of the four squares. However, there are
four new critical points with labelsL , O, P, andCR (described
in section 5), each in the interior of one of the squares. The
new critical points have migrated from the corners along the
diagonal of the square, as explained in section 5. Each of these
corresponds to a new mode born in a bifurcation from one of
the normal modes.

While the graphical pseudopotentials such as Figure 4 are
conceptually appealing and will be referred to below, in practice
we solve (27, 28) analytically for continuously variedKa rather
than graphically. On the boundary, the (Ja, Jb, ψa, ψb)
coordinates become inappropriate (“singular”) for describing the
physical behavior of the system. In particular, when (40) holds,
the denominators in (27 and 28) vanish, andψ̇a, ψ̇b are either
infinite (on the edges of Figure 3 except the vertexes, and also
the boundaries of the pseudopotential plots in Figure 4) or
indeterminate (at the four vertexes, where no unique limit exists).
The general definition (25-28) therefore cannot be used to
determine whether a boundary point is a critical point or not.
A related situation is encountered in ref 13 in the case of single
resonance Hamiltonians. In those cases, the angle variableψ is
the azimuthal angle on the respective polyad phase sphere. At
the North and South poles of the sphere, this angle is not defined,
so the canonical variables (Iz, ψ) are misleading at the poles. A
simple example is an ordinary trajectory passing the pole at
finite speed. The angular velocityψ̇i becomes infinite as the
pole is approached, but this is entirely an artifact of the
coordinates.

To determine the dynamics at the singular points, either direct
visualization by running trajectories or a coordinate transforma-
tion (called “rotating the sphere” in ref 13) is required. Since
direct visualization of four-dimensional phase space is nontrivial,
we chose the second path to search for critical points on the
boundary. The Hamiltonian (18) is transformed to a local-mode
representation using thex-K relationships,39 as described in

section 7.6 of ref 23. In the local representation, points on the
boundary no longer appear “singular” and can be analyzed in a
straightforward manner.

B. Stability Analysis of the Critical Points. After locating
the critical points, we perform an analysis of their stability
character using standard methods of linear analysis.40 The
interpretation and visualization of the stability analysis are made
complicated in comparison with previous systems8 by the higher
dimensionality of the phase space. After finding a critical point
at a certain set of (Ja, Jb, ψa, ψb), motion in its neighborhood
can be linearized as

whereHxy ) (∂2H/∂x∂y).
The linear stability reflects the time evolution of (δJa, δJb,

δψa, δψb), which is determined by the eigenvaluesλi of the
matrix M above.40 To each eigenvalue, there corresponds an
eigenvector associated with a direction in phase space. In a
Hamiltonian system withN degrees of freedom, the 2N
eigenvalues must come in complex conjugate pairs which fall
into one of the following types. (1) Pairs of imaginaryλi

eigenvalues. Each pair signifies that the linearized motion in
the vicinity of the critical point is oscillatory in the two
corresponding directions and hence stable under small perturba-
tions. This stability type is called stable orelliptic (E). (2) Pairs
of realλi eigenvalues. Each pair signifies that the motion in the

Figure 4. Pseudopotentials of polyads [6, 0] and [22, 0], given by contour plots, for H in (18). The squares have the same coordinates as the axes
in Figure 3. Panels a-d are for [6, 0] with the four values of (ψa,ψb) in (33-36). Panels e-h are for [22, 0]. Dark dots in the lower row are new
critical points (LocalL , OrthogonalO, PrecessionalP, and Counter-RotatorCR) born in bifurcations, after migration from the parent modes (L ,
O, P from Trans andCR from Cis), as indicated by the arrows.

d
dt(δJa

δJb

δψa

δψb
) ) (0 0 -1 0

0 0 0 -1
1 0 0 0
0 1 0 0 )(HJaJa

HJaJb
HJaψa

HJaψb

HJbJa
HJbJb

HJbψa
HJbψb

HψaJa
HψaJb

Hψaψa
Hψaψb
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) ) M (δJa

δJb
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) (42)
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vicinity is exponentially attracted to/repelled from the critical
point in time, i.e., unstable in the two corresponding directions.
This stability type is called unstable orhyperbolic (H). (3)
Quadruplets of complex eigenvalues ((a(bi). This stability type
is calledmixed(M).10 In mixed stability, the solution contains
bothoscillating and exponential attraction/repulsion components
in the subspace spanned by the fourVBi corresponding to the
quadrupleλi. In two of the four directions the nearby trajectory
spirals into the critical point, while in the other two directions
it spirals out of the critical point. (4) Pairs ofλi ) 0. This
stability type is calleddegenerate. In this case, the linearized
equations (42) become insufficient, and higher-order terms in
the Taylor expansion are needed to evaluate the stability near
a critical point. This situation does not arise for the acetylene
bends and will not be considered further.

Specializing toN ) 2 as in (42), with none of the fourλi

equal to zero, the possible types of linear stability are as
follows: (a) two pairs of imaginary eigenvalues (ai, - ai, bi,
- bi), bi-stable (EE); (b) two pairs of real eigenvalues (a, -a,
b, -b), bi-unstable (HH); (c) one imaginary pair and one real
pair (ai, - ai, b, - b), stable-unstable (EH); (d) one complex
quadruplet (a + bi, a - bi, - a + bi, - a - bi), mixed (M).
Herea, b are positive real numbers.

For the reason described in IV.A, the linear stability of critical
points A, B, C, and D in Figure 3 cannot be directly determined
from (42) using the (Ja, Jb, ψa, ψb) coordinates. Instead, the
Hamiltonian is rewritten in a local-mode representation, in which
points A-D are no longer problematic. The stabilities of these
critical points are then determined by stability matrixes written
in the new action-angle variables, in a form equivalent to (42).

V. Results

The method of solution for the critical points is presented in
section IV.A, resulting in the great circle conditions and the
solutions for the action values on these circles listed in Table
1. In this section we discuss the meaning of these results.

For each of the four (ψa, ψb) conditions on great circles given
in (33-36), there is a family of critical points. Each family
corresponds to a new type of mode, applying the reasoning of
section 3 as follows. Of the two cyclic anglesθa, θb, the
frequency of the latter

is always zero when all the conditions assumed so far hold

leavingθa as the only variable that changes between 0 and 2π
with time. Each critical point therefore corresponds to a PO,
i.e., a new anharmonic mode (more precisely, an infinitely
degenerate family of POs because of the double degeneracy of
the mode). The new modes are named local, orthogonal,
precessional, and counter-rotator (L , O, P, CR) in accord with
the shape of their corresponding Cartesian trajectories. Hereafter,
we will useTrans, Cis, L , O, P andCR when referring to the
critical points as such.

TheL andP modes are planar motions as depicted previously
in Figure 1 of the planar model of ref 8. TheL mode has the
amplitude preferentially in one local C-C-H bend, while in
the P mode the two C-C-H benders move with the same
amplitude, but with a phase difference ofπ/2. TheO andCR
modes are nonplanar. AtJa/Ka ) 0, the modes take their ideal
forms. In the idealO mode, the C-C-H benders move in

orthogonal planes, in phase with each other. The idealCR has
the hydrogens rotating in circles in opposite directions. To help
visualize the modes, we converted the calculated trajectories
into three-dimensional animations (Apple QuickTime format)
with the software Bryce 4.41 These can be viewed at the website
in ref 42, and also as Web Enhanced Objects linked to the online
edition of this article. The animations give direct visual insight
into the meaning of “new modes born in bifurcations”. The
modes are also depicted in time-lapse still frames in Figure 5.

The result that the critical points correspond to POs and
therefore “newmodes” is worthy of further comment. So far as
we know, this has not previously been demonstrated in the case
of the l ) 0 acetylene bends system. It is often taken for granted
that bifurcations of normal modes in molecules will give “new
modes”. However, as the discussion in section 3 shows, this is
not always the case:multiple polyad numbers can lead to
higher-dimensional tori in bifurcations instead of POs. That
POs are the case for thel ) 0 acetylene bends has been
demonstrated mathematically with conditions (44). It is worth
considering physically why it has to be this way. This is most
easily seen in the local representation, as we now describe
qualitatively, omitting the mathematical details. The condition
l ) 0 means the molecular “shape” cannot have an overall
rotation about the figure axis. A local representation condition
analogous to (38) means that the shapes on the two ends of the
molecule cannot twist with respect to each other. Together, these
conditions imply that at the critical points, the local oscillators
must move in POs along fixed ellipses, either with zero width,
i.e., a line, as in theL , O, P modes, or in ellipses with finite
width as in theCR mode. This is especially vivid in the
animations of ref 42. Section 8 briefly describes the situation

Figure 5. Time-lapse still frames from the animations in ref 42 of the
new modes born in bifurcations. Panels a-d are the LocalL , Orthogonal
O, PrecessionalP, and Counter-RotatorCR modes, respectively. The
significance of the shadows in relation to the angle variableψa is
discussed in the main text.

W Animations of the four modes in Quicktime format.

θ̇b ) ∂H
∂Kb

(43)

sin[2ψa] ) sin[2ψb] ) Jb ) Kb ) 0 (44)
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in the acetylene stretch-bends system where the critical points
will not be limited to POs.

The anglesψa and ψb have a visual interpretation in the
computer animations of ref 42 and the time-lapse still frames
of Figure 5. By definitionψa is the relative phase angle between
the Trans andCis modes, whileψb can be interpreted (when
Jb ) 0 as is the case for all the critical points discussed here)
as the dihedral angle between theTrans andCis planes. We
recall that in section 4, because of the dominant DD-I and
l-resonances, all the new critical points are located at discrete
(ψa, ψb) values defined by the great circles on the respective
single resonance phase spheres. Withψa, ψb taking the discrete
values in (33-36), the relative phase angle and the dihedral
angle are locked at either 0 orπ/2. The association withψa is
particularly evident in the animations but can also be discerned
in the still frames of Figure 5. The projection on the ground
plane (the oscillating “shadow”) manifests theψa value at which
the critical point is locked. In the four mode animations,L and
O are locked atψa ) 0 and have a corresponding asymmetry
in the amplitudes of the shadows of the two C-C-H units.P
and CR are locked atψa ) π/2 and correspondingly have
shadows of equal amplitude for the C-C-H units, bending out
of phase byπ/2. (Again, this is more evident in the animations
than the time-lapse Figure 5.) This phase relationship ofL with
O and of P with CR is essentially the result of the DD-I
resonance. Identical phase relationships are seen in the planar
single-resonance analysis8 of the DD-I coupling, withψa ) 0
for the local mode andψa ) π/2 for the precessional mode;
see also the remarks in the final paragraph of this section on
the mode stabilities in the planar model.

The diagram of the bifurcation “tree” of the bends system is
obtained by plotting the critical points of Table 1 in action space,
as shown in Figure 6. Thex-axis is the polyad numberNb, and
they-axisJa/Ka ) (n4 - n5)/(n4 + n5 + 2) represents the relevant
fraction of zero-order trans and cis bend action. The top of the
y-axis therefore corresponds toTrans while the bottom corre-
sponds toCis. Each of the families has originated at some
polyad actionNb in a pitchfork bifurcation out ofTrans or Cis
(upper right and lower left corners of the squares in Figures
3,4). Immediately after each bifurcation, the new mode hasJa/
Ka very close to the respective normal mode. The corresponding
Cartesian trajectory is very much like the normal mode itself.
Then as the polyad number increases, the new modes migrate

towardJa/Ka ) 0 (equal mixing between zero-order trans and
cis action). As noted earlier, the new modes migrate from the
corners along the diagonal in the pseudopotential diagrams in
Figure 4; this constraint comes from the condition (38).

We now consider in detail the stability of each of the new
modes and the changes in stability of the normal modes at the
branch points of the bifurcation tree, using the methods of
section IV.B. At each of the four normal mode bifurcations the
stability of the normal mode changes when the new mode is
born. The stability character is given by E (elliptical, or stable)
or H (hyperbolic, or unstable) in each direction. AtNb ) 7.63,
Trans bifurcates to give the stable (EE)L , while itself changing
from (EE) to (EH).Trans undergoes two more bifurcations at
Nb ) 9.77 and 14.55. The new mode atNb ) 9.77 is the (EH)
typeO mode, theTrans now changing from (EH) to (HH). In
the final Trans bifurcation at 14.55 the (HH)-typeP mode is
born, andTrans changes from (HH) back to (EH). Similarly,
Cis bifurcates atNb ) 9.56 to give theCR mode (EE),Cis
itself changing from (EE) to (EH) stability.

The stability character of these modes corresponds with the
marks of classical structure on quantum wave functions
investigated by Taylor and co-workers.17,18(Further discussion
of the classical investigation of refs 17 and 18 is found in section
7.) The bi-stableL and CR are surrounded by regions of
invariant tori in phase space, around which are organized
quantum states with clear nodal patterns and readily assigned
quantum numbers. TheO mode with (EH) stability has
distinguishable trajectories in coordinate space and slightly
marks the quantum states. The bi-unstable (HH)P mode is
completely engulfed in chaos in surfaces of section and appears
not to be associated with assignable quantum numbers in wave
functions.

It should be noted that Rose and Kellman8 performed a
precursor of the present study, a bifurcation analysis of the fitting
Hamiltonian using a simplified essentially planar model with
just the DD-I coupling. They found that betweenNb ) 6-8
the trans-bend becomes unstable and a stable local mode is born;
at Nb ≈16 the cis-bend becomes unstable and astablepreces-
sional mode is born. This compares with the present three-
resonance study whereL is again found to be bi-stable butP is
bi-unstable. (See the remarks in the concluding section on the
“doubling” of the planar local and precessional modes toL , O
andP, CR in three dimensions.)

VI. Comparison of Effective Hamiltonians

In the next two sections, we evaluate the picture of acetylene
bend dynamics that emerges from comparison of the present
with various other treatments of the problem. In this section
we compare bifurcation analysis of other versions of the
effective Hamiltonian than the one analyzed above; in the next
section we compare results from approaches other than bifurca-
tion analysis of effective Hamiltonians.

The bifurcation analysis depicted in Figure 6 uses what we
believe is the best empirically fit Hamiltonian for the pure
bending spectra of acetylene. It is important to confront these
results with those obtained from other available versions of the
effective Hamiltonian. These include fitting Hamiltonians which
attempt to merge the results of dispersed fluorescence (high bend
excitation) and absorption (high stretch excitation) spectroscopy
and an effective Hamiltonian obtained from a potential energy
surface by means of perturbation theory.

Figure 7 shows the results of the bifurcation analysis on six
such Hamiltonians. The first (a) is the same Hamiltonian of ref
15 as we used for Figure 6, except that the high-order

Figure 6. Bifurcation diagram from the critical points analysis,
including the normal modesTrans, Cis, and four new families of
critical points associated with new modesL , O, P, CR. Also shown is
the stability of each critical point, including the normal modes before
and after each bifurcation.
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coefficientsyijk, r445, andr455 are ignored. The second Hamil-
tonian (b) is a more recent refinement24 based on that of ref
15: the parameters are slightly modified and there is an
additional fourth-order termz4455n4

2 n5
2 in (4). This Hamiltonian

was given in Table 2 of ref 24. (We used the earlier Hamiltonian
of ref 15 in our bifurcation analysis because it fits higher energy

experimental levels, so we believe it more accurately reflects
highly excited bending dynamics.) The third Hamiltonian (c)
was developed by Hoshina et al.24 by combining available
stretch-bend data from dispersed fluorescence and absorption
spectra. The fourth Hamiltonian (d) is the fit of Herman and
co-workers33 of stretch-bend spectra, constructed to reflect data

Figure 7. Bifurcation diagrams for effective Hamiltonians with alternative parameter sets, as described in section 6. Panels a-d are for experiment-
based effective Hamiltonians similar to the Hamiltonian used in Figure 6. Panel e is for a Hamiltonian obtained by Sibert and McCoy43b via
perturbation theory from a potential energy surface; panel f is for a “minimal” Hamiltonian devised here for two coupled local bend modes.
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from a variety of spectral techniques. This Hamiltonian does
not have the pure bending cubic coefficients, nor does it contain
the DD-II resonance term in (3). We adapted the stretch-bend
Hamiltonian in (c) and (d) for pure bend spectra by setting all
the stretch quantum numbers to zero.

Effective Hamiltonians very similar to a spectroscopic fitting
Hamiltonian can be obtained from quantum potential energy
surfaces by means of perturbation theory.22,31,43,44McCoy and
Sibert43 have produced the only effective Hamiltonian acetylene
bends that we know of obtained in this way. The bifurcation
diagram obtained for this Hamiltonian (with minor correction,
see ref 45) using the critical points method is shown in Figure
7e. (As described in the next section, McCoy and Sibert obtained
the local mode for this Hamiltonian using critical points
conditions.)

The final Hamiltonian is a “minimal” Hamiltonian consisting
of two doubly degenerate local bend oscillators with only
symmetry-adapted 1:1 couplings. The Hamiltonian is truncated
at terms second-order in the quantum numbers, with parameters
taken from the bends fitting Hamiltonian transformed to the
local mode representation. The reason to consider such a model
is that such a Hamiltonian in a two-mode version5,6 is a paradigm
for understanding the coexistence of local and normal modes
in coupled stretch systems such as H2O. The bifurcation diagram
for the acetylene bends minimal Hamiltonian is shown in Figure
7f.

The most striking thing about the bifurcation diagrams in
Figures 6 and 7 is their overall consistency. All the Hamiltonians
give the same basic feature of four new modes born in
bifurcations. Panels a-c of Figure 7 are all very similar to Figure
6. In parts b and c of Figure 7 theP branch is “bent” into a
tangent bifurcation, but one branch of this joinsTrans as in
Figures 6 and 7a. Hence, this does not constitute a separate
bifurcation tree, unlike a tangent bifurcation found in HCP.11

In Figure 7d based on the early 1995 fit,33 theP branch is more
severely bent. This shows the importance of progressive
refinements of the fitting Hamiltonian. In all five cases Figures
6 and 7a-d, the normal mode from which each branch originates
and the stability of each branch match.

In the last two panels Figure 7e,f, the differences are more
pronounced. This is hardly surprising in that the Hamiltonians
described above for these panels were never expected to closely
match very highly excited experimental data. In Figure 7e the
perturbation Hamiltonian switches the stability ofO from the
previous figures. The most surprising thing about Figure 7f for
the minimal Hamiltonian is how closely it mirrors the results
from the refined fitting Hamiltonians, given the extreme
simplicity of the minimal Hamiltonian.

VII. Comparison with Other Approaches

Next, we compare results from several other approaches with
the results of the preceding bifurcation analysis.

Using different approaches, McCoy and Sibert43 and Rose
and Kellman8 verified the existence of a suspected normal-to-
local modes transition in acetylene bending vibrations.39,46 As
noted at the end of section V, Rose and Kellman8 performed a
precursor of the present study, a bifurcation analysis of the fitting
Hamiltonian using a simplified model with just the DD-I
coupling. As discussed in the preceding section, McCoy and
Sibert performed a van Vleck perturbation analysis of an
acetylene potential surface to get an effective Hamiltonian,
whose full critical points bifurcation analysis we performed and
discussed in Figure 7e. McCoy and Sibert analyzed this
Hamiltonian using critical points conditions as well as wave

function plots and obtained theL mode. Our bifurcation analysis
showed that this Hamiltonian also contains information about
theO, P, andCR modes. We would like to emphasize the great
potential utility of applying critical points analysis to effective
Hamiltonians obtained from potential surfaces via perturbation
theory. This is an alternative to running trajectories on surfaces
and searching numerically for bifurcations. In fact, we believe
that comparison of bifurcation behavior of potential surfaces
with experimentally derived analysis like Figures 6 and 7 is an
extremely valuable way to assess the validity of surfaces.

The classical version of the fitting Hamiltonian used in this
paper was studied previously by Taylor and co-workers17,18 in
an investigation of surfaces of section generated by numerically
integrating Hamilton’s equations. A “family tree” of fixed points
as they appear on surfaces of sections was constructed for two
different polyadsNb ) 16, 22 by following the fixed points as
the energy is varied at fixed value of the polyad number. This
is a significant difference from the present study, where we have
followed critical points as the polyad number is varied. In the
surfaces of section at fixed polyad numbers of refs 17 and 18,
points appear as fixed points but actually are not in general
POs (1-tori) in the full phase space, but rather 2-tori. (They are
2-tori when both cyclic frequenciesθ̇a, θ̇b * 0, and POs for the
special conditionθ̇b ) 0, i.e., the critical points determined by
the present methodology. This is similar to the observations of
Lu and Kellman9 in surfaces of section for H2O.)

The cardinal finding of refs 17 and 18 is the emergence of
new phase space structures at higher polyads, particularly a local
and a counter rotator family, around which the bottom and top
energy eigenfunctions in the polyad localize, respectively.
Classically, these families are 2-tori localized around theL and
CR modes. There is another structure which Taylor and co-
workers call the “M2 mode”, which appears to be related to our
O mode with (EH) stability. The Cartesian trajectories ofM2

(see Figure 3 of ref 17 and Figure 1 of ref 18) appear to be
motion on 2-tori which have the same general shape as that of
O, with the two C-H benders perpendicular but in phase with
each other. Their motion is also stable in the radial direction
and precesses significantly in the angular direction, consistent
with our finding of (EH) stability forO.

We found that theP critical point is bi-unstable (HH) and so
expected to be surrounded by chaos. Indeed, this is how the
surrounding region appears in the work of Taylor and co-
workers in surfaces of section (see Figure 1 of ref 18, sixth
column, left side of the second and third panel). Since their
method locates fixed points surrounded by a stable region, they
did not observe theP mode.

Farantos and co-workers have performed a numerical PO
search on the six-dimensional potential energy surface of C2H2.47

A reexamination of the results48 confirmed the bifurcation of a
local-mode PO out of the trans bend and a counter-rotator mode
out of the cis bend. A more recent ab initio potential energy
surface49 has yielded the same results in the quantum wave
functions, this time with quantitative agreement with experi-
mental and theoretical results. These studies provide important
independent evidence for the birth of stable modes in bifurca-
tions, with pronounced consequences for the quantum states.

Further independent evidence comes from distinct methods
involving correlation diagrams using the quantum version of
the effective fitting Hamiltonian. Rose and Kellman50 found
evidence for the stable local bend and what is now recognized
as the stable counter-rotator mode, using assignments based on
notions later developed into a dressed-basis computational

Bending Dynamics of Acetylene J. Phys. Chem. B, Vol. 110, No. 38, 200618869



approach.51 Semparithi and Keshavamurthy52 found both modes
using a derivative-based method of analyzing the correlation
diagram.

Yu and Wu53 have performed a coset semiclassical analysis
on the fitting Hamiltonian and confirmed the following general
trend: destabilization of trans and cis normal modes between
Nb ) 6 and 14 and gradual migration of new modes with
“uneven distribution between the two normal mode characters”
in phase space, until they reach the local/counter-rotator type
at polyad 22.

Using Lie algebraic methods, Champion et al.54 deduced the
existence of 15 possible types of ideal bending modes for a
Hamiltonian with the form of H in (18), without regard to the
parameters. Their examination of the 144 eigenstates in theNb

) 22 polyad showed that many of them can be approximately
assigned to several of these 15 types. The majority of states at
the bottom and top of the polyad in energy are ofL andCR
type, consistent with the findings of the present work.

This section and the preceding demonstrate broad consistency
in the picture of acetylene bend dynamics that has emerged in
recent years. In particular, comparisons of bifurcation analysis
of several different versions of the effective Hamiltonian, as
well as independent results of other approaches, clearly show
the existence of stableL and CR modes. The finding of
additionalO andP modes is a new result of the present study.
These appear in all of the bifurcation studies of effective
Hamiltonians but may not be clear-cut in other approaches
because of their instability.

VIII. Discussion and Conclusions

The bifurcation analysis using the analytical critical points
method has achieved its principal goals. The new modes born
in bifurcations of the normal modes have been accounted for
and a rational account of their stability character obtained. A
global view of the bending dynamics has been achieved from
lowest to highest energies of known spectra. Comparison of
Hamiltonians from different types of spectroscopy shows
consistency of the dynamical picture as represented in bifurca-
tion behavior. Comparison of the bifurcation analysis with other
approaches shows consistency in the comprehensive picture that
has emerged in recent years. There is widespread agreement
on the existence of what we have labeled stableL and CR
modes. There are more subtle differences in various studies
regarding the unstableO andP modes.

The observation that the new modes lie at special angles in
phase space, i.e., on great circles on the phase spheres, has been
accounted for in terms of the great circles conditions on the
two major resonance couplings, thel-resonance and the
Darling-Dennison I and the comparative weakness of the
Darling-Dennison II. It remains an open question whether this
property of the strongest individual resonances constraining the
location of critical points will hold in general, especially for
the full stretch-bend system, which has a large number of
independent couplings.

We have found that all the new modes are part of a single
“evolutionary tree” of the original normal modes and new modes
born in their bifurcations. This contrasts with HCP,11 where an
“isomerization mode” is born independently in a saddle-node
bifurcation, rather than branching directly from one of the
normal modes. Furthermore, in the acetylene bends, the modes
born in bifurcations of the normal modes do not themselves
undergo subsequent bifurcations. This contrasts with H2O.9,10,14

We now have a rather complete picture of the bifurcation
behavior of thel ) 0 acetylene bends system as inferred from

a spectroscopic Hamiltonian that goes up to near the isomer-
ization barrier. Several questions suggest themselves for future
investigation.

In this investigation ofl ) 0 acetylene bends, as in previous
studies of other molecules, it has been found that the normal
modes always bifurcate to give 1-tori i.e., POs (“newmodes
born in bifurcations”). As emphasized in section 3, this is by
no means always the case. Bifurcations to higher dimensional
tori are expected in general whenever there are multiple polyad
numbers. Here there are polyad numbersNb and l, and the
existence of modes born in bifurcations cannot be taken for
granted. The special casel ) 0 in fact leads to bifurcations to
1-tori, as can be shown by symmetry considerations. Forl * 0,
the critical points will correspond to 2-tori. This again is not
unexpected; the extra dimension of the torus corresponds to
precession of orbits with respect to the symmetry axis, as
expected with anharmonic bend modes. However, in systems
such as full stretch-bend dynamics of acetylene, there is a third
polyad number; see (1) and refs 20, 21, and 33. The analysis of
the bifurcation behavior in such a system is a challenging open
problem.

The analytical critical points method gives an algorithm to
obtain the bifurcation behavior of the spectroscopic Hamiltonian.
It can still be asked if there is some a priori way to predict why
there should be preciselyfour modes born in bifurcations. There
are two phase space spheres, each associated with one of the
dominant resonance couplings, and each with two great circles,
with four new modesL , O, P, CR arising in bifurcations on
these great circles. This doubling of the two new modesL, P
found on the single sphere of the planar acetylene bends model,8

as well as the phase-locking relations betweenL and O and
betweenP andCR discussed in section 5, suggests that there
is some at least approximate organizing principle for the three-
dimensional bend system that remains to be understood. We
are currently investigating this.

A related issue is whether one can obtain a formal classifica-
tion of the entire phase space structure, not just the critical points
themselves. In single-resonance systems, this is easily ac-
complished, with the organization defined by the locations of
stable fixed points, together with the unstable fixed points joined
by separatrices (stable and unstable manifolds). For example,
for a pair of local modes coupled by a 1:1 resonance, the phase
space divides into local and normal mode regions, as demon-
strated comprehensively with the catastrophe map;6 for the more
general Darling-Dennison Hamiltonian for a pair of stretches
or a planar bends model, the slightly more complicated
classification is also completely known.8 A similar classification
is desirable for higher-dimensional systems; the analytical
critical points analysis here is the first step.

It is noteworthy that each bi-stable normal mode spawns one
set of bi-stable modes: theTrans givesL ; the Cis givesCR.
After their birth in a bifurcation,L lies at the bottom energy
end of each polyad;CR lies at the top.L constitutes the
isomerization “reaction mode” for the acetylene-vinylidene
isomerization. An isomerization mode lying at the bottom of
each polyad has also been observed in HCP;11 this observation
is suggestively consistent with the notion of a minimum energy
reaction path. Whether these are instances of a general property
of isomerization modes in bifurcating molecular vibration
systems appears to be an open question.

As emphasized in section 7, critical points analysis of
effective Hamiltonians obtained via perturbation theory provides
a novel and stringent way of testing potential surfaces against
experiment. This involves comparison with the bifurcation
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behavior of effective Hamiltonians obtained from fitting spectra.
It is an alternative to running trajectories on surfaces and
searching numerically for bifurcations. In particular, for recent
potentials49 developed for high excitations of acetylene, per-
turbation treatment followed by bifurcation analysis and com-
parison with experimentally based results such as Figures 6 and
7 would be most valuable.

The problems ofl * 0 dynamics, rotation-vibration interac-
tion, and the full stretch-bend dynamics are ripe for analysis
by the critical points method. Extension of the spectroscopic
Hamiltonian to encompass isomerization dynamics, with mul-
tiple wells for the acetylene and vinylidene forms, and motion
above the isomerization, is an outstanding problem. Recent
works55,56are steps in this direction. In this connection, it appears
desirable to establish a link between the present developments
in analysis of effective Hamiltonians and recent developments
using a phase space approach to transition state theory.57

As a final remark, this paper has used fits of very complex
highly excited vibrationalfrequency domainspectra to decode
information about invariants (new modes born in bifurcations)
that can reasonably be considered “dynamical” in nature. An
open question is to what extent the phenomena uncovered here
can be accessed intime-domainspectroscopy and control. For
example, the excitation and subsequent time evolution of
coherent states along the new modes discussed here would be
of great interest.
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