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Bending Dynamics of Acetylene: New Modes Born in Bifurcations of Normal Models
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Semiclassical techniques are used to analyze highly excited pure bending vibrational dynamics from spectra
of C,H,. An analytic bifurcation approach is developed, based on critical points of a classical version of the
quantum fitting Hamiltonian. At high energy four new types of anharmonic modes are born in bifurcations
of the normal modes: local, orthogonal, precessional, and counter-rotator. Visual insight into their nature is
obtained with the help of computer-generated three-dimensional animations. The connection between the
local mode and the acetylenginylidene isomerization “reaction mode” is considered.

I. Introduction We have several specific aims in performing the bifurcation
analysis of the acetylene bends system. (1) To obtain a
systematic global analysis of the bifurcations that lead to novel
modes. Can we understand the number and character of the new
modes and the role of each in the quantum dynamics? Is there
a unique “evolutionary tree” of new modes, born in bifurcations
of the normal modes? Or are there bifurcations disconnected
from the normal mode “tree” (due to saddle node bifurcations,
as observed in an earlier analysis of HHP (2) To develop
computer animations to depict the new modes in a way that
immediately brings out their physical meaning. (3) To assess

At low energies, near the minimum in the potential energy
surface, the internal vibrational motions of molecules are
described by the normal modes model. At higher energy, due
to the interplay of anharmonicity and resonance couplings, the
normal modes model breaks down. The description of the
vibrational motions, including motions involved in molecular
rearrangements, is then an outstanding problem.

We have been developing an approaéhthat analyzes the
classical version of the effective quantum Hamiltonian used to
fit experimental spectra, to get knowledge of “new modes” that : . . )
describe the motion at high energy. These new modes are bornthe prospects for further extension of the analytical bifurcation

in bifurcations, or branchings associated with the original normal approach to Igrger systems._ ) .
modes. The dynamics of a classical version of the spectroscopic

Our approach to the bifurcation problem takes advantage of fitting Hamiltonian f°r|7T80 have been extensively studied by
simplification€21°X4connected with the polyad number, or total Taylor and co-worker&’*8 By numerical integration of Hamil-

vibrational quantum number of the fitting Hamiltonian. The [©ON'S équation at two different values of the polyad number,

normal modes and associated modes born in bifurcations cant€y found evidence for several novel types of modes at high

be determinednalytically by solution for the critical points of ~ €N€rgy. The analytical bifurcation analysis of the present paper
the fitting Hamiltonian, suitably reduced in phase space dimen- €MPIOys methods complementary to those of refs 17 and 18.
sion by means of the polyad number. There is no need for We will seek to uncover further regularities in their important

numerical integration of Hamilton’s equations or searches by observations and further systematize the global picture of the

means of surfaces of section in high-dimensional phase spaces2cetylene bend dynamics.

This approach has been successfully applied to systems of . o
increasing complexity, including triatomics with multiple Fermi  !l- Spectroscopic Hamiltonian of C;H, Bends

resonances and classical chég:* _ _ In this section we first describe the quantum fitting Hamil-
The subject of this paper is the systematic analysis of pure tonjan and then describe the corresponding semiclassical Hamil-
bending spectra of acetylene using the analytical critical points tonjan for which we will perform the bifurcation analysis in
method, for the extensively measured spectra Witk O later sections.
vibrational angular momentum. From the spectroscopic fitting A Quantum Fitting Hamiltonian. The full-dimensional
Hamiltonian;® it is known that the pure bend dynamics are ¢, stretch-bend systef has stretch and bend normal modes
approximately decoupled from the stretches. This makes for a iy, quantum numbensy, N, N, s, Ns for the symmetric &-H
very interesting system that represents a new level of complexity syretch, G-C stretch, antisymmetric-€H stretch, and trans and
for a molecular application of the analytical critical points  ¢js pend. Both bends are doubly degenerate; therefore two
method and a notable way station along the road to analysis of 3qgitional quantum numbets, |s are introduced to label the
the full stretch-bend vibrational dynamics. Acetylene dynamics \jiprational angular momenta associated withns (|li| < ).
including the rearrangement to the vinylidene isomer are of great The spectra require resonance couplings in the effective Hamil-

interest because of their importance in combustfon. tonian to get a proper fit. These couplings mix the normal mode
“To whom corespondence may be addressed. E-mail zero-order states, thereby destroyingl; as good quantum

kellman@uoregon.edu. numbers, yet they leave three conserved polyad numbers as
T Part of the special issue “Robert J. Silbey Festschrift”. determined by a “resonance vector” anal¥si%
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N, =5n; +3n,+ 5n; + n, + ng 3. Darling—Dennison 1l (DD-I1) resonance
~ R, + 2
Ns =n, + n, + Ny m4l4’n5I5|VDDII |(n4 _ 2)(|4¥2)(n5 + 2)(|5i2)|:]= 451—6945 X
I =1,+15 1) [(n, = 1,)(n, £ 1, — 2)(Ns £ | + 2)(ns =+ | + 4)]*2 (7)

corresponding to total quantum number, stretch quantum WhereRus = rag + raag(ng — 1) + rass(ns — 1).

number, and vibrational angular momentum, respectively. The As depicted in Figure Npp couples ZOS into columns with
inversion symmetry (gerade/ungerade) and parity re also the samelg,ls), while V; couples them into rows with the same
conserved? Each polyad of quantum levels can therefore be (Ns,ns). The Vppi resonance is actually composed of two
labeled ag N;,Ns,1}94+. Because the/u,+ distinctions are not couplings that run in diagonal directions in Figure 1, so all ZOS

important in our classical analysis, we focus primarily on the in @ polyad are connected in a network. The Hamiltonian
three polyad numbers of (1). containing these three resonances is therefore not separable.

Only zero-order states (hereafter ZOS) belonging to the same AIte_rnatlver, H can_be eXpreSSEd. In terms of ”?"S'“g_a”d
polyad{ NyNs|} are mixed by the resonance couplings. A further Iowgrmg operators acting on the two isotropic tw_o-d|men5|onal
simplification makes it possible for us to analyze pure bend oscillators corresponding to tAheT trAanJrs AandA cis berjd?' The
polyads separately from stretch excitations. As shown in detail §yrpn)etr¥-adapted Operators &g, dug', dad, Aag, and &',
elsewheré,15the pure bend ZOS are not coupled to states with 259+ % g respectivel§®
nonzero stretch quanta by any of the couplings needed to fit PRI
the spectrum with the spectroscopic Hamiltonian. Hence, the a T|n_h|]= /;I(n- 4 1)(Ii+1)D
pure bending states form a subsystem with separate polyads a 2 !

{N;0]}. We designate the pure bending polyads lyl] with

"I o/ 20 1 v
Ny =N, = n, + g @ o 1N 2\

The spectroscopic fit of Jacobson et'alis the most a,n'0= /ni +Ii|(ni — 1)
appropriate for investigating the bending dynamics. Its param- 2
eters were obtained by fitting energy and intensity data, mostly
from dispersed fluorescence spectra. There are more recent a th: n— Iil(n- _ 1)(|i+1)D
fits19.24for the full stretch-bend system. However, most of the g V 2 !

states they include have only moderate excitation in the bendingfor i
modes despite their overall high vibrational energy. Hence the
fit of ref 15 is expected to give the best available representation
of the bending dynamics. In section 6, we will examine how
the bifurcation analysis of these various Hamiltonians compare.
The spectroscopic Hamiltonian specialized to the pure bends Y A a ta Ta A Ta a a ft
system® contains a normal-mode zero-order part plus three Vi = Rug(@uclag B 85 T g agPlsadeg )
coupling terms Rus + 20,

& A ta ta a A ta ta a
Voo = — a4 (Qug Qg Asgdsy T Qug Aug Asgdsg T

BucBucBod o + Bugfugfleg Beg) (B)

B. Semiclassical CorrespondenceThe next step is to

=4,5.
The resonance terms can be expressed as

Y e atataa 1aa s ta t
Voo = Ss(@ug 8ug Asgfsg T Ag@uglsq sq )

H= |:|0 + \A/DDI + \A/l + \A/DDII 3

The zero-order part has diagonal terms

5 5 5 transformH into a semiclassical Hamiltonian. For this purpose
0 = Z on + X+ yonnn, + one applies the Heisenberg correspondence prir€ighe
0o it ij it Z ik it
1= ij=Zi<j i,j,k=4r<j<k ~ i ~ i
5 a— e g'— /i 9)
gilil; (4)

for i = 4d, 4g, 5d, and 5. Canonically conjugate action-angle
variables in the classical Hamiltonian system drgdf) with

j=Fi=]

and three resonance couplings which can be written as Lg = (N, + 1+ 1,)/2
1. Darling—Dennison | (DD-I) resonance lyg= (N +1—1,)/2
o 15\ la ls Sis. 5 2
M, “ns°*|Vpp I(N, — 2)*.(ns + 2)°0= T[(n4 —1,)(ns + lsg=(Ng+ 1+ 15)/2
ls+ 2)(ns — Is + 2)]*? (5) loy= (N5 + 1 — 19)/2 (10)

2.1-resonance A simplification becomes possible because there exist two

e e 1 (22)  (52) Rss conserved classical actions corresponding to the two quantum
[, *ng°IVjIn, = ng"= 0= T[(n“ Fl)ng =1, +2) x polyad numbers

(ns £ 1)(ns F 15 + 2)]Y2 (6) g+ lag + lsg + lgg=n, + g+ 2= N, + 2
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Figure 1. Structure of zero-order states and couplings for the polyad
[No,1]9" = [8, 0]9. The DD-I, I-resonance, and DD-Il couplings are

indicated as lines connecting different pairs of zero order normal mode

states with quantum numbens;/(, ns").

g = lag+lsg = lgg= 14+ 15 =1 (11)

A useful canonical transformation then gives new variables
Ka= (lag T lag + g+ l5g)/2 = (ny + ng + 2)/2
Kp= (lag = lag T lsg — 152 = (I, + 15)/2
Ja= (lgg T+ 1ag = lsg = Isg)/2 = (N — n5)/2
Jp=—(lgg = lag = lsg T Isg)2=—=(1, = 15)/2
0.= (bag + bag + bsg + P52
0y = (baq — Pag t b5y — P5)/2

Ya= (Pag t ¢4g ~ sy — ¢59)/2

Vo= ~(Pag = Pag — Psq T P59)/2 (12)
Of the new actions and their conjugate angl€sds), (Kp,0b),
(Jaya), and Qb yp), the actionK, andKy, are conserved. Their
conjugate angle8,,0, are cyclic variables that do not appear
explicitly in the Hamiltonian.

Compared to the notation of ref 17, our actions are multiplied
by a factor of 2, while the angles are reduced by a factéf,of
Computationally this difference is inconsequential, but our
definition has an advantage for explaining the topology of the
classical phase space, as will be explained in section IV.A.

The resulting classical Hamiltonian for arbitrdrys

HI(Ka!Kb’Ja"]b'wa!wb) =Hy+ Vpp + V) + Vppy + Voo
(13)

with

Hi= oK, + 3, — 1)+ oK, — I, — 1)+ x(K, + I, —
1P+ XK+ Ja = D)Ka = I — 1)+ xeoKy — 3, —
1Y + YaudKa + 33— 1 + yaud Ko + 30— 17K, — I, —
1)+ YaseKa + Jp = DKy = Jp = 1) + YosgKy = I, —

1)° + dau(Kp — Jo)° + Gas(Kp? = ) + Geel(Kp, + p)?
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S
Voo = ?45[(Ka2 - sz)z + (Jaz - Jb2)2 - Z(Kaz + sz)
32+ 3.3 — 8K K1, cos[2p,]

R
V=S KZ = K+ (57 = )7 = 20K + K, +
3y%) — 8BKKyJaJy] ™ cos[2p]

R,:+ 29
DDIl — 45Tﬁ[(Ka + Kb)2 e ‘Jb)z] cos[2(y, —
Yp)l
R,-+ 2
Vooi' = 45Tg%[(Ka - Kb)2 = (3t ‘]b)z] cos[2@y, +

Pyl

whereVppy, Vopi' correspond to the two diagonal directions
of the quantum couplind/ppin Mentioned above in regard to
Figure 1; and Wiﬂ'R45 = r45° + |’445(Ka + Ja— 2) + r455(Ka -
Ja— 2).

Within each polyad the conservegh, Ky are held fixed.
Eliminating the conjugate cyclic anglés, 6, because they play
a trivial role in the dynamics, the reduced phase space is four-
dimensional. The remaining variablds, Jy, ¥a, ¥, €evolve
according to Hamilton’s equations of motion

h=—g (14)
J,=— ;-;J (15)
Va=jy (16)
Po=3g (7

For the case with zero total vibrational angular momentum (
=0, Kp = I/12 = 0), the Hamiltonian (13) can be simplified to

H=H_,=Ho+ Vpp; + Vi + Vppi + Vo' (18)

with
Ho= 0,(Ky+ J, — 1) + w5(K, = I3 = 1) + XK, + 3, —
1P + Xo(Ka + Jy = DK, = Iy = 1) + XKy = I, =
1Y + YauulKo + 3, — 1)° + yaueK, + 3, — DAK, — I, —
1)+ YaseKa + 3, = DK, — I, — 1)2 + Vss5(Ka = Ja —
1)3 + (04— Ogs T 955)Jb2

Voo = S%S[K; + (Jaz - ‘]b2)2 - 2Ka2(‘]a2 + Jbz)]ll2 cos[2),]
= S(Ky Ja Jp) cos[2p,]

V= R745[ Ka'+ (32 = 307 — 2K (3,7 + 3,12 cos[2p,]
= S(K,J,,Jp) cos[2,]
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R,: + 29
DDIl = 4ST‘E’[K.—J\2 -3 - ‘Jb)z] cos[2(p, — Y]
= S(KaJasds) COS[2(0, — )]
R+ 29
boi = %3“@,12 — (3, 3] cos[26p, + vyl

= S(KyJadp) COS[26p, + ¥
We now proceed to the bifurcation analysis of this Hamiltonian.

Ill. Analytically Scalable Polyad Bifurcation Analysis

In this section we discuss important general features of the
method of the critical points bifurcation analysis, in particular

Tyng and Kellman

{H,J)} =0 (20)

Regarding the polyad numbéras a fixed parameter, this
Hamiltonian is a function in the reduced phase space with
variables {,). According to Hamilton’s equations, the critical
points of this Hamiltonian satisfy

J=0, =0 (22)
The physical meaning of a critical poiniy(o) at polyadlg is
seen by considering the full phase space with canonical
coordinatesl(#,J,y). Only the cyclic variabl® varies with time,
with a constant frequencyokl/al),,,,. Therefore, the critical
point in the reduced phase space corresponds to a PO in the
full phase space. This might be one of the low-energy normal

its analytic and scalable character; in the next section, we presentnodes of the system, but with the presence of the resonance

details of implementation.
The Hamiltonian in (18) is a nonintegrable system. In general,

coupling in the Hamiltonian, it might be a new mode born in a
bifurcation.

the dynamics of such a system can only be understood by This analysis easily generaliZzé8to a nonintegrable Hamil-

numerical integration of Hamilton’s equations and subsequent

tonian with N degrees of freedom and — 1 independent

analysis, e.g., with sections in phase space. This is possible forresonances, so that there is a conserved polyad number. This

the system here, but with increasing degrees of freedom, it will
quickly become intractable. We therefore pursue a method with
the potential to be extended to larger systems.

We want to take advantage of the fact that the polyad

has been exploited to analyze the bifurcations of th® H

spectroscopic Hamiltonian and assign quantum sp@égréf:32
Here we generalize the analysis further to include systems

with more than one polyad number. This is of concern for us,

Hamiltonian affords computation of the large-scale phase spacebecause the acetylene stretdfend Hamiltonian has three

structure byanalyticmeans, i.e., by solution of simple algebraic

equations related to the Hamiltonian function, rather than
numerical solution of the equations of motion. Specifically, we
seek the critical points of the polyad Hamiltonian, defined in a

phase space naturally reduced in dimension by means of the

polyad number®21.33(see eq 1); the pure bends system has
two polyad numbersN, and |. Consider then arN-mode
Hamiltonian withM polyad numbers

H = Ho(l;,d + V(1,36 (22)

conserved polyad numbers. In the case of acetylene bends treated

here, the critical points give periodic orbits (POs) or “vibrational
modes” when the Hamiltonian is expanded back to the full phase

space, including polyad numbers and their conjugate angles.

The critical points are solutions of algebraic equations involving
polynomials and trigonometric functions. Because they are
obtained analytically, it is not necessary to perform numerical
integration of Hamilton’s equation and analysis of surfaces of

section. This is expected to become extremely advantageous a
the number of degrees of freedom and phase space dimension

increase.
We call the modes obtained by the analytic critical points
method the “primary” modes of the system. We use this

terminology because the primary modes are the lowest period

orbits consistent with the polyad structure. Hence, they are

expected to organize the large-scale structure of the molecular

phase space. We will see that the structure of the Hamiltonian
severely limits the number and character of the primary modes,

and even their location in phase space. (As discussed later, in

more general systems, the critical points may correspond to
higher-dimensional invariant tori rather than one-dimensional
modes, but these structures are still expected to organize th

phase space.) The critical points approach has been develope

and applied to systems with twd11-1329-31 gnd thre@10.14
coupled modes. In the exposition here we build up from these

simpler systems to make the generalization to the acetylene

bends system as clear as possible.

First, consider a two-mode system with a single resonance
coupling and a conserved polyad numlberonjugate to the
cyclic variable6

H = Hy(1,J) + V(1,3,%) (19)

with Poisson bracket

with (i=1, 2,..,.M; k=M + 1, ...,N). A critical point in the
reduced phase spacé,{/x) satisfies

J=0, =0 for k=M+1,..,N (23)

It has up toM nonzero cyclic frequencies in the full phase
space: €1, ..., 0y). When the number of polyad numbersMis
= 1, this gives a closed PO, one of the primary modes.

S When the number of polyad numbershks> 1 and none of

theM frequencies is commensurate, the full trajectory in general
comprises motion on amM-dimensional torus, defined by the
M angles conjugate to the polyad numbers. This is a situation
not to our knowledge analyzed previously in a molecular setting;
it will have real implications for the bifurcation analysis of full
stretch-bend acetylene dynamics, as discussed briefly in the
closing section.
In the GH; pure bending system with polyad numbéls—=

2Ka — 2,1 = 2Ky, a critical point in the reduced phase space
corresponds, except in special cases, to motion on a two-
dimensional invariant torus in the full phase space. The torus
is parametrized by, 6,. The motion is typically quasi-periodic

ince the frequencie®, and 6, are usually noncommensurate.

his situation will in fact arise and be very important in the
full stretch—bend acetylene dynamics, as discussed briefly in
the concluding section.

However, in the general case of systems with> 1, there

are special cases when (1) one or more of the cyclic angles has
zero frequency, (2) some of the frequencies are locked in integer
ratios (commensurate) for special physical reasons, or (3) the
torus thickness goes to zero for special values of the actions
(this possibility does not pertain to the problem here with
vibrational angular momentg, Is). In these cases the full
trajectory of a critical point has fewer thaW independent
frequencies. Theé = 0 polyad series analyzed here forms a
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y=n/2, 3n/2 = 381;' =0 (25)
%z—gizo (26)
Va=33.=0 27)
Po=35.=0 (28)

Substituting the classical Hamiltonian from (18), the first two
of these equations have the form

oH . .
gy = 28 sinl2p] + 28, sinl2(, — ol
a
+ 25, sinf2(p, + )] =0 (29)
Figure 2. Coordinates for the phase space spheres. There are two 9H
spheres, one for the phase_ space va(ia_la_l&a and one for the varia_lbles — 8_ = 252 Sin[21/)b] — 253 sin[2(1/;a — wb)]
Jo, %6, S€€ (12) and following for definitions. Each sphere has its own Yy
Ji,wi. For each sphere, the great circles on which critical points lie are + 2S, sin[2@, + )] =0 (30)

indicated by dashed lines, at the indicated valueg &f 1, Or yy.

The analytical expressions for (27 and 28) are also listed in
detail in an unpublished dissertati®hA sufficient, butnot
necessargondition for these two equations to be simultaneously
satisfied is

special case for type 1. As described in the following sections,
all except two physically unimportant critical points in this series
turn out to have

0,=0 (24) sin[2y,] = sin[2y,] =0 (31)
so the full trajectories of these critical points reduce to closed
POs parametrized b§.. Hence they are either normal modes
or new anharmonic modes born in bifurcations. S

In the remainder of this paper, we shall be concerned with W) = (7 ?) withm,n=0,1,2,3 (32)
the pure bends system, with conserved polyad numiigrs
2K, — 2,1 = 2Ky = 0. In future work we will consider the
interesting problem of dynamics of systems with O or stretch
excitation, where bifurcations of the normal modes do not in
general give new periodic orbits but rather higher-dimensional
tori.

These sufficiency conditions correspond to great circles on
the phase space spheres of Figure 2. It is notable that for single
| 'esonance systems, the solutions for the critical points of the
polyad Hamiltoniamecessariljie on great circles on the phase
space spheré.An important question is whether this generalizes
empirically to systems with more degrees of freedom and
multiple resonances, where great circle conditions on the critical
We consider first the search for the critical points and then points such as (32) are not necessary. Satisfaction of the great

IV. Implementation of the Bifurcation Analysis

the analysis of their stability character. circle conditions relates to the primacy of certain individual

A. Search for the Critical Points. In our system, with resonances, since the great circles are defined on phase space
conserved polyad actionts,, K, and conjugate angle®, 6y, spheres whose coordinates are defined by individual resonances,
the dynamics of the reduced Hamiltonian are contained in the as in Figure 2 for the DD-I antiresonance spheres. Location
behavior of the phase space variablgs {,, 1a, ¥1). This can of critical points on great circles was found empirically for

be represented in constant energy surfaces of section mappedhultiresonant triatomic Hamiltoniard&.It is not clear a priori

on two spherical phase space surfaces, one a “DD-| sphere”that this should generalize to the acetylene bends system,
with variablesl,, i, and the other anl“resonance sphere” with  because the DD-II coupling is not linearly independent of the
variablesJ,,y,. The allowed phase space for a given energy DD-I andl-resonance couplings; it is even less clear whether
partially or fully covers the phase space spheres. The phase spacthe great circles feature will hold in a future treatment of the
spheres and their coordinates are illustrated in Figure 2. (Thesefull acetylene stretchbend system, which has a great multiplic-
phase space spheres are constant energy surfaces of section aitgt of couplings that are not independent.

should not be confused with the related, but distinct, “polyad  For the present bends system, we have done a comprehensive
phase spheré®® with constant polyad number rather than search off the great circles for critical points but found that none
constant energy. The latter applies in a variety of contexts exists. The reason is apparently that the DD-Il coupling is

including coupled oscillators, dynamical “self-trappiri§> relatively weak, so the terms in (29 and 30) that mix v, are
Bose-Einstein condensaté8,and other seemingly unrelated small.
applications.) Thus, every critical point in the bends system treated here

The critical points of the reduced Hamiltonian are solutions will lie simultaneously on a great circle from each of the spheres.
of Hamilton’s equations that satisfy With two circles on each of two spheres, there are four possible
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TABLE 1: Analytical Solutions of Bifurcation Results in Figure 62

mode {a ) Ja
local (0,0) 42.3217 0.583914&, — 0.268961(16255.7 84.810%K, — K92
orthogonal (072/2) 49.7629- 0.4968K, — 0.822458(2130.16- 65.137(K, — K )12
precessional 72, 0) 21.8360- 0.56397&, — 0.4604731106.54+ 186.86K, — K2
counter-rotator %12, 7/2) —36.6246— 0.53664&, + 0.634238(1237.94 287.07K, — K2

aThe values ofl, are also constrained byK, < J. < K.

combinations of these circles. Furthermore, because of symmetry Ja/Ka
each critical point is accompanied by another on the opposite -1 1
side of the circle:y, <> 4 + 7 andyy, < yp + 7. There are C A (Trans)

therefore 16 combinations of angles describing four physically
distinct (modulo symmetry) possible angular locations of critical
points on the great circlesone physically distinct situation for
each of the following equations:

Wayp) = (0,0), (077), (7,0), (r,m) (33)
v =03} LF) (3 [Z) e ) B (Cis) D 1 Jo/Ka

4 7T 37 3 Figure 3. Coordinates of the pseudopotential plots. The scaled
(Watpp) = (E’ 0)’ (E’ JT), (7! O)! (?’ ﬂ) (3%) coordinatesl/Ka, Jo/Ka show the accessible range of classical actions
Ja, Jp for a given polyad\, = 2K, — 2. Points A, B, C, and D are
critical points for all coupling strength, as discussed in section IV.A.
(W) = (%,g), (%, %T), (3?”,%), (3%,3%) (36) A and B are theTrans andCis critical points.

discussed in refs 11 and 38 expanded from a one-dimensional
potential to two-dimensional.

Before illustrating this for specific polyads, it is helpful to
discuss the coordinates used, with reference to Figure 3. In the
| = 0 polyads, the values of actiodg J, are restricted by

The remainder of the critical points problem is to solve the last
two equations of (2528) for the actionsl,, J, as the polyad
numberN, is continuously varied, holding the angles at the
above combinations.

A simplification comes from the observation that with the
discretey,, Yy values, (28) can be rewritten as

[Jal + 13l = K, (39)
MH _ I 200y — a5+ Gs0) — In Figures 3 and 4, we rescale the actionsJitK,, Ju/Ka to
0y give the same range —[L, 1] for different polyads
K 24 32_ ] 2)(5 cos2p.] + Rys cos[2p)) Np = 2K, — 2. The points on the boundary of Figure 3 have
a a b 45 45
- J+ 13| =K 40
\/Ka4+ (Ja2 _ Jbz)z_ 2Ka2(‘]a2+‘]b2) [Jal + 3l a (40)
Ris+ 29,5 Physically, points A, B at the corners correspond to the planar
5 cos[2p,] cos[2p]p =0 (37) trans and cis bend overtones, and corner points C, D correspond
to states with maximum difference in vibrational angular
For the entire accessible range &af J,, and whemy,, ¥, are momentals,ls, e.g.
constrained to values in (336), the factor between the curly
brackets was numerically verified to be always nonzero. c: matirtg b:ojar 1ato (41)

Therefore (28) has the very simple solution
Points A-D are critical points of the coupled Hamiltonian as
J,=0 (38) well as the zero-order Hamiltonian. The reason is that the
couplings vanish at these points. A and B retain their identity
After substitution forJ, = 0, the remaining condition (27) as trans and cis normal modes, though they change stability at
becomes an easily solved quadratic equation. The results arevarious bifurcation points. C and D, however, are not anhar-
listed in Table 1. The detailed meaning of these results is monic modes, but rather are two-tori for states such as those in
discussed in section 5 in relation to the bifurcation diagram (41). They never bifurcate. As such, the critical points C and D
Figure 6; in the remainder of the present section, we outline are trivial for our analysis and are not considered further.
some technical aspects with the aid of a visually accessible Figure 4 shows pseudopotential plots of the reduced Hamil-
approach to the search and then discuss the stability analysidonian, on squares with the same coordinates as Figure 3, for
of the critical points once they have been found. the examples of polyal, = 6 with Ky = (Np + 2)/2= 4, and
The solution of (27, 28) can be visualized in the following polyadN, = 22 with Ky = 12. As discussed in section 5, s
way. If one plots the reduced Hamiltonian as a function of the = 6 none of the bifurcations has occurredNgt= 22 all of the
canonical actiong,, J, while holding a,v1) fixed at the four bifurcations have occurred. In Figure-4dfor N, = 6, the only
physically distinct conditions (3336), critical points correspond  critical points are at the corners of the four squares, previously
to the flat spots (minima, maxima and saddle points) on these labeled A-D in Figure 3; the corner points A, B on each square
plots. This is a generalization of the “pseudopotential” picture correspond to the trans and cis overtones.
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(a) (b) () (d)
(was wp) = (0, 0) (0, n/2) (n/2, 0) (n/2, ©/2)

o N N o
s

Figure 4. Pseudopotentials of polyads [6, O] and [22, 0], given by contour plots, for H in (18). The squares have the same coordinates as the axes
in Figure 3. Panels-ad are for [6, 0] with the four values of/{,yp) in (33—36). Panels €h are for [22, 0]. Dark dots in the lower row are new

critical points (LocalL, OrthogonalO, PrecessiondP, and Counter-Rotatd€R) born in bifurcations, after migration from the parent modes (

O, P from Trans andCR from Cis), as indicated by the arrows.

In parts e and f of Figure &\, = 22, critical points occur as  section 7.6 of ref 23. In the local representation, points on the
before at the corners of the four squares. However, there areboundary no longer appear “singular” and can be analyzed in a
four new critical points with labelk, O, P, andCR (described straightforward manner.
in section 5), each in the interior of one of the squares. The B. Stability Analysis of the Critical Points. After locating
new critical points have migrated from the corners along the the critical points, we perform an analysis of their stability
diagonal of the square, as explained in section 5. Each of thesecharacter using standard methods of linear anafjsiEhe
corresponds to a new mode born in a bifurcation from one of interpretation and visualization of the stability analysis are made
the normal modes. complicated in comparison with previous systétnsthe higher

While the graphical pseudopotentials such as Figure 4 aredimensionality of the phase space. After finding a critical point
conceptually appealing and will be referred to below, in practice at a certain set 0fJg, Jy, ¥a, ¥b), motion in its neighborhood
we solve (27, 28) analytically for continuously varikdrather can be linearized as
than graphically. On the boundary, thds(Jo, ¥a, ¥b)

coordinates become inappropriate (“singular”) for describing the  [5J, 00-10 HJaJa H.Jan HJawa HJawb
physical behavior of the system. In particular, when (40) holds, 4 0J, 000 -—1]|[Hy, Hiy Hiw, Hiy,
the denominators in (27 and 28) vanish, and y, are either ov.|" 1100 o [[H " H H  H
S . a Vada | Wady | Waba | Valbp
infinite (on the edges of Figure 3 except the vertexes, and also o 010 0

the boundaries of the pseudopotential plots in Figure 4) or b Hwaa Hwab Hwhwa Hwhw

indeterminate (at the four vertexes, where no unique limit exists). 53 53
The general definition (2528) therefore cannot be used to a a

determine whether a boundary point is a critical point or not. 0Jp =M 0dy (42)
A related situation is encountered in ref 13 in the case of single 0y, 0y,
resonance Hamiltonians. In those cases, the angle vaujaisle oy, oy,

the azimuthal angle on the respective polyad phase sphere. At
the North and South poles of the sphere, this angle is not defined whereH,, = (3?H/dxdy).
so the canonical variablek, () are misleading at the poles. A The linear stability reflects the time evolution afJ, 6Jp,
simple example is an ordinary trajectory passing the pole at dvya,, 0yp), Which is determined by the eigenvalugsof the
finite speed. The angular velocity; becomes infinite as the  matrix M above® To each eigenvalue, there corresponds an
pole is approached, but this is entirely an artifact of the eigenvector associated with a direction in phase space. In a
coordinates. Hamiltonian system withN degrees of freedom, theN2

To determine the dynamics at the singular points, either direct eigenvalues must come in complex conjugate pairs which fall
visualization by running trajectories or a coordinate transforma- into one of the following types. (1) Pairs of imaginady
tion (called “rotating the sphere” in ref 13) is required. Since eigenvalues. Each pair signifies that the linearized motion in
direct visualization of four-dimensional phase space is nontrivial, the vicinity of the critical point is oscillatory in the two
we chose the second path to search for critical points on the corresponding directions and hence stable under small perturba-
boundary. The Hamiltonian (18) is transformed to a local-mode tions. This stability type is called stable @ltiptic (E). (2) Pairs
representation using the-K relationships? as described in of real; eigenvalues. Each pair signifies that the motion in the
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vicinity is exponentially attracted to/repelled from the critical
point in time, i.e., unstable in the two corresponding directions.
This stability type is called unstable dwyperbolic (H). (3)
Quadruplets of complex eigenvaluesat-bi). This stability type

is calledmixed(M).1° In mixed stability, the solution contains
bothoscillating and exponential attraction/repulsion components
in the subspace spanned by the fa&ircorresponding to the
quadruplet;. In two of the four directions the nearby trajectory
spirals into the critical point, while in the other two directions
it spirals out of the critical point. (4) Pairs ¢f = 0. This
stability type is calleddegenerateln this case, the linearized
equations (42) become insufficient, and higher-order terms in
the Taylor expansion are needed to evaluate the stability near
a critical point. This situation does not arise for the acetylene
bends and will not be considered further.

Specializing toN = 2 as in (42), with none of the fout
equal to zero, the possible types of linear stability are as
follows: (a) two pairs of imaginary eigenvaluesi,(— ai, bi,

— bi), bi-stable (EE); (b) two pairs of real eigenvalues {a,

b, —b), bi-unstable (HH); (c) one imaginary pair and one real
pair (@i, — ai, b, — b), stable-unstable (EH); (d) one complex
quadruplet & + bi, a — bi, — a + bi, — a — bi), mixed (M).
Herea, b are positive real numbers.

For the reason described in IV.A, the linear stability of critical
points A, B, C, and D in Figure 3 cannot be directly determined
from (42) using the 3, Jy, ¥a, ¥b) coordinates. Instead, the
Hamiltonian is rewritten in a local-mode representation, in which
points A—D are no longer problematic. The stabilities of these
critical points are then determined by stability matrixes written
in the new action-angle variables, in a form equivalent to (42).

V. Results

The method of solution for the critical points is presented in
section IV.A, resulting in the great circle conditions and the
solutions for the action values on these circles listed in Table
1. In this section we discuss the meaning of these results.

For each of the foury,, ¥) conditions on great circles given
in (33—36), there is a family of critical points. Each family
corresponds to a new type of mode, applying the reasoning of
section 3 as follows. Of the two cyclic anglés, 6y, the
frequency of the latter

_H

Gb - aKb (43)

is always zero when all the conditions assumed so far hold
sin[2y,] = sin[2y,] = J,=K,=0 (44)

leaving 6, as the only variable that changes between 0 and 2
with time. Each critical point therefore corresponds to a PO,
i.e., a new anharmonic mode (more precisely, an infinitely

Tyng and Kellman

L cb;.

——

R

-
(a)

N

(b)

Ll .

e

(c) (d)

Figure 5. Time-lapse still frames from the animations in ref 42 of the
new modes born in bifurcations. Paneischare the Local , Orthogonal

0, PrecessiondP, and Counter-Rotatd€R modes, respectively. The
significance of the shadows in relation to the angle variapleis
discussed in the main text.

@ Animations of the four modes in Quicktime format.

orthogonal planes, in phase with each other. The i@&ahas
the hydrogens rotating in circles in opposite directions. To help
visualize the modes, we converted the calculated trajectories
into three-dimensional animations (Apple QuickTime format)
with the software Bryce 4t These can be viewed at the website
in ref 42, and also as Web Enhanced Objects linked to the online
edition of this article. The animations give direct visual insight
into the meaning of “new modes born in bifurcations”. The
modes are also depicted in time-lapse still frames in Figure 5.
The result that the critical points correspond to POs and
therefore “newmodes is worthy of further comment. So far as
we know, this has not previously been demonstrated in the case
of thel = 0 acetylene bends system. It is often taken for granted
that bifurcations of normal modes in molecules will give “new
modes”. However, as the discussion in section 3 shows, this is
not always the casemultiple polyad numbers can lead to
higher-dimensional tori in bifurcations instead of POEhat
POs are the case for tHe= 0 acetylene bends has been

degenerate family of POs because of the double degeneracy oflemonstrated mathematically with conditions (44). It is worth
the mode). The new modes are named local, orthogonal,considering physically why it has to be this way. This is most
precessional, and counter-rotatbr, O, P, CR) in accord with easily seen in the local representation, as we now describe
the shape of their corresponding Cartesian trajectories. Hereaftergualitatively, omitting the mathematical details. The condition

we will useTrans, Cis, L, O, P andCR when referring to the
critical points as such.

ThelL andP modes are planar motions as depicted previously
in Figure 1 of the planar model of ref 8. Themode has the
amplitude preferentially in one local-&C—H bend, while in
the P mode the two €&C—H benders move with the same
amplitude, but with a phase difference®. TheO andCR
modes are nonplanar. At/K; = 0, the modes take their ideal
forms. In the ideald mode, the GC—H benders move in

| = 0 means the molecular “shape” cannot have an overall
rotation about the figure axis. A local representation condition
analogous to (38) means that the shapes on the two ends of the
molecule cannot twist with respect to each other. Together, these
conditions imply that at the critical points, the local oscillators
must move in POs along fixed ellipses, either with zero width,
i.e., aline, as in th&, O, P modes, or in ellipses with finite
width as in theCR mode. This is especially vivid in the
animations of ref 42. Section 8 briefly describes the situation
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Figure 6. Bifurcation diagram from the critical points analysis,
including the normal modeSrans, Cis, and four new families of
critical points associated with new modesO, P, CR. Also shown is
the stability of each critical point, including the normal modes before
and after each bifurcation.

in the acetylene stretethends system where the critical points
will not be limited to POs.
The anglesy, and vy, have a visual interpretation in the
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toward Jo/K; = 0 (equal mixing between zero-order trans and
cis action). As noted earlier, the new modes migrate from the
corners along the diagonal in the pseudopotential diagrams in
Figure 4; this constraint comes from the condition (38).

We now consider in detail the stability of each of the new
modes and the changes in stability of the normal modes at the
branch points of the bifurcation tree, using the methods of
section IV.B. At each of the four normal mode bifurcations the
stability of the normal mode changes when the new mode is
born. The stability character is given by E (elliptical, or stable)
or H (hyperbolic, or unstable) in each direction. g = 7.63,
Trans bifurcates to give the stable (EE) while itself changing
from (EE) to (EH).Trans undergoes two more bifurcations at
Np = 9.77 and 14.55. The new modeMy = 9.77 is the (EH)
type O mode, theTrans now changing from (EH) to (HH). In
the final Trans bifurcation at 14.55 the (HH)-typP mode is
born, andTrans changes from (HH) back to (EH). Similarly,
Cis bifurcates atN, = 9.56 to give theCR mode (EE),Cis
itself changing from (EE) to (EH) stability.

The stability character of these modes corresponds with the
marks of classical structure on quantum wave functions
investigated by Taylor and co-workefrs!8 (Further discussion
of the classical investigation of refs 17 and 18 is found in section
7.) The bi-stableL and CR are surrounded by regions of
invariant tori in phase space, around which are organized

computer animations of ref 42 and the time-lapse still frames quantum states with clear nodal patterns and readily assigned

of Figure 5. By definitiory, is the relative phase angle between
the Trans and Cis modes, whileyy, can be interpreted (when

quantum numbers. Th® mode with (EH) stability has
distinguishable trajectories in coordinate space and slightly

Jo = 0 as is the case for all the critical points discussed here) pmarks the quantum states. The bi-unstable (HH)node is

as the dihedral angle between theans and Cis planes. We

recall that in section 4, because of the dominant DD-I and

completely engulfed in chaos in surfaces of section and appears
not to be associated with assignable quantum numbers in wave

I-resonances, all the new critical points are located at discretesnctions.

(va ) values defined by the great circles on the respective

single resonance phase spheres. Withy,, taking the discrete

It should be noted that Rose and Kellrfigmerformed a
precursor of the present study, a bifurcation analysis of the fitting

values in (33-36), the relative phase angle and the dihedral j5mjitonian using a simplified essentially planar model with

angle are locked at either 0 @f2. The association withy, is

just the DD-I coupling. They found that betwedly = 6—8

particularly evident in the animations but can also be discerned o trans-bend becomes unstable and a stable local mode is born:

in the still frames of Figure 5. The projection on the ground
plane (the oscillating “shadow”) manifests thgvalue at which
the critical point is locked. In the four mode animatiobhsand

O are locked atp, = 0 and have a corresponding asymmetry
in the amplitudes of the shadows of the twe-C—H units. P
and CR are locked aty, = n/2 and correspondingly have
shadows of equal amplitude for the-C—H units, bending out
of phase byz/2. (Again, this is more evident in the animations
than the time-lapse Figure 5.) This phase relationshlp wfth

O and of P with CR is essentially the result of the DD-I

at N, ~16 the cis-bend becomes unstable arsladlepreces-
sional mode is born. This compares with the present three-
resonance study wheteis again found to be bi-stable bBtis
bi-unstable. (See the remarks in the concluding section on the
“doubling” of the planar local and precessional modek {®
andP, CR in three dimensions.)

VI. Comparison of Effective Hamiltonians

In the next two sections, we evaluate the picture of acetylene

resonance. ldentical phase relationships are seen in the planabend dynamics that emerges from comparison of the present

single-resonance analyisf the DD-I coupling, withy, = 0
for the local mode andy, = 7/2 for the precessional mode;

with various other treatments of the problem. In this section
we compare bifurcation analysis of other versions of the

see also the remarks in the final paragraph of this section oneffective Hamiltonian than the one analyzed above; in the next

the mode stabilities in the planar model.

section we compare results from approaches other than bifurca-

The diagram of the bifurcation “tree” of the bends system is tion analysis of effective Hamiltonians.

obtained by plotting the critical points of Table 1 in action space,

as shown in Figure 6. Theaxis is the polyad numbeM,, and
they-axisJJ/Ka = (s — ns)/(ng + ns + 2) represents the relevant

The bifurcation analysis depicted in Figure 6 uses what we
believe is the best empirically fit Hamiltonian for the pure
bending spectra of acetylene. It is important to confront these

fraction of zero-order trans and cis bend action. The top of the results with those obtained from other available versions of the

y-axis therefore corresponds Twans while the bottom corre-
sponds toCis. Each of the families has originated at some
polyad actiorNy in a pitchfork bifurcation out offrans or Cis

effective Hamiltonian. These include fitting Hamiltonians which
attempt to merge the results of dispersed fluorescence (high bend
excitation) and absorption (high stretch excitation) spectroscopy

(upper right and lower left corners of the squares in Figures and an effective Hamiltonian obtained from a potential energy

3,4). Immediately after each bifurcation, the new mode has

surface by means of perturbation theory.

Ka very close to the respective normal mode. The corresponding Figure 7 shows the results of the bifurcation analysis on six

Cartesian trajectory is very much like the normal mode itself.

such Hamiltonians. The first (a) is the same Hamiltonian of ref

Then as the polyad number increases, the new modes migratel5 as we used for Figure 6, except that the high-order
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Figure 7. Bifurcation diagrams for effective Hamiltonians with alternative parameter sets, as described in section 6 -RbaedSar experiment-
based effective Hamiltonians similar to the Hamiltonian used in Figure 6. Panel e is for a Hamiltonian obtained by Sibert and®MieCoy

perturbation theory from a potential energy surface; panel f is for a “minimal” Hamiltonian devised here for two coupled local bend modes.
coefficientsyix, rass, andrass are ignored. The second Hamil-

experimental levels, so we believe it more accurately reflects
tonian (b) is a more recent refinemé&hbased on that of ref

highly excited bending dynamics.) The third Hamiltonian (c)
15: the parameters are slightly modified and there is an was developed by Hoshina et 24lby combining available
additional fourth-order termssg142 ns2 in (4). This Hamiltonian stretch-bend data from dispersed fluorescence and absorption
was given in Table 2 of ref 24. (We used the earlier Hamiltonian spectra. The fourth Hamiltonian (d) is the fit of Herman and
of ref 15 in our bifurcation analysis because it fits higher energy co-workers® of stretch-bend spectra, constructed to reflect data
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from a variety of spectral techniques. This Hamiltonian does function plots and obtained themode. Our bifurcation analysis
not have the pure bending cubic coefficients, nor does it contain showed that this Hamiltonian also contains information about
the DD-II resonance term in (3). We adapted the stretwnd theO, P, andCR modes. We would like to emphasize the great
Hamiltonian in (c) and (d) for pure bend spectra by setting all potential utility of applying critical points analysis to effective
the stretch quantum numbers to zero. Hamiltonians obtained from potential surfaces via perturbation
Effective Hamiltonians very similar to a spectroscopic fitting theory. This is an alternative to running trajectories on surfaces
Hamiltonian can be obtained from quantum potential energy and searching numerically for bifurcations. In fact, we believe
surfaces by means of perturbation the&¥§:434McCoy and that comparison of bifurcation behavior of potential surfaces
Sibert? have produced the only effective Hamiltonian acetylene with experimentally derived analysis like Figures 6 and 7 is an
bends that we know of obtained in this way. The bifurcation extremely valuable way to assess the validity of surfaces.
diagram obtained for this Hamiltonian (with minor correction,  The classical version of the fitting Hamiltonian used in this
see ref 45) using the critical points method is shown in Figure naner was studied previously by Taylor and co-worket&in
7e. (As described in the next section, McCoy and Sibert obtained ap jnyestigation of surfaces of section generated by numerically
the local mode for this Hamiltonian using critical points jntegrating Hamilton's equations. A “family tree” of fixed points
conditons.) o o o as they appear on surfaces of sections was constructed for two
The final Hamiltonian is a “minimal” Hamlltpnlan con§|st|ng different polyadsN, = 16, 22 by following the fixed points as
of two doubly degenerate local bend oscillators with only the energy is varied at fixed value of the polyad number. This
symmetry-adapted 1:1 couplings. The Hamiltonian is truncated ig 4 significant difference from the present study, where we have
at terms second-order in the quantum numbers, with parametergy|iowed critical points as the polyad number is varied. In the
taken from the bends fitting Hamiltonian transformed to the ¢, taces of section at fixed polyad numbers of refs 17 and 18,
local mode representation. The reason to consider such amOdeT)oints appear as fixed points but actually are not in general

Is that such a H_amiltonian in a two-mode versibis a paradigm POs (1-tori) in the full phase space, but rather 2-tori. (They are
for understanding the coexistence of local and normal modes, ;.i"\vhen both cyclic frequencids, & = 0, and POs for the
in coupled stretch systems such g©HThe bifurcation diagram special conditiord, = 0, i.e., the crit’ical poi}]ts determined by

f7ofr the acetylene bends minimal Hamiltonian is shown in Figure the present methodology. This is similar to the observations of
| Lu and Kellma# in surfaces of section for 4D.)

The most striking thing about the bifurcation diagrams in . - .
Figures 6 and 7 is their overall consistency. All the Hamiltonians The cardinal finding of refs 1.7 and 18 is the emergence of
give the same basic feature of four new modes born in new phase space structurgs at higher po!yads, particularly a local
bifurcations. Panels-ec of Figure 7 are all very similar to Figure and a cou_nter rotat_or far_nlly, around which th_e bottom an_d top
6. In parts b and ¢ of Figure 7 the branch is “bent” into a energy eigenfunctions in the polyad localize, respectively.
Classically, these families are 2-tori localized aroundLltrend

tangent bifurcation, but one branch of this joifieans as in - A
Figures 6 and 7a. Hence, this does not constitute a separat&R modes. There is another structure which Taylor and co-

bifurcation tree, unlike a tangent bifurcation found in Hep., ~ Workers call the M, mode”, which appears to be related to our
In Figure 7d based on the early 1995%theP branchis more ~ O mode with (EH) stability. The Cartesian trajectorieshtf
severely bent. This shows the importance of progressive (Sé€ Figure 3 of ref 17 and Figure 1 of ref 18) appear to be
refinements of the fitting Hamiltonian. In all five cases Figures Mmotion on 2-tori which have the same general shape as that of
6 and 7a-d, the normal mode from which each branch originates O, With the two C-H benders perpendicular but in phase with
and the stability of each branch match. each other. Their motion is also stable in the radial direction
In the last two panels Figure 7e.f, the differences are more and precesses significantly i.n' the angular direction, consistent
pronounced. This is hardly surprising in that the Hamiltonians With our finding of (EH) stability forO.
described above for these panels were never expected to closely We found that thé> critical point is bi-unstable (HH) and so
match very highly excited experimental data. In Figure 7e the expected to be surrounded by chaos. Indeed, this is how the
perturbation Hamiltonian switches the stability ©ffrom the surrounding region appears in the work of Taylor and co-
previous figures. The most surprising thing about Figure 7f for workers in surfaces of section (see Figure 1 of ref 18, sixth
the minimal Hamiltonian is how closely it mirrors the results column, left side of the second and third panel). Since their
from the refined fitting Hamiltonians, given the extreme method locates fixed points surrounded by a stable region, they

simplicity of the minimal Hamiltonian. did not observe th& mode.
Farantos and co-workers have performed a numerical PO
VII. Comparison with Other Approaches search on the six-dimensional potential energy surfacetds.t?
Next, we compare results from several other approaches withA reexamination of the resuftsconfirmed the bifurcation of a
the results of the preceding bifurcation analysis. local-mode PO out of the trans bend and a counter-rotator mode

Using different approaches, McCoy and Sibeend Rose out of the cis pend. A more recent ab i_nitio potential energy
and Kellma# verified the existence of a suspected normal-to- surfacé® has yielded the same results in the quantum wave
local modes transition in acetylene bending vibrati#tf$.As functions, this time with quantitative agreement with experi-
noted at the end of section V, Rose and Kellfperformed a mental and theqretlcal results. 'I_'hese studies prowdg important
precursor of the present study, a bifurcation analysis of the fitting independent evidence for the birth of stable modes in bifurca-
Hamiltonian using a simplified model with just the DD-I tions, with pronounced consequences for the quantum states.
coupling. As discussed in the preceding section, McCoy and Further independent evidence comes from distinct methods
Sibert performed a van Vleck perturbation analysis of an involving correlation diagrams using the quantum version of
acetylene potential surface to get an effective Hamiltonian, the effective fitting Hamiltonian. Rose and Kelln¥drfound
whose full critical points bifurcation analysis we performed and evidence for the stable local bend and what is now recognized
discussed in Figure 7e. McCoy and Sibert analyzed this as the stable counter-rotator mode, using assignments based on
Hamiltonian using critical points conditions as well as wave notions later developed into a dressed-basis computational
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approach! Semparithi and Keshavamurfiifound both modes  a spectroscopic Hamiltonian that goes up to near the isomer-
using a derivative-based method of analyzing the correlation ization barrier. Several questions suggest themselves for future
diagram. investigation.

Yu and W2 have performed a coset semiclassical analysis  |n this investigation of = 0 acetylene bends, as in previous
on the fitting Hamiltonian and confirmed the following general studies of other molecules, it has been found that the normal
trend: destabilization of trans and cis normal modes betweenmodes always bifurcate to give 1-tori i.e., POs (“newdes
Npb = 6 and 14 and gradual migration of new modes with born in bifurcations”). As emphasized in section 3, this is by
“uneven distribution between the two normal mode characters” no means always the case. Bifurcations to higher dimensional
in phase space, until they reach the local/counter-rotator typetori are expected in general whenever there are multiple polyad
at polyad 22. numbers. Here there are polyad numbBgsand |, and the

Using Lie algebraic methods, Champion et4adleduced the existence of modes born in bifurcations cannot be taken for
existence of 15 possible types of ideal bending modes for a granted. The special case= 0 in fact leads to bifurcations to
Hamiltonian with the form of H in (18), without regard to the  1-tori, as can be shown by symmetry considerations| Fo0,
parameters. Their examination of the 144 eigenstates iNghe  the critical points will correspond to 2-tori. This again is not
= 22 polyad showed that many of them can be approximately unexpected; the extra dimension of the torus corresponds to
assigned to several of these 15 types. The majority of states ajprecession of orbits with respect to the symmetry axis, as
the bottom and top of the polyad in energy areLoand CR expected with anharmonic bend modes. However, in systems
type, consistent with the findings of the present work. such as full stretchbend dynamics of acetylene, there is a third

This section and the preceding demonstrate broad consistencypolyad number; see (1) and refs 20, 21, and 33. The analysis of
in the picture of acetylene bend dynamics that has emerged inthe bifurcation behavior in such a system is a challenging open
recent years. In particular, comparisons of bifurcation analysis problem.
of several different versions of the effective Hamiltonian, as  The analytical critical points method gives an algorithm to

well as independent results of other approaches, clearly showgbtain the bifurcation behavior of the spectroscopic Hamiltonian.
the existence of stable and CR modes. The finding of |t can still be asked if there is some a priori way to predict why
additionalO andP modes is a new result of the present study. there should be preciselgur modes born in bifurcations. There
These appear in all of the bifurcation studies of effective are two phase space spheres, each associated with one of the
Hamiltonians but may not be clear-cut in other approaches dominant resonance couplings, and each with two great circles,

because of their instability. with four new moded., O, P, CR arising in bifurcations on
. . ) these great circles. This doubling of the two new modeR
VIII. Discussion and Conclusions found on the single sphere of the planar acetylene bends fhodel,

The bifurcation analysis using the analytical critical points &S Well as the phase-locking relations betwéeand O and

method has achieved its principal goals. The new modes bornPetweenP andCR discussed in section 5, suggests that there
in bifurcations of the normal modes have been accounted for IS SOMe at least approximate organizing principle for the three-

and a rational account of their stability character obtained. A dimensional bend system that remains to be understood. We
global view of the bending dynamics has been achieved from '€ currently investigating this.

lowest to h|ghest energies of known Spectra_ Comparison of A related issue is whether one can obtain a formal classifica-
Hamiltonians from different types of spectroscopy shows tion of the entire phase space structure, not just the critical points
consistency of the dynamical picture as represented in bifurca-themselves. In single-resonance systems, this is easily ac-
tion behavior. Comparison of the bifurcation analysis with other complished, with the organization defined by the locations of
approaches shows consistency in the comprehensive picture thagtable fixed points, together with the unstable fixed points joined
has emerged in recent years. There is widespread agreemeri®y separatrices (stable and unstable manifolds). For example,

on the existence of what we have labeled stdbland CR for a pair of local modes coupled by a 1:1 resonance, the phase
modes. There are more subtle differences in various studiesspace divides into local and normal mode regions, as demon-
regarding the unstabl® and P modes. strated comprehensively with the catastrophe ffapthe more

The observation that the new modes lie at special angles ingeneral Darling-Dennison Hamiltonian for a pair of stretches
phase space, i.e., on great circles on the phase spheres, has be€h @ planar bends model, the slightly more complicated
accounted for in terms of the great circles conditions on the classification is also completely knovir similar classification
two major resonance couplings, tHeresonance and the IS desirable for higher-dimensional systems; the analytical
Darling—Dennison | and the comparative weakness of the Critical points analysis here is the first step.
Darling—Dennison Il. It remains an open question whether this It is noteworthy that each bi-stable normal mode spawns one
property of the strongest individual resonances constraining theset of bi-stable modes: thErans givesL; the Cis givesCR.
location of critical points will hold in general, especially for  After their birth in a bifurcationL lies at the bottom energy
the full stretch-bend system, which has a large number of end of each polyadCR lies at the top.L constitutes the
independent couplings. isomerization “reaction mode” for the acetylengnylidene

We have found that all the new modes are part of a single isomerization. An isomerization mode lying at the bottom of
“evolutionary tree” of the original normal modes and new modes each polyad has also been observed in HORis observation
born in their bifurcations. This contrasts with HERyhere an is suggestively consistent with the notion of a minimum energy
“isomerization mode” is born independently in a saddle-node reaction path. Whether these are instances of a general property
bifurcation, rather than branching directly from one of the of isomerization modes in bifurcating molecular vibration
normal modes. Furthermore, in the acetylene bends, the modesystems appears to be an open question.
born in bifurcations of the normal modes do not themselves As emphasized in section 7, critical points analysis of
undergo subsequent bifurcations. This contrasts wiD.H0.14 effective Hamiltonians obtained via perturbation theory provides

We now have a rather complete picture of the bifurcation a novel and stringent way of testing potential surfaces against
behavior of thd = 0 acetylene bends system as inferred from experiment. This involves comparison with the bifurcation
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behavior of effective Hamiltonians obtained from fitting spectra. h(19) El Idrissi, M. I; Lievin, J.; Campargue, A.; Herman, M. Chem.

: ; i : : Phys.1999 110, 2074-2086.
It is z;n alternatl_ve”tof run_r;lng trajectories on Isurf(aces and (20) Keliman. M. E.J. Chem. Phys199Q 93, 6630-6635.
searching numerically for bllurcatlo.ns.lln particular, for recent  (51) Keliman, M. E. Chen, GJ. Chem. Phys1991, 95, 8671-8672.
potential4® developed for high excitations of acetylene, per- (22) Fried, L. E.; Ezra, G. Sl. Chem. Phys1987, 86, 6270-6282.
turbation treatment followed by bifurcation analysis and com- (2?(>:) Jatc):q(lj)sonivll\g. Ii.ggg.D. Thesis, Massachusetts Institute of Technol-

. . . : gy, Cambridge, , .
parison with experimentally based results such as Figures 6 and’ (24) Hoshina. K.. lwasaki, A.; Yamanouchi, K. Jacobson, M. P.; Field,
7 would be most valuable. S R. W.J. Chem. Phys2001, 114, 7424-7442.

The problems of = 0 dynamics, rotatiorvibration interac- (25) Cohen-Tannoudj, C.; Diu, B.; LalpE. Quantum Mechani¢slohn
tion, and the full stretchbend dynamics are ripe for analysis ‘éV"e}’) 5725,{?:41'\‘% York, 1977; Vol. 1, Complements to Chapter VI,

e ; : : Vi, .
by th_e Cr.'t'cal points metho_d' EXtenS'.on of the ?peCtr_OSCOp'C (26) Heisenberg, WZ. Phyz.1925 33, 879; translated irfSources of
Hamiltonian to encompass isomerization dynamics, with mul- Quantum Mechanicsan der Waerden, B. L., Ed.; Dover: New York, 1967.
tiple wells for the acetylene and vinylidene forms, and motion o (27)dChI|g, M. Sgefmlglalsggtfl E\Z/Iﬁchtamiszv\llth Molecular Applicatipns
H : : H H arendon Press: Oxrord, ) apter 4.2.

abo"esgfge isomerization, is an outstanding problem. Recent™% ;g% 1 "™ “nickinson. A. .. Richards, By, Chem. Phys1977
works®>8are steps in this direction. In this connection, it appears 36, 63-139.
desirable to establish a link between the present developments (29) Joyeux, M.; Farantos, S. C.; Schinke,JRPhys. Chem. 2002
in analysis of effective Hamiltonians and recent developments 10?33;‘0g;3%‘gnlb-eck 3. Beck, C.; Schinke, R.; Koput, J.: Stamatiadis, S.:
using a phase space a_pproach to transition state théory. Farantos, S. C.; Joyeux, M. Chem. Phys2000 112, 8855.-8865. T

As a final remark, this paper has used fits of very complex  (31) Jost, R.; Joyeux, M.; Skokov, S.: Bowman].JChem. Phys1999
highly excited vibrationafrequency domaispectra to decode 111 6807-6820.
information about invariants (new modes born in bifurcations) (32) Rose, J. P.; Kellman, M. El. Chem. Phys1996 105 7348~
that can regsopably be considered “dynamical” in nature. An ' (33) Abbouti Temsamani, M.; Herman, M. Chem. PhysL995 102,
open question is to what extent the phenomena uncovered herg371-6384. _ - _
can be accessed time-domainspectroscopy and control. For _b(3;‘_) E':beCkv J. C. 'rt"?a%yg@'t_s 50“t°r|‘3 ’T_@'Ss'ted& ;e'(‘;'tfé‘gp'”SAﬁo
. . - . vibrational energy In protein ristilansen, P. L., Scott, A. C. S.;
example, the excitation and subsequent time evolution of Advanced Research Workshop on Self-Trapping of Vibrational Energy in

coherent states along the new modes discussed here would berotein: Plenum: New York, 1990.

of great interest.
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