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The Dowling–Wilson conjecture is a fundamental
inequality in combinatorial incidence geometry. The
simplest special case answers the following question:
given n points in the plane which do not all lie on
a line, how many unique lines can they determine?
Since each pair of points determines a line, the num-
ber of lines is clearly at most

(
n
2

)
. A lower bound is

less obvious: a 1948 theorem of de Bruijn and Erdős
[dBE48] shows that there must be at least n lines. In
fact, their proof is a clever counting argument that
involves no geometry at all: they show that, given
subsets A1, . . . , Am of the n points with the property
that each pair of points is contained in exactly one of
the subsets and no subset contains all of the points,
it is necessary that m ≥ n.

For a more general version of this problem, consider
a finite subset E of a vector space over a field F, and
let d be the dimension of the vector space V that they
span. The kth Whitney number Wk = Wk(E) is
defined as the number of distinct k-dimensional linear
subspaces of V that can be obtained as the linear
span of some subset of E. For example, we have
W0 = Wd = 1, corresponding to the zero subspace
(spanned by the empty set) and V (spanned by all of
E), respectively. In addition, note that W1(E) ≤ |E|,
with equality unless one of our vectors is a multiple
of another. In the case d = 3, the nonzero elements of
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E determine W1 points in the projective plane FP2.
These W1 points span a total of W2 lines, and the de
Bruijn–Erdős theorem is equivalent to the statement
that W1 ≤W2.

Since then, a number of successively more gen-
eral results have appeared with the theme “E de-
termines more subspaces of large dimension than of
small dimension.” In 1951, Motzkin [Mot51] proved
that W1 ≤ Wd−1 in arbitrary ambient dimension d.
In 1968, Basterfield and Kelly [BK68] gave a combi-
natorial proof of this fact which does not use projec-
tive geometry. In 1975, Dowling and Wilson [DW75]
showed that

W0 + W1 + · · ·+ Wk ≤Wd−k + · · ·+ Wd (1)

whenever k ≤ d/2, and in a related paper [DW74]
they made the following stronger conjecture.

Dowling–Wilson Conjecture. For any k ≤ d/2,
we have Wk ≤Wd−k.

The Dowling–Wilson conjecture is also called the
top heavy conjecture, because it says that the
poset L = L(E) of subspaces of V spanned by ele-
ments of E, ranked by dimension, has more elements
of high rank than of low rank. When d = 3 the
Dowling–Wilson conjecture, the inequality (1), and
the de Bruijn–Erdős theorem are all equivalent.

Example 1. Suppose that |E| = n ≥ d, and that the
vectors in E are in general position in their span V ,
meaning that any subset of cardinality at most d is
linearly independent. In this case, we have Wk(E) =(
n
k

)
for all k < d, and the inequality Wk ≤ Wd−k is

easy to verify algebraically.

Example 2. Let b1, . . . , bn be the standard basis for
Fn, and let E = {bi− bj | i < j ∈ [n]}. These vectors
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span the (n− 1)-dimensional subspace

V :=
{

(x1, . . . , xn) ∈ Fn
∣∣∣ ∑xi = 0

}
.

Subspaces of V spanned by subsets of E are in bijec-
tion with partitions of the set [n], where a subspace
of dimension k corresponds to a partition with n− k
parts. More precisely, if S = {S1, . . . , Sr} is an un-
ordered collection of disjoint nonempty subsets of [n]
with [n] = S1 t · · · t Sr, then we may define

VS :=

(x1, . . . , xn) ∈ Fn
∣∣∣ ∑

i∈Sj

xi = 0 for all j

 ,

which has dimension n − r and is spanned by the
vectors {bi−bj | i, j ∈ Sm for some m}. Thus Wk(E)
is equal to the Stirling number S(n, n − k), which
counts partitions of [n] into n−k parts. Already here,
the Dowling–Wilson conjecture is not obvious; the
resulting inequality on Stirling numbers was proved
by Dobson and Rennie [RD69, Theorem 2].

Matroids

In fact, Dowling and Wilson conjectured their in-
equality in a more general setting than the vector
configurations we considered above. Just as the theo-
rem of de Bruijn and Erdős can be stated and proved
without reference to linear geometry, the Dowling–
Wilson conjecture makes sense for arbitrary ma-
troids, which give a combinatorial abstraction of lin-
ear independence and incidence geometry. We point
to [Oxl11] for a comprehensive treatment of the the-
ory of matroids. Matroids famously have dozens of
equivalent definitions, one of which we give below.

Definition. A matroid is a pair (E, rk), where E
is a finite set and rk is a function from the power set
of E to the natural numbers satisfying the following
conditions:

• rk(∅) = 0.

• For all S ⊂ E and e ∈ E,

rk(S) ≤ rk(S ∪ {e}) ≤ rk(S) + 1.

• If rk(S ∪ {e}) = rk(S ∪ {f}) = rk(S), then

rk(S ∪ {e, f}) = rk(S).

A subset F ⊂ E is called a flat if it is maximal in
its rank, meaning that rk(F ∪ {e}) > rk(F ) for all
e ∈ E \ F . We define the kth Whitney number
Wk(E, rk) to be the number of flats of rank k.

If E is a finite subset of a vector space V , then we
may define rk(S) to be the dimension of the linear
span of S. In this case, a flat is a subset of E with the
property that no other element of E is contained in
its span. Thus flats of (E, rk) correspond bijectively
to subspaces of V spanned by subsets of E, and we
have an equality Wk(E, rk) = Wk(E) relating the two
different notions of Whitney numbers.

A matroid that arises from a set (or multiset) of
vectors is called realizable. Although it is some-
what difficult to come up with non-realizable exam-
ples (the smallest is called the Vámos matroid, which
has |E| = 8), a theorem of Nelson [Nel18] says that al-
most all matroids are non-realizable. More precisely,
the percentage of matroids with E = [n] that are
realizable goes to zero as n goes to infinity.

The Dowling–Wilson conjecture is now a theorem.
Huh and Wang [HW17] used techniques from alge-
braic geometry to show that it holds for realizable
matroids, and more recently Huh, Wang, and the
authors [BHM+] showed that it holds for arbitrary
matroids.

The Möbius algebra and the graded
Möbius algebra

Dowling and Wilson’s proof of the inequality (1) for
arbitrary matroids can be expressed in an instructive
way. For a matroid M = (E, rk), the poset of flats
L is a ranked lattice, and in particular it has a join
operation sending flats F,G to F ∨ G, the unique
smallest flat containing both F and G. It has the
property that

rk(F ∨G) ≤ rk(F ) + rk(G). (2)

When the matroid is realized by a vector configura-
tion, this operation corresponds to taking the sum of
vector subspaces of V .
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Consider the Möbius algebra of L, which is the
Q-vector space with one basis element yF for each flat
F ∈ L, and with the multiplication yF ∗ yG = yF∨G.
Define a pairing by putting

〈yF , yG〉 =

{
1 if yF ∗ yG = yE

0 otherwise,

and extending linearly. Let d = rk(E). For any k,
the inequality (2) implies that the subspace spanned
by the elements {yF | rkF ≤ k} pairs trivially with
the subspace spanned by {yF | rkF < d− k}. Dowl-
ing and Wilson deduced their theorem from a result
which is equivalent to the statement that this pairing
is nondegenerate, meaning that every nonzero ele-
ment pairs nontrivially with something. This implies
that the pairing induces an injection from the sub-
space spanned by {yF | rkF ≤ k} to the linear dual
of the subspace spanned by {yF | rkF ≥ d − k},
which implies the inequality (1).

In passing from the inequality (1) to the full conjec-
ture, it is natural to pass from the Möbius algebra to
the graded Möbius algebra H∗(M), which has the
same underlying vector space, but with the modified
multiplication

yF · yG =

{
yF∨G if rk(F ∨G) = rk(F ) + rk(G)

0 otherwise.

It is a graded algebra: if Hk(M) is the span of the yF
with rkF = k, then Hj(M) ·Hk(M) ⊂ Hj+k(M). (In
technical language, it is the associated graded alge-
bra obtained from a filtration of the Möbius algebra.)
One can define a new pairing on H∗(M) in the same
way as before, this time using the modified multipli-
cation. However, this pairing cannot be nondegen-
erate because Hk(M) and Hd−k(M) do not have the
same dimension.

To prove the Dowling–Wilson conjecture it would
be enough to show that every nonzero element
of Hk(M) pairs nontrivially with some element of
Hd−k(M) whenever k ≤ d/2, or equivalently that the
pairing induces an injection of Hk(M) into the linear
dual of Hd−k(M) for all k ≤ d/2. This was proved
by Kung when k = 1 [Kun79, Corollary 3.3], but the
statement is false when k = 2. Instead, [HW17] and

[BHM+] deduce the Dowling–Wilson conjecture from
a different statement: if L ∈ H1(M) is a positive com-
bination of yF over all rank 1 flats F , then for any
k ≤ d/2, the multiplication

Ld−2k : Hk(M)→ Hd−k(M)

is injective.

The proof in the realizable case

In the realizable case, this injectivity was proved by
Huh and Wang by interpreting the graded Möbius
algebra H∗(M) as the cohomology ring of an alge-
braic variety, which we now describe. We assume for
simplicity that our matroid is realizable by vectors
over the complex numbers C; the case of arbitrary
fields can be obtained by replacing singular cohomol-
ogy with `-adic étale cohomology.

Let V be a vector space over C spanned by a finite
set of vectors E. Let V ∗ be the linear dual of V ,
consisting of linear maps from V to C. We define a
linear map i : V ∗ → CE whose eth coordinate is given
by evaluation on the element e ∈ E ⊂ V . The fact
that V is spanned by E implies that i is an injec-
tion. Consider the Riemann sphere CP1 = C ∪ {∞},
and let Y be the closure of i(V ∗) inside of (CP1)E .
The algebraic variety Y is called the arrangement
Schubert variety of the pair (V,E), in analogy with
classical Schubert varieties in Lie theory. The connec-
tion between the geometry of Y and the structure of
the matroid M represented by E was first explored
by Ardila and Boocher [AB16].

The additive action of V ∗ on itself extends to an
action of V ∗ on Y . This action has finitely many
orbits, indexed by the flats of M , and each orbit is
isomorphic to an affine space. More precisely, for any
subset S ⊂ E, let pS ∈ (CP1)E be the point whose
eth coordinate is equal to 0 if e ∈ S and∞ otherwise.
Then:

• The point pS lies in Y if and only if S is a flat
of the matroid M .

• If F ⊂ E is a flat, then the stabilizer of pF in
V ∗ is equal to Span(F )⊥, and therefore its orbit
is isomorphic to V ∗/ Span(F )⊥ ∼= Span(F )∗. In
particular, it is an affine space of dimension rkF .
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• Every element of Y lies in the orbit of exactly
one point pF .

For a schematic picture of the orbits for the vector
arrangement of Example 2 with n = 3, see Figure 1.

Figure 1: The Schubert variety Y associated with
the vector arrangement of Examples 2 and 3 with
n = 3. Points are labeled by partitions of the set [3],
which correspond to flats. They are also labeled by
triples of elements of CP1 corresponding to the three
vectors b1− b2, b1− b3, b2− b3 ∈ V . For example, the
b1−b2 and b2−b3 coordinates of the point p{13,2} are
equal to ∞, while the b1− b3 coordinate is equal to 0
because 1 and 3 lie in the same block of the partition.

Example 3. Consider the vector configuration from
Example 2. We may regard V ∗ as the space of or-
dered n-tuples of points in C up to simultaneous
translation. Under this identification, the element
bi−bj ∈ E is identified with the linear functional that
takes an n-tuple of complex numbers to the difference
between the ith and jth points, and the compactifica-
tion Y of V ∗ is obtained by allowing these distances
to go to ∞. Recall from Example 2 that flats are in
bijection with partitions of the set [n]. If F is the
flat corresponding to the partition [n] = S1t· · ·tSr,
then the orbit containing pF consists of all tuples for

which the distance between the ith and jth points is
finite if and only if i and j lie in the same part of the
partition.

The decomposition of Y into affine spaces is a topo-
logical cell decomposition with all cells of even di-
mension. In particular, it implies that the cohomol-
ogy H∗(Y ;Q) vanishes in odd degrees, and that the
dimension of H2k(Y ;Q) is the kth Whitney number
Wk(M). In fact, we have a stronger statement: as
a ring, H∗(Y ;Q) is isomorphic to the graded Möbius
algebra H∗(M), with degrees doubled. (This is not
needed to prove the Dowling–Wilson conjecture in
the realizable case, but it is key to generalizing it to
all matroids.)

Because the variety Y is singular, it is natural to
consider its intersection cohomology IH∗(Y ;Q),
which is a graded module over H∗(Y ;Q). For smooth
algebraic varieties, intersection cohomology is iso-
morphic to ordinary cohomology, while for singular
varieties the intersection cohomology retains many
of the important properties of the cohomology of
smooth varieties. In particular, since Y is a projective
complex algebraic variety, it satisfies the hard Lef-
schetz property: If L ∈ H2(Y ;Q) is ample, then
for any j ≤ d = dimY , the multiplication map

Ld−j : IHj(Y ;Q)→ IH2d−j(Y ;Q) (3)

is an isomorphism.

Because Y is a proper variety which has a de-
composition into affine spaces, an argument of
Björner and Ekedahl [BE09] implies that the graded
H∗(Y ;Q)-module IH∗(Y ;Q) has a graded submodule
isomorphic to H∗(Y ;Q), regarded as a module over
itself. This is the last ingredient that we needed to
prove the Dowling–Wilson conjecture! Indeed, let L
be an ample class in H2(Y ;Q). Restricting the iso-
morphism (3) to the submodule H∗(Y ;Q) gives an
injection

H2k(Y ;Q)→ H2d−2k(Y ;Q).

Since the source and target have dimension Wk(M)
and Wd−k(M), respectively, we obtain the inequality
Wk(M) ≤Wd−k(M).
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The proof for general matroids

The proof of the full Dowling–Wilson conjecture in
[BHM+] follows the same basic plan as the proof in
the realizable case. Although there is no analogue of
the variety Y for general matroids, we still have an
analogue of its cohomology ring H∗(Y ;Q), namely
the graded Möbius algebra H∗(M). What is needed
is to define a graded module IH∗(M) over the graded
ring H∗(M), called the intersection cohomology
module of the matroid M , and to show that it sat-
isfies the conditions needed for the argument in the
previous section:

• IH∗(M) has a submodule isomorphic to H∗(M).

• IH∗(M) satisfies the hard Lefschetz property.

The first condition is immediate from the definition
of IH∗(M) (which we will not give here). The sec-
ond condition is proved via an elaborate induction in
which the hard Lefschetz property is one of fifteen
different properties of the module IH∗(M) that are
simultaneously proved [BHM+, Theorem 3.16]. For
a diagram depicting the structure of this induction,
see [BHM+, Figure 1].

Many of the steps of the induction are motivated
by statements that are known geometrically in the
realizable case. There are also strong similarities
with two other notable examples where “intersection
cohomology” has been defined and Hodge-theoretic
statements such as hard Lefschetz have been proved
for a non-existent variety: the intersection cohomol-
ogy of non-rational fans of Karu [Kar04], and Elias
and Williamson’s Hodge theory of Soergel bimodules
[EW14].
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