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1. Introduction

This is one of a series of papers devoted to the study of conformal ®eld theory
from the point of view of operator algebras (see [41] and [42] for an overview
of the whole series). In order to make the paper accessible and self-contained,
we have not assumed a detailed knowledge of either operator algebras or
conformal ®eld theory, including short-cuts and direct proofs wherever
possible. This research programme was originally motivated by V. Jones'
suggestion that there might be a deeper `operator algebraic' explanation of
the coincidence between certain unitary representations of the in®nite braid
group that had turned up independently in the theory of subfactors, exactly
solvable models in statistical mechanics and conformal ®eld theory (CFT).
To understand why there should be any link between these subjects, recall
that, amongst other things, the classical `additive' theory of von Neumann
algebras [26] was developed to provide a framework for studying unitary
representations of Lie groups. In concrete examples, for example the
Plancherel theorem for semisimple groups, this abstract framework had to be
complemented by a considerably harder analysis of intertwining operators
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and associated di�erential equations. The link between CFT and operator
algebras comes from the recently developed `multiplicative' (quantum?)
theory of von Neumann algebras. This theory has three basic sources: ®rstly
the algebraic approach to quantum ®eld theory (QFT) of Doplicher, Haag
and Roberts [10]; then in Connes' theory of bimodules and their tensor
products of fusion [9]; and lastly in Jones' theory of subfactors [18]. Our work
reconciles these ideas with the theory of primary ®elds, one of the funda-
mental concepts in CFT. Our work has the following consequences, some of
which will be taken up in subsequent papers:

(1) Several new constructions of subfactors.
(2) Non-trival algebraic QFT's in 1+1 dimensions with ®nitely many

sectors and non-integer statistical (or quantum) dimension (``algebraic
CFT'').
(3) A de®nition of quantum invariant theory without using quantum

groups at roots of unity.
(4) A computable and manifestly unitary de®nition of fusion for positive

energy representations (``Connes fusion'') making them into a tensor cate-
gory.
(5) Analytic properties of primary ®elds (``constructive CFT'').

To our knowledge, no previous work has suceeded in integrating the theory
of primary ®elds with the ideas of algebraic QFT nor in revealing the very
simple analytic structure of primary ®elds. As we explain below, the main
thrust of our work is the explicit computation of Connes fusion of positive
energy representations. Finiteness of statistical dimension (or Jones index) is
a natural consequence, not a technical mathematical inconvenience. It is
perhaps worth emphasising that the theory of operator algebras only pro-
vides a framework for studying CFT. As in the case of group representa-
tions, it must be complemented by a detailed analysis of certain interwining
operators, the primary ®elds, and their associated di�erential equations. As
we discuss later, however, the operator algebraic point of view can be used
to reveal basic positivity and unitarity properties in CFT that have previ-
ously seem to have been overlooked.

Novel features of our treatment are the construction of representations
and primary ®elds from fermions. This makes unitarity of the representa-
tions and boundedness properties of smeared vector primary ®elds obvious.
The only formal ``vertex algebra'' aspects of the theory of primary ®elds
borrowed from [39] are the trivial proof of uniqueness and the statement of
the Knizhnik-Zamolodchikov equation; our short derivation of the KZ
equation circumvents the well-known contour integral proof implicit but not
given in [39]. The proof that the axioms of algebraic QFT are satis®ed in the
non-vacuum sectors is new and relies heavily on our fermionic construction;
the easier properties in the vacuum sector have been known for some time
[7, 15]. The treatment of braiding relations for smeared primary ®elds is
new but inspired by the Bargmann-Hall-Wightman theorem [20, 36]. To our
knowledge, the application of Connes fusion to a non-trivial model in QFT
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is quite new. Our de®nition is a slightly simpli®ed version of Connes'
original de®nition, tailor-made for CFT because of the ``four-point function
formula''; no general theory is required.

The ®nite-dimensional irreducible unitary representations of SU(N) and
their tensor product rules are well known to mathematicians and physicists.
The representations Vf are classi®ed by signatures or Young diagrams
f1 � f2 � � � � � fN and, if V�k� � kkCN , we have the tensor product rule
Vf 
 V�k� �ag>kf Vg, where g ranges over all diagrams that can be obtained
by adding k boxes to f with no two in the same row. For the in®nite-
dimensional loop group LSU�N� � C1�S1; SU�N��, the appropriate unitary
representations to consider in place of ®nite-dimensional representations are
the projective unitary representations of positive energy. Positive energy
representations form one of the most important foundation stones of con-
formal ®eld theory [5, 12, 23]. The classi®cation of positive energy repre-
sentations is straightforward and has been known for some time now. A
positive energy representation Hf is classi®ed by its level `, a positive integer,
and its signature f , which must satisfy the permissibility condition
f1 ÿ fN � `. Extending the tensor product rules to representations of a ®xed
level, however, presents a problem. It is already extremely di�cult just
giving a coherent de®nition of the tensor product, since the naive one fails
hopelessly because it does not preserve the level. On the other hand physi-
cists have known for years how to `fuse' representations in terms of short
range expansions of products of associated quantum ®elds (primary ®elds).
We provide one solution to this `problem of fusion' in conformal ®eld
theory by giving a mathematically sound de®nition of the tensor product
that ties up with the intuitive picture of physicists. Our solution relates
positive energy representations of loop groups to bimodules over von
Neumann algebras. Connes de®ned a tensor product operation on such
bimodules ± ``Connes fusion'' ± which translates directly into a de®nition of
fusion for positive energy representations. The general fusion rules follow
from the particular rules Hf 2 H�k� �ag>kf Hg, where g must now also be
permissible. In this way the level ` representations of LSU�N� exhibit a
structure similar to that of the irreducible representations of a ®nite group.
There are several other approaches to fusion of positive energy represen-
tations, notably those of Segal [35] and Kazhdan & Lusztig [22]. Our picture
seems to be a unitary boundary value of Segal's holomorphic proposal for
fusion, based on a disc with two smaller discs removed. When the discs
shrink to points on the Riemann sphere, Segal's de®nition should degen-
erate to the algebraic geometric fusion of Kazhdan & Lusztig. We now give
an informal summary of the paper.

Fermions. Let Cli�(H ) be the Cli�ord algebra of a complex Hilbert space H ,
generated by a linear map f 7! a� f � (f 2 H ) satisfying a� f �a�g��
a�g�a� f � � 0 and a� f �a�g�� � a�g��a� f � � � f ; g�. It acts irreducibly on
Fock space KH via a� f �x � f ^ x. Other representations of Cliff�H� arise
by considering the real linear map c� f � � a� f � � a� f �� which satis®es
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c� f �c�g� � c�g�c� f � � 2Re� f ; g�; note that a� f � � 1
2 �c� f � ÿ ic�if ��. Since c

relies only on the underlying real Hilbert space HR, complex structures on
HR commuting with i give new irreducible representations of Cliff�H�. The
structures correspond to projections P with multiplication by i given by i on
PH and ÿi on �PH�?. The corresponding representation pP is given by
pP �a� f �� � 1

2 �c� f � ÿ ic�i�2P ÿ I�f ��. Using ideas that go back to Dirac and
von Neumann, we give our own short proof of I. Segal's equivalence cri-
terion: if P ÿ Q is a Hilbert-Schmidt operator, then pP and pQ are unitarily
equivalent. On the other hand if u 2 U�H�, then a�uf � and a�ug� also satisfy
the complex Cli�ord algebra relations. Thus a� f � ! a�uf � gives an auto-
morphism of Cliff�H�. We say that this ``Bogoliubov'' automorphism is
implemented in pP i� pP �a�uf �� � UpP �a� f ��U� for some unitary U . This
gives a projective representation of the subgroup of implementable unitaries
UP �H�. Segal's equivalence criterion leads immediately to a quantisation
criterion: if �u; P � is a Hilbert-Schmidt operator, then u 2 UP �H�.

Positive energy representations. Let G � SU�N� and let LG � C1�S1;G� be
the loop group, with the rotation group Rot S1 acting as automorphisms. If
H � L2�S1;CN � and P is the projection onto Hardy space H2�S1;CN �,
LSU�N�oRot S1 � UP �H� so we get a projective representation
p
`P : LU�N�oRot S1 ! PU�F
`� where F denotes Fock space KHP . Now
Rot S1 acts with positive energy, where an action Uh on H is said to have
positive energy if H �an�0H�n� with Uhn � einhn for n 2 H�n�, H�n� is
®nite-dimensional and H�0� 6� �0�. This implies that F
` splits as a direct
sum of irreducibles Hi, called the level ` positive energy representations. The
Hi's are classi®ed by their lowest energy subspaces Hi�0�, which are
irreducible modules for the constant loops SU�N�. Their signatures
f1 � f2 � � � � � fN must satisfy f1 ÿ fN � `, so F
`V has only ®nitely many
inequivalent irreducible summands. This classi®cation is achieved by de-
®ning an in®nitesimal action of the algebraic Lie algebra L0g on the ®nite
energy subspace H 0 �PH�n� using bilinear terms a� f �a�g��. Our main
contribution here is to match up these operators with the skew-adjoint
operators predicted by analysis. The quantisation criterion also implies that
the MoÈ bius transformations of determinant 1 act projectively on each
positive energy representation compatibly with LG. The vacuum represen-
tation H0 corresponds to the trivial representation of G; the MoÈ bius
transformations of determinant ÿ1 also act on H0, but this time by
conjugate-linear isometries. This presentation of the theory of positive
energy representations is adequate for the needs of this paper; in [42] we
show from scratch that any irreducible positive energy representation of
LSU�N�oRot S1 arises as a subrepresentation of some F
`V .

von Neumann algebras. We brie¯y summarise those parts of the general
theory of operator algebras that are background for this paper. (They
will serve only as motivation, since all the advanced results we need will be
proved directly for local fermion or loop group algebras.) A von Neumann
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algebra is simply the commutant S0 � fT 2 B�H� : Tx � xT for all x 2 Sg
of a subset S of B�H� with S� �S. Typically S will be a *-subalgebra of
B�H� or a subgroup of U�H�; the von Neumann algebra generated by S is
then just S00. A von Neumann algebra M is called a factor if its centre
contains only scalar operators. Modules over a factor were classi®ed by
Murray and von Neumann [26] using a dimension function, the range of
values giving an invariant of the factor: the non-negative integers (type I),
the non-negative reals (type II) and f0;1g (type III). Further structure
comes from the modular operators Dit and J of Tomita-Takesaki [8]: if X is a
cyclic vector for M and M 0 and S � JD1=2 is the polar decomposition of the
map S : MX! MX; aX 7! a�X, then JMJ � M 0 and DitMDÿit � M . On
the one hand the operators Dit provide a further invariant of type III factors,
the Connes spectrum

T
X Spec Dit

X, a closed subgroup of R [9]; see also [42];
while on the other hand J makes the underlying Hilbert space H0 into a
bimodule over M , the vacuum bimodule, with the action of the opposite
algebra Mop given by a 7! Ja�J . Bimodules are closely related to subfactors
and endomorphisms: a bimodule de®nes a subfactor by the inclusion
Mop � M 0; and an endomorphism q : M ! M can be used to de®ne a new
bimodule structure on H0. Connes fusion [9] gives an associative tensor
product operation on bimodules that generalises composition of endo-
morphisms: given bimodules X and Y , their fusion X 2 Y is the completion
of HomMop�H0;X � 
HomM�H0; Y � with respect to the pre-inner product
hx1 
 y1; x2 
 y2i � �x�2x1y�2y1X;X�. Roughly speaking Jones, Ocneanu and
Popa [18, 19, 29, 42] proved that an irreducible bimodule is classi®ed by the
tensor category it generates under fusion, provided the category contains
only ®nitely many isomorphism classes of irreducible bimodules.

Modular theory for fermions. For fermions and bosons, modular theory
provides the most convenient framework for proving the much older result
in algebraic quantum ®eld theory known as ``Haag-Araki duality''. This
deals with the symmetry between observables in a region and its (space-like)
complement. As in [24], we consider more generally a modular subspace K
of a complex Hilbert space H , i.e. a closed real subspace such that
K \ iK � �0� and K � iK is dense in H . (Thus K � MsaX in Tomita-
Takesaki theory.) If S � JD1=2 is the polar decomposition of the map
S : K � iK ! K � iK; n� ig 7! nÿ ig, then JK � iK? and DitK � K; in the
text following [33] we avoid unbounded operators by taking the equivalent
de®nitions J � phase�E ÿ F � and Dit � �2I ÿ E ÿ F �it�E � F �it, where E and
F are the projections onto K and iK. The modular operators J and Dit are
uniquely characterised by the Kubo-Martin-Schwinger (KMS) condition:
commuting operators J and Dit give the modular operators if DitK � K
and, for each n 2 K, f �t� � Ditn extends to a bounded continuous func-
tion on the strip ÿ 1

2 � Im z � 0, holomorphic in the interior, with
f �t ÿ i=2� � Jf �t�.

This theory can be used to prove an abstract result, implicit in the work
of Araki [1, 2]. Let K be a modular subspace of H and let M�K� be the von
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Neumann algebra on KH generated by the operators c�n� for n 2 H . Then
M�K?� is the graded commutant of M�K� (``Araki duality'') and the mod-
ular operators for M�K� on KH come from the quantisations of the corre-
sponding operators for K. This reduces computations to ``one-particle
states'', i.e. the prequantised Hilbert space. We then perform the pre-
quantised computation explicitly when H � L2�S1; V � and K � L2�I ; V �, with
I a proper subinterval of S1 with complement Ic. We deduce that if M�I� is
the von Neumann algebra on KHP generated by a� f �'s with f 2 L2�I ; V �,
then M�Ic� is the graded commutant of M�I� (Haag-Araki duality) Dit and J
come from the MoÈ bius ¯ow and ¯ip ®xing the end points of I .

Local loop groups. Let LI SU�N� be the subgroup of LSU�N� consisting of
loops equal to 1 o� I . The von Neumann algebra N�I� generated by LI G is a
subalgebra of the local fermion algebra M�I� invariant under conjugation by
the modular group Dit, since it is geometric. The modular operators of N�I�
can therefore be read o� from those of M�I� by a result in [37] (``Takesaki
devissage''); we give our own short proof of a slightly modi®ed version of
Takesaki's result. We deduce the following properties of the local sub-
groups, predicted by the Doplicher-Haag-Roberts axioms [10]. The use of
devissage, relating di�erent models, is new and seems unavoidable in
proving factoriality and local equivalence.

1. Locality In any positive energy representation LI SU�N� and LIc SU�N�
commute.
2. Factoriality. pi�LI SU�N��00 is a factor if �pi;Hi� is an irreducible

positive energy representation.
3. Local equivalence. There is a unique *-isomorphism pi : p0�LI G�00 !

pi�LI G�00 sending p0�g� to pi�g� for g 2 LI G such that Ta � pi�a�T for all
T 2 HomLI G�H0;Hi�.
4. Haag duality. If p0 is the vacuum representation at level `, then

p0�LI SU�N��00 � p0�LIc SU�N��0.
5. Irreducibility. Let A be a ®nite subset of S1 and let LASU�N� be the

subgroup of LSU�N� of loops trivial to all orders at points of A. If p is
positive energy, then p�LASU�N��0 � p�LSU�N��0, so the irreducible positive
energy representations of LSU�N� stay irreducible and inequivalent when
restricted to LASU�N�.
Vector primary ®elds. Let Pi and Pj be projections onto the irreducible
summands Hi and Hj of p
`P and ®x an SU�N�-equivariant embedding of CN

in CN 
C`. If f 2 L2�S1;CN � � L2�S1;CN 
C`�, we may ``compress'' the
smeared fermion ®eld a� f � to get an operator /ij� f � � Pia� f �
Pj 2 Hom�Hj;Hi�. By construction /ij� f � satis®es a group covariance re-
lation g/� f �gÿ1 � /�g � f � for g 2 LSU�N�oRot S1 as well as the L2 bound
k/� f �k � kf k2. If f is supported in Ic, then /� f � gives a concrete element in
HomLI SU�N��Hj;Hi�; this space of intertwiners is known to be non-zero by
local equivalence. Clearly / de®nes a map L2�S1;CN � 
 Hj ! Hi which
intertwines the action of LSU�N�oRot S1. The modes /�v; n� � /�zÿnv�
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satisfy Lie algebra covariance relations �D;/�v; n�� �ÿ/�v; n�; �X �m�;
/�v; n�� � /�Xv; n� m�: Exactly as in [39], the ®eld / is uniquely determined
by these relations and its initial term /�v; 0� in HomG�Vj 
 V ; Vi�. Our main
new result is that all vector primary ®elds arise by compressing fermions and
therefore satisfy the L2 bound above.

Braiding relations. If f and g have disjoint supports in S1, then a� f �a�g� �
ÿa�g�a� f � and a� f �a�g�� � ÿa�g��a� f �. Similar but more complex
``braiding relations'' hold for vector primary ®elds and their adjoints. These
may be summarised as follows. Let a; b 2 L2�S1;CN � be supported in inter-
vals I and J in S1nf1g with J anticlockwise after I . De®ne agf � /(

gf �eÿaa�
and bgf � /(

gf �eÿab�, with a � �Dg ÿ Df ÿ D(�=2�N � `� and ea�eih� � eiah.

Then

bgf afh �
X

lf1agf1bf1h; bgf a�g1f �
X

mha�hgbhg1 ;

with all coe�cients non-zero. The proof of these relations is similar to that
of the Bargmann-Hall-Wightman theorem [11, 20, 36]. To prove the ®rst for
example let Fk�z� �

P�/ik�u; n�/kj�v;ÿn�vj; vi�zn, a power series convergent
for jzj < 1 with values in W � HomSU�N��Vj 
 U 
 V ; Vi�. To prove the
braiding relation, it su�ces to show that Fk extends continuously to S1nf1g
and Fk�eih� �P ckheilkhhFh�eÿih� there. Using Sugawara's formula for D, we
show directly that the Fk's satisfy the Knizhnik-Zamolodchikov ODE [23]

dF
dz
� PF

z
� QF
1ÿ z

;

where P ;Q 2 End�W � (the original proof in [23], referred to in [39], is dif-
ferent and less elementary). In all cases we need, the matrix P has distinct
eigenvalues, none of which di�er by positive integers, and Q is a non-zero
multiple of a rank one idempotent in general position with respect to P . For
two vector primary ®elds this ODE reduces to the classical hypergeometric
ODE and the required relation on S1nf1g follows from Gauss' formula for
transporting solutions at 0 to 1. In general the ODE can be related to the
generalised hypergeometric ODE for which the corresponding transport
relations were ®rst obtained by Thomae [38] in 1867 in terms of products of
gamma functions. Such a link exists because there is a basis of W for which
P and P ÿ Q are both in rational canonical form. In this basis, the ODE is
just the matrix form of the generalised hypergeometric ODE.

Transport formulas. The operator a�(0a(0 on H0 commutes with LIc SU�N�,
so lies in p0�LI SU�N��00. Therefore, by local equivalence, we have the right
to consider its image under pf . We obtain the fundamental ``transport
formula'': pf �a�(0a(0� �

P
kga�gf agf , with kg > 0. Thus for T 2 HomLI G

�H0;Hf �, we have
Ta�(0a(0 �

X
kga�gf agf T :
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We will prove the transport formula by induction using the braiding rela-
tions; the original proof in [43] used the transport relations between 0 and 1
of the basic ODE above.

De®nition of Connes fusion. We develop the ideas of fusion directly at the
level of loop groups without appeal to the general theory of bimodules over
von Neumann algebras [9, 34, 42, 43]. Let X , Y be positive energy repre-
sentations of LSU�N� at level `. Let X � HomLIc SU�N��H0;X � and
Y � HomLI SU�N��H0; Y �. These spaces of bounded intertwiners or ®elds re-
place vectors or states in X and Y . Thus x 2 X ``creates'' the state xX from
the vacuum X. The fusion X 2 Y is de®ned to be the completion of X
Y
with respect to the pre-inner product hx1 
 y1; x2 
 y2i � �x�2x1y�2y1X;X�, a
four-point function. X 2 Y admits a natural action of LI SU�N� � LIc SU�N�.
The mapX
Y! X 2 Y extends to continuous maps X 
Y! X 2 Y and
X
 Y ! X 2 Y . This implies that if X0 � X and X0X � X , then X0 
Y
has dense image in X 2 Y . Fusion is associative and X 2 H0 � X � H0 2 X .

Explicit computation of fusion. We use the transport formula to prove the
fusion rule H( 2 Hf �aHg where g ranges over permissible signatures
obtained by adding a box to f . The transport formula is still true if agf is
replaced by linear combinations xgf of intertwiners pg�h�agf with h 2 LI G.
But then for y 2 HomLI SU�N��H0;Hf � we have �x�xy�yX;X� � �y�pf �x�x�
yX;X��P kgkxgf yXk2. Thus U�x
 y� �ak1=2g xgf yX gives the required
unitary intertwiner from H( 2 Hf onto aHg. Similar reasoning can be
used to prove that Hf 2 H�k� �ag>kf Hg, where g runs over all permissible
signatures that can be obtained by adding k boxes to f with no two boxes in
the same row. This time a transport formula must be proved with a(0

replaced by a path ak;kÿ1akÿ1;kÿ2 � � � a(0 indexed by exterior powers. This
device of considering products of vector primary ®elds means that we can
avoid the use of smeared primary ®elds corresponding to the exterior powers
kkCN which need not be bounded [43].

The fusion ring. It follows immediately from the fusion rule with H( that the
Hf 's are closed under fusion. Moreover, if R denotes the operator corre-
sponding to rotation by 180�, then the formula B�x
 y� � R��RyR� 
 RxR��
gives a unitary intertwining X 2 Y and Y 2 X ; this is a less re®ned form of the
braiding operation thatmakes the level ` representations into a braided tensor
category [44]. Thus the representation ring R of formal sums

P
mf Hf be-

comes a commutative ring. For each permitted signature h, let zh 2 SU�N� be
the diagonal matrix with entries exp�2pi�hk � N ÿ k ÿ H�=�N � `�� where
H � �P hk � N ÿ k�=N ; these give a subsetT. LetS � CT be the image of
R�SU�N�� under the map of restriction of characters. Our main result asserts
that the natural Z-module isomorphism ch : R!S de®ned by �Hf � 7! �Vf �
is a ring isomorphism. This completely determines the fusion rules. They agree
with the well-known ``Verlinde formulas'' [40, 21], in which the usual tensor
product rules for SU�N� are modi®ed by an action of the a�ne Weyl group.
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Discussion. Many of the early versions of the results in Chapter II were
worked out in discussions with Jones in 1989±1990 (see [19] and [42]). We
were mainly interested in the inclusion pi�LI G�00 � pi�LIc G�0 de®ned by the
``failure of Haag duality''. Algebraic quantum ®eld theory [15] provided a
series of predictions about these local loop group algebras which we inter-
preted (in the language of [30]) and veri®ed. In particular two of the main
theorems, Haag-Araki duality and loop group irreducibility, were originally
obtained with Jones. In the case of geometric modular theory for fermions
on S1, each of us came up with di�erent proofs which appear in simpli®ed
form here (see also [42]). The original proofs of irreducibility have been
superseded by the simpler and more widely applicable method described
above. One of our original proofs followed from the stronger result that LAG
is dense in LG in the natural topology on UP �H�, so that p�LAG� is strong
operator dense in p�LG� for any positive energy representation; the analo-
gous result fails for Di� S1 and its discrete series representations. The
geometric method of descent from local fermion algebras to local loop
group algebras and its application to Haag duality and local equivalence
were ®rst suggested by me, but it was Jones who pointed out that this
approach tacitly assumed Takesaki's result [37] (``Takesaki devissage'').

The ®rst paper of this series [42] is an expanded version of expository
lectures given in the Borel seminar in Bern in 1994. Since it was intended as
an introduction to the general theory, we included a complete treatment of
the whole theory of fusion, braiding and subfactors for the important special
case of LSU�2�. In the second paper of the series [43] we made a detailed
study of primary ®elds from several points of view. (See Jones' SeÂ minaire
Bourbaki talk [48] for a detailed summary.) We constructed all primary
®elds as compressions of tensor products of fermionic operators, thus es-
tablishing their analytic properties. To do so, we had to complete and extend
the Lie algebraic approach of Tsuchiya and Kanie [39] and in particular
prove the conjectured four-point property of physicists. Fusion of positive
energy representations was computed using the braiding properties of pri-
mary ®elds. The braiding coe�cients appeared as transport coe�cients
between di�erent singular points of the basic ODE studied here; these co-
e�cients were derived using Karamata's Tauberian theorem and a unitary
trick. Since the smeared primary ®elds could be unbounded, their action had
to be controlled by Sobolev norms; and a detailed argument had to be
supplied for extending the braiding relations to arbitrary bounded inter-
twiners.

In this paper we give a more elementary approach to fusion using only
vector primary ®elds and their adjoints. It is not possible to overemphasise
the central roÃ le (prophesied by Connes) played by the fermionic model in
our work, nor the importance of considering the relationships between
di�erent models (stressed by P. Goddard). The boundedness of the corre-
sponding smeared ®elds is very signi®cant. Not only does it simplify the
analysis, but more importantly it can be seen to lie at the heart of the crucial
irreducibility result (due to the duality between smeared primary ®elds and
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loop group observables). This is an example of Goddard's philosophy that
``vertex operators tell you what to do.'' With the important exception of the
Lie algebra operators (indispensable for proving the KZ equation), we have
tried to keep exclusively to bounded operators. This is in line with Rudolf
Haag's philosophy that quantum ®eld theory can and should be understood
in terms of (algebras of) bounded operators [15]. Here, because of the
boundedness of vector primary ®elds, there is no choice.

In the fourth paper of this series [44] we explain how the positive energy
representations at a ®xed level become a braided tensor category. We have
already seen a simpli®ed version of the braiding operation when proving
that Connes fusion is commutative. The key to understanding this braiding
structure lies in the ``monodromy'' action of the braid group on products of
vector primary ®elds. The important feature of braiding allows us to make
contact with the subfactors of the hyper®nite type II1 factor de®ned by
Jones and Wenzl [18, 19, 45] using special traces on the in®nite braid group.
In particular this explains the coincidence between the monodromy repre-
sentation of the braid group in [39] and the Hecke algebra representations of
Jones and Wenzl. Further developments include understanding the ``mod-
ularity'' of the category, the property which allows 3-manifold invariants to
be de®ned. This involves studying the elliptic KZ equations as well as
®nding and versifying precise versions of the axioms for a CFT; the ideas
behind our computation of fusion seem to give a general method for un-
derstanding unitarity and positivity properties of quite general CFTs. In
addition the analytic properties of primary ®elds implied by our construc-
tion (such as the fact that qL0/�z� is a Hilbert-Schmidt operator for jqj < 1)
should allow primary ®elds to be interpreted as morphisms corresponding to
3-holed spheres or trinions in Segal's language. This should yield a precise
analytic version of Segal's ``modular functor'', using the ``operator for-
malism'' for trinion decompositions of Riemann surfaces.

The braiding properties of vector primary ®elds can also be developed
through a more systematic use of the conformal inclusion SU�N��
SU�`� � SU�N`�. The level one representations and vector primary ®elds of
SU�N`�, when restricted to SU�N� � SU�`� and decomposed into tensor
products, yield all representations and vector primary ®elds of SU�N� at
level ` and SU�`� at level N . The level one representations of LSU�N`� arise
by restricting the fermionic representation of LU�N`� to LSU�N`� � LU�1�
(here U�1� is the centre of U�N`�). Our fermionic construction of primary
®elds for LSU�N� in this and the previous paper have been a simpli®cation
of the more sophisticated picture provided by the above conformal inclu-
sion, ®rst considered from this point of view by Tsuchiya & Nakanishi [27].
Here we have ignored the roÃ le of the group SU�`�. If it is brought into play,
it is possible to give a less elementary but more conceptual non-computa-
tional proof that all the braiding coe�cients are non-zero, based on the
Abelian braiding of fermions or vector primary ®elds at level one. This
approach, which will be taken up in detail when we consider subfactors
de®ned by conformal inclusions, has the advantage ®rstly that it makes the
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non-vanishing of the coe�cients manifest and secondly that it does not
require the explicit solutions of the KZ ODE and their monodromy prop-
erties that we have used here and in the second paper. It therefore extends to
other groups where less information about the KZ ODE is available at
present.
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I. Positive energy representations of LSU(N)

2. Irreducible representations of SU(N)

We give a brief account of the representation theory of SU�N� from a point
of view relevant to this paper. This account closely parallels our develop-
ment of the classi®cation and fusion of positive energy representations of
LSU�N�, so provides a simple prototype. Let V � CN be the vector repre-
sentation. We shall consider irreducible representations of SU�N� appearing
in tensor powers V 
m. Let R�SU�N�� denote the representation ring of
SU�N�, the ring of formal integer combinations of such irreducible repre-
sentations. Let g be the Lie algebra of SU�N�, the traceless skew-adjoint
matrices. Thus g acts on V 
m, hence each irreducible representation W , and
EndG�W � � Endg�W �. This representation of g extends linearly to a *-rep-
resentation of its complexi®cation gC, the traceless matrices. gC is spanned
by the elementary matrices Eij (i 6� j) and traceless diagonal matrices. Let T
denote the subgroup of diagonal matrices z � �z1; z2; . . . ; zN � in SU�N�.
Given an irreducible representation SU�N� ! U�W �, we can write
W �ag2ZN Wg with p�z�v � zgv for v 2 Wg, z 2 T . We call g a weight and Wg

a weight space; g is only determined up to addition of a vector �a; a; . . . ; a�
for a 2 Z. The monomial matrices in SU�N� permute the weight spaces by
permuting the entries of g � �g1; . . . ; gN �, so there is always a weight with
g1 � g2 � . . . � gN . Such a weight is called a signature. If the weights are
ordered lexicographically, the raising operators p�Eij� (i < j) carry weight
spaces into weight spaces of higher weight; their adjoints p�Eij� (i > j) are
called lowering operators and decrease weight.

Clearly every irreducible representation W contains a highest weight
vector v. Now W is irreducible for gC and every monomial A of operators in
gC is a sum of products LDR where L is a product of lowering operators, D is
a product of diagonal operators and R is a product of raising operators.
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Since LDRv is proportional to v or has lower weight, v is unique up to a
multiple. On the other hand �A1v;A2v� is uniquely determined by the weight
of v and the Ai's, since A�2A1 can be written as a sum of operators LDR and
�LDRv; v� � �DRv; L�v� with L� a raising operator. Thus if W 0 is another
irreducible representation with the same highest weight and corresponding
vector v0, Av 7! Av0 is a unitary W ! W 0 intertwining g and hence
G � exp�g�. Thus irreducible representations are classi®ed by their signa-
tures. Every signature occurs: if f1 � f2 � � � � � fN � 0, the vector ef �
e
� f1ÿf2�
1 
�e1 ^ e2�
� f2ÿf3� 
 � � � 
 �e1 ^ e2 ^ � � � ^ eN �
fN is the unique high-

est weight vector in k1V 
� f1ÿf2� 
 k2V 
� f2ÿf3� 
 � � � 
 kN V 
fN �V 

ÿP

fi
�
.

By uniqueness, ef generates an irreducible submodule.
A signature f with fN � 0 is represented by a Young diagram with at

most N rows and fi boxes in the ith row. Thus V corresponds to the diagram
( and kkV to the diagram �k� with k rows, with one box in each row. We
write g > f if g can be obtained by adding one box to f . More generally we
write g >k f if g can be obtained by adding k boxes to f with no two in the
same row.

Lemma. HomG�Vf 
 V�k�; Vg� is at most one-dimensional and only non-zero
if g >k f . When k � 1, it is non-zero i� g > f . Hence Vf 
 V( �ag>f Vg

and Vf 
 kkV �ag>hf Vg.

Proof. Let vf and vg be highest weight vectors in Vf and Vg. If
T 2 HomG�Vf 
 V�k�; Vg� with T �vf 
 v� � 0 for all v 2 kkV , then applying
lowering operators we see that T � 0. If T 6� 0, we take w � ei1 ^ . . . ^ eik of
highest weight such that T �vf 
 w� 6� 0. Applying raising operators, we see
that T �vf 
 w� is highest weight in Vg so is proportional to vg. So the weight
of vf 
 w is a signature and g >k f . If S is another non-zero intertwiner, we
may choose a such that R � S ÿ aT satis®es R�vf 
 w� � 0. If R 6� 0, we may
choose w0 of highest weight such that R�vf 
 w� 6� 0. But this gives a con-
tradiction, since R�vf 
 w� would be annihilated by all raising operators and
have weight lower than vg. So HomG�Vf 
 V�k�; Vg� is at most one-dimen-
sional.

If g is obtained by adding a box to the ith row of f , then the map

T : k1V 
� f1ÿf2� 
 k2V 
� f2ÿf3� 
 � � � 
 kN V 
fN bV

! k1V 
�g1ÿg2� 
 k2V 
�g2ÿg3� 
 � � � 
 kN V 
gN

given by exterior multiplication by V on the � f1 ÿ fi�th copy of KV com-
mutes with G and satis®es T �ef 
 ei� � eg. Thus if P and Q denote the
projections onto the submodules generated by ef and eg respectively,
QT �P 
 I� gives a non-zero intertwiner Vf 
 V ! Vg.

For zi 2 C and a signature f , we de®ne the symmetric function
Xf �z� � det�zfi�nÿi

j �=det�znÿi
j �. The denominator here is a Vandermonde

determinant given by
Q

i<j�zi ÿ zj�. If Xk�z� �
P

i1<���ik zi1 . . . zik , then it is
elementary to show that Xf Xk �

P
g>kf Xg for k � 1; . . . ;N . In particular
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Xk�z� coincides with X�k��z�; and it follows, by induction on f1 ÿ fN and
the number of boxes in the f1th column, that each Xf �z� is an integral
polynomial in the Xk�z�'s.

Theorem. �1� Vf 
 V�k� �ag>hf Vg.

�2� R�SU�N�� is generated by the exterior powers and the map ch : �Vf � !
Xf gives a ring isomorphism between R�SU�N�� andSN , the ring of symmetric
integral polynomials in z, where

Q
zi � 1.

(3) (Weyl's character formula [44]) vf �z� � Tr�pf �z�� � Xf �z� for all f .

Proof. (1) We know that Vf 
 kkV �ag>kf Vg. We prove by induction on

jf j �P fj that Vf 
 Vk �ag1>kf Vg1 . It su�ces to show that if this holds for
f then it holds for all g with g > f . Now, comparing the coe�cients of Xh in
�Xf Xk�X( � �Xf X(�Xk, we see that jfg1 : h >k g1 > f gj � jfg2 : h > g2
>k f gj. Tensoring by V(, we deduce that �g>f Vg 
 V�k� � �g1>kf �h>g1 Vh �
�g>f �h>kg Vh. Since Vg 
 V�k� �ah>kgVh, we must have equality for all g,
completing the induction.
(2) Let ch be the Z-linear isomorphism ch : R�SU�N�� !SN extending
ch�Vf � � Xf . Then by (1), ch�V�k�Vf � � XkXf . This implies that ch restricts to
a ring homomorphism on the subring of R�SU�N�� generated by the exterior
powers. On the other hand the Xk's generate SN , so the image of this
subring is the whole of SN . Since ch is injective, the ring generated by the
exterior powers must be the whole of R�SU�N�� and ch is thus a ring ho-
momorphism, as required.
(3) The maps �Vf � ! vf �z� and �Vf � 7! Xf �z� de®ne ring homomorphisms
R�SU�N�� ! C. These coincide on the exterior powers and therefore
everywhere.

3. Fermions and quantisation

Given a complex Hilbert space H , the complex Cli�ord algebra Cliff�H� is
the unital *-algebra generated by a complex linear map f 7! a� f � (f 2 H )
satisfying the anticommutation relations a� f �a�g� � a�g�a� f � � 0 and
a� f �a�g�� � a�g��a� f � � � f ; g� (complex Cli�ord algebra relations). The
Cli�ord algebra has a natural action p on KH (fermionic Fock space) given
by p�a� f ��x � f ^ x, called the complex wave representation. The complex
wave representation is irreducible. For X is the unique vector such that
a� f ��X � 0 for all f (this condition is equivalent to orthogonality toP

k�1 kkH ) and X is cyclic for the a� f �'s. Thus if T 2 End�KH� commutes
with all a� f ��'s, T X � kX for k 2 C; and if T also commutes with all a� f �'s,
T � kI .

To produce other irreducible representations of Cliff�H�, we introduce
the operators c� f � � a� f � � a� f ��. Thus c satis®es c� f � � c� f ��, f 7! c� f �
is real-linear and c� f �c�g� � c�g�c� f � � 2Re� f ; g� (real Cli�ord algebra
relations). The equations c� f � � a� f � � a� f �� and a� f ���c� f � ÿ ic�if ��=2
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give a correspondence between complex and real Cli�ord algebra relations.
Since c relies only on the underlying real Hilbert space HR, complex
structures on HR commuting with i give new irreducible representations of
Cliff�H�. These complex structures correspond to projections P in H : mul-
tiplication by i is given by i on PH and ÿi on �PH�?. Unravelling this
de®nition, we ®nd that the projection P de®nes an irreducible representa-
tion pP of Cliff�H� on fermionic Fock space FP � KPH b
K�P?H�� given
by pP �a� f �� � a�Pf � � a��P?f ����. (Equivalently pp�a� f �� � �c� f � ÿ ic
�i�2P ÿ I�f ��=2 on KH .)

Theorem (Segal's equivalence criterion [3]). Two irreducible representations
pP and pQ are unitarily equivalent if P ÿ Q is a Hilbert-Schmidt operator.

Remark. The converse also holds [3, 42], but will not be needed.

Proof. If PH (or P?H ) is ®nite-dimensional, then so is QH (or Q?H ) and the
representations are easily seen to be equivalent to the irreducible represen-
tation on KH (or KH �). So we may assume that dim PH � dim P?H � 1.

The operator T � �P ÿ Q�2 is compact, so by the spectral theorem
H �ak�0Hk where T n � kn for n 2 Hk. Moreover dimHk <1 for k > 0
while P � Q on H0. Now T commutes with P and Q, so that each Hk is
invariant under P and Q. Thus H can be written as a direct sum of ®nite-
dimensional irreducible submodules Vi for P and Q, with �P ÿ Q�2 a scalar k
on each. Since the images of P and Q (and I) should generate End�Vi�, the
identity �P ÿ Q�2 � kI forces dim End�Vi� � 4. Hence dim Vi � 1 or 2.

Pick an orthonormal basis �ei�i�ÿa of P?H with each ei lying in some Vj.
We may assume that Q?eÿ1 � Q?eÿ2 � � � � � Q?eÿa � 0 and that Q?ei 6� 0
for i � 0. Complete �ei� to an orthonormal basis �ei�i2Z by adding remaining
vectors from the Vj's. We can also choose an orthonormal basis � fj�j�ÿb of
Q?H with fi lying in the same Vj as ei if i � 0; we shall even pick fi so that
�ei; fi� > 0 in this case. A simple computation shows that if �P ÿ Q�2 � kiI on
Vj, then �ei; fi� �

������������
1ÿ ki
p

(so ki � 0 when dim Vj � 1). Note that, using these
bases, we get kP ÿ Qk22 � Tr�P ÿ Q�2 � a� b� 2

P
ki, so that

P
ki <1.

The ``Dirac sea'' modelH for KHP is the Hilbert space with orthonormal
basis given by all symbols ei1 ^ ei2 ^ ei3 ^ � � � where i1 < i2 < i3 < � � � and
ik�1 � ik � 1 for k su�ciently large. If A�ei� denotes exterior multiplication
by ei, then A�ei�A�ej� � A�ej�A�ei� � 0 and A�ei�A�ej�� � A�ej��A�ei� � dijI .
By linearity and continuity, these extend to operators A� f � (f 2 H ) satis-
fying the complex Cli�ord algebra relations so give a representation p of
Cliff�H�. Let n � eÿa ^ eÿa�1 ^ � � �. Then the A� f � and A� f ��'s act cycli-
cally on n and �A� f1� . . . A� fm�n;A�g1� � � �A�gn�n� � dmn det�Pfi; gj�. On the
other hand �pP �a� f1�� . . . pP �a� fm��XP ; pP �a� g1�� . . . pP �a�gn��XP � � dmn

det�Pfi; gj�, where XP is the vacuum vector in KHP . Thus �p�a�n; n� �
�pP �a�XP ;XP � for a 2 Cliff�H�. Replacing a by a�a and recalling that n and
XP are cyclic, we see that U�pP �a�XP � � p�a�n de®nes a unitary from KHP

onto H such that p�a� � UpP �a�U �. The same ``Gelfand-Naimark-Segal''
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argument shows that unitary equivalence of pP and pQ will follow as soon
as we ®nd g 2H such that �p�a�g; g� � �pQ�a�XQ;XQ�. (Note that g is
automatically cyclic, since H � KHP is irreducible.)

Let gN � fÿb ^ � � � ^ fÿ1 ^ f0 ^ � � � ^ fN ^ eN�1 ^ eN�2 ^ � � �. Clearly if a
lies in the *-algebra generated by the a�ei�'s, then �p�a�gN ; gN � �
�pQ�a�XQ;XQ� for N su�ciently large. Thus it will su�ce to show that gN
has a limit g, i.e. �gN � is a Cauchy sequence. Since kgNk � 1, this follows if
Re�gM ; gN � ! 1 as M � N !1. But �gM ; gN � �

QN
i�M�1�ei; fi� �

QN
i�M�1������������

1ÿ ki
p

and, as
P

ki <1, this tends to 1 if M ;N !1, as required.

Corollary of proof. If pP and pQ are unitarily equivalent and XQ is the image
of the vacuum vector in FQ in FQ, then j�XP ;XQ�j2 �

Q�1ÿ li� where li
are the eigenvalues of �P ÿ Q�2.
Proof. We have j�XP ;XQ�j � j�n; g�j � lim j�n; gN �j �

Q�1ÿ li�1=2.
Any u 2 U�H� gives rise to a Bogoliubov automorphism of Cliff�H� via

a� f � 7! a�uf �. This automorphism is said to be implemented in pP (or on
FP ) if pP �a�uf �� � UpP �a� f ��U� for some unitary U 2 U�FP � unique up
to a phase. Since pP �a�uf �� � pQ�a� f �� with Q � u�Pu, we immediately
deduce:

Corollary (Segal's quantisation criterion [3, 30,42]). u is implemented inFP if
�u; P � is a Hilbert-Schmidt operator.

We de®ne the restricted unitary group UP �H��fu 2U�H�: �u; P �
Hilbert ÿ Schmidtg, a topological group under the strong operator topology
combined with the metric d�u; v� � k�uÿ v; P �k2. By the corollary, there is a
homomorphism p of UP �H� into PU�FP �, called the basic projective
representation.

Lemma. The basic representation is continuous.

Proof. It is enough to show continuity at the identity. Thus if unÿ!s I and
k�un; P �k2 ! 0, we must ®nd a lift Un 2 U�FP � of p�un� such that Unÿ!s I .
Now k�un; P �k2 � kP ÿ Qnk2 where Qn � u�nPun. So Tr�P ÿ Qn�2 ! 0. On the
other hand j�XP ;XQn�j2 �

Q�1ÿ li� where li are the (non-zero) eigenvalues
of �P ÿ Qn�2. Since Tr�P ÿ Qn�2 �

P
li and

Q�1ÿ li� � exp�ÿ2P li� forP
li small, it follows that j�XP ;XQn�j ! 1 as n!1. If un is implemented by

Un inFP , then UnXP and XQn are equal up to a phase. So j�UnXP ;XP �j ! 1.
Adjusting Un by a phase, we may assume �UnXP ;XP � > 0 eventually so that
UnXP ! XP . Now, taking operator norms, kUnp�a� f ��U �n ÿ p�a� f ��k �
kp�a�unf ÿ f ��k � kunf ÿ f k. It follows that kUnaU�n ÿ ak ! 0 for any
a 2 pP �Cliff H�. Thus UnaXP � �UnaU�n � �UnXP � !aXP as n!1. Since
vectors aXP are dense in FP , we get Unÿ!s I , as required.

Note that if �u; P � � 0, so that u commutes with P , then u is canoni-
cally implemented in Fock space FP and we may refer to the canonical
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quantisation of u. If on the contrary uPu� � I ÿ P , then u is canonically
implemented by a conjugate-linear isometry in Fock space, also called the
canonical quantisation of u. Thus the canonical quantisations correspond to
unitaries that are complex-linear or conjugate-linear for the complex
structure de®ned by P .

4. The fundamental representation

Let G � SU�N� (or U�N�) and de®ne the loop group LG � C1�S1;G�, the
smooth maps of the circle into G. Let H � L2�S1� 
 V (V � CN ) and let P be
the projection onto the Hardy space H2�S1� 
 V of functions with vanishing
negative Fourier coe�cients (or equivalently boundary values of functions
holomorphic in the unit disc). Now LG acts unitarily by multiplication on H .
In fact if f 2 C1�S1;End V � and m� f � is the corresponding multiplication
operator, then it is easy to check, using the Fourier coe�cients of f , that
k�P ;m� f ��k2 � kf 0k2. In particular LG satis®es Segal's quantisation criterion
for P and we therefore get a projective representation of LU�N� on FP [30,
42], continuous for the C1 topology on LU�N� � C1�S1;End V �. The ro-
tation group Rot S1 acts by automorphisms on LG by �raf ��h� � f �h� a�.
The same formula de®nes a unitary action on L2�S1� 
 V which leaves
H 2�S1� 
 V invariant. Therefore this action of Rot S1 is canonically
quantised and we thus get a projective representation of LGoRot S1 on
FP which restricts to an ordinary representation on Rot S1.

Let

SU��1; 1� � a b
b a

� �
: jaj2 ÿ jbj2 � �1

� �
and let SU��1; 1� � SU�1; 1� and SUÿ�1; 1� denote the elements with
determinant �1 or ÿ1. Thus SUÿ�1; 1� is a coset of SU��1; 1� with repre-

sentative F �
�

0 ÿ1
ÿ1 0

�
, for example. The matrices g 2 SU��1; 1� act by

fractional linear transformations on S1, g�z� � �az� b�=�bz� a�. This leads
to a unitary action on L2�S1; V � via �Vg � f ��z� � �aÿ bz�ÿ1f �gÿ1�z��. Since
�aÿ bz�ÿ1 is holomorphic for jzj < 1 and jaj > jbj, it follows that Vg com-
mutes with the Hardy space projection P for g 2 SU��1; 1�. The matrix F
acts on L2�S1; V � via �F � f ��z� � zÿ1f �zÿ1� and clearly satis®es FPF � I ÿ P .
It follows that F is canonically implemented in fermionic Fock space FV

by a conjugate-linear isometry ®xing the vacuum vector. Since
SUÿ�1; 1� � SU��1; 1�F , the same holds for each g 2 SUÿ�1; 1�. Thus we get
an orthogonal representation of SU��1; 1� for the underlying real inner
product on FV with SU��1; 1� preserving the complex structure and
SUÿ�1; 1� reversing it. The same is true in F
`V .

Let Uz denote the canonically quantised action of the gauge group U�1�
onFV , corresponding to multiplication by z on H . The Z2-grading onFV is
given by the operator U � UÿI .
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Lemma. p�g�Uzp�g�� � Uz for all g 2 LSU�N� and z 2 U�1�.

Proof. The group SU�N� is simply connected, so the group LSU�N� is con-
nected (any path can be smoothly contracted to a constant path and SU�N� is
connected). The map U�H� � U�H� ! U�H�, �u; v� 7! uvu�v� is continuous
and descends to PU�H� � PU�H�. So �u; v� 7! uvu�v� de®nes a continuous
map PU�H� � PU�H� ! U�H�. Since g and z commute on the prequan-
tised space H , p�g� and Uz commute in PU�H�. Hence p�g�Uzp�g��U �z �
k�g; z� where k�g; z� 2 T depends continuous on g and z. Writing this equa-
tion as p�g�Uzp�g�� � k�g; z�Uz, we see that k�g; �� de®nes a character kg of
U�1�. Clearly kgkh � kgh, so we get a continuous homomorphism of LSU�N�
into dU�1�, the group of characters of U�1�. Since dU�1� � Z and LSU�N� is
connected, kg � 1 for all g. So k�g; z� � 1 for all g; z as required.

Corollary. Each operator p�g� with g 2 LSU�N� is even (it commutes with
U � Uÿ1).

5. The central extension LG

We introduce the central extension of LG

1! T!LG! LG! 1

obtained by pulling back the central extension 1! T! U�FV � !
PU�FV � ! 1 under the map p : LG! PU�FV �. In other words it is the
closed subgroup of LG� U�FV � given by f�g; u� : p�g� � �u�g: it contains
T � 1� T as a central subgroup and has quotient LG. By de®nitionLG has
a unique unitary representation p on FV given by p�g; u� � u. This exten-
sion is compatible with the action of SU��1; 1� and Rot S1.

Lemma. If p�c� denotes the canonical quantisation of c 2 SU��1; 1�on ferm-
ionic Fock space FV and LG � f�g; u� : p�g� � �u�g, then the operators
�c; p�c�� normalise p�LG� acting on the centre T as the identity if
c 2 SU��1; 1� and as complex conjugation if c 2 SUÿ�1; 1�.

Proof. This follows because p�c�p�g�p�c�ÿ1 has the same image as p�g � cÿ1�
in PU�FV �.

6. Positive energy representations

We may consider the decomposition of FP � K�PH� 
 K�P?H�� into
weight spaces of Rot S1 � T, writing FP �an�0FP �n�, where z 2 T acts
on FP �n� as multiplication by zn. Since Rot S1 acts with ®nite multiplicity
and only non-negative weight spaces on PH and �P?H��, it is easy to see that
FP �n� is ®nite-dimensional for n � 0 andFP �n� � �0� for n < 0. Moreover
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FP �0� � K�V �. We de®ne a representation of T on H to have positive energy
if in the decomposition H �aH�n� we have H�n� � 0 for n < 0 and H�n�
®nite-dimensional for n � 0. (Usually we will also insist on the normalisa-
tion H�0� 6� �0�, which can always be achieved through tensoring by a
character of T.) Thus Rot S1 acts on FV with positive energy.

Proposition. Suppose that C is a subgroup of U�H� and that T acts on H with
positive energy normalising C. Let Ut be the action (with t 2 �0; 2p�).
(a) If H is irreducible as an Co T-module, then it is irreducible as a C-

module.
(b) If H1 and H2 are irreducible Co T-modules which are isomorphic as C-

modules, then one is obtained from the other by tensoring with a character of T.
(c) If H is the cyclic C-module generated by a lowest energy vector, it

contains an irreducible Co T-module generated by some lowest energy vector.
(d) Any positive energy representation is a direct sum of irreducibles.

Proof. (a) Let M � C0, the commutant of C, so that M � fT : Tg � gT
for all g 2 Cg. By Schur's lemma, M \ hUti0 � CI since C and T act irre-
ducibly. Note that Ut normalises M , since it normalises C. Let v be a lowest
energy vector in H . v is cyclic for C and T and hence C, so av 6� 0 for a 6� 0
in M . If M 6� C, there is a non-scalar self-adjoint element T 2 M . De®ne
Tn 2 B�H� by �Tnn; g� � �2p�ÿ1

R 2p
0 eÿint�UtTnU�t n; g�dt. Then Tn 2 M ,

UtTU�t � eintTn, T �n � Tÿn and Tv � �Tnv. By assumption T0 must be a scalar.
Since T =2 CI , Tv cannot be a multiple of v and therefore Tn 6� 0 for some
n 6� 0. Since T �n � Tÿn, we may assume n < 0. But then Tnv 6� 0 gives a vector
of lower energy than v. So M � C and C acts irreducibly.
(b) Let T : H1 ! H2 be a unitary intertwiner for C. Then V �t TUt is also a
unitary intertwiner, so must be of the form k�t�T for k�t� 2 T by Schur's
lemma. Since TUtT � � k�t�Vt, k�t� must be a character of T.
(c) Let V be the subspace of lowest energy. Let K be any CoT-invariant
subspace of H with corresponding projection p 2 C0. Since H � lin�CV �,
K � pH � lin�CpV �. But pV � V , since p commutes with T. Choosing pV in
V of smallest dimension, we see that K � lin�CpV � must be irreducible as a
CoT-module and hence as a C-module. Thus H contains an irreducible
submodule K generated by any non-zero pv with v 2 V .
(d) Take the cyclic module generated by a vector of lowest energy. This
contains an irreducible submodule generated by another vector of lowest
energy H1 say. Now repeat this process for H?1 , to get H2, H3, etc. The
positive energy assumption shows that H �aHi.

Corollary. If p : LGoRot S1 ! PU�H� is a projective representation which
restricts to an ordinary positive energy representation of Rot S1, then H
decomposes as a direct sum a Hi 
 Ki where the Hi's are representations of
LGoRot S1irreducible on LG with Hi�0� 6� �0� and the multiplicity spaces are
positive energy representations of Rot S1.
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We apply this result to the positive energy representation F
`P of
LGoRot S1. The irreducible summands of F
`P are called the level ` irre-
ducible representations of LG. By de®nition any positive energy represen-
tation extends to LGoRot S1. More generally the vacuum representation at
level ` extends (canonically) to LGoSU��1; 1�. In fact, since SU��1; 1� ®xes
the vacuum vector and this generates the vacuum representation at level ` as
an LG-module, it follows that the vacuum representation at level ` admits a
compatible orthogonal representation of SU��1; 1�, unitary on SU��1; 1�
and antiunitary on SUÿ�1; 1�. We also need the less obvious fact that
SU�1; 1� is implemented by a projective unitary representation in any level `
representation; this follows from a global form of the Goddard-Kent-Olive
construction [12].

Lemma (coset construction). Let H �a Hi 
 Ki and let M �a B�Hi� 
 I .
Let p : G! PU�H� be a projective unitary representation of the connected
topological group G such that p�g�Mp�g�� � M for all g 2 G. Then there exist
projective unitary representations pi and ri of G on Hi and Ki such that
p�g� � �pi�g� 
 ri�g�.

Proof. G acts by automorphisms on M through conjugation. It therefore
preserves the centre and hence the minimal central projections. Since G is
connected and the action strong operator continuous, it must ®x the central
projections. Thus it ®xes each block Hi 
 Ki. It also normalises B�Hi�. If
Wi denotes the restriction of p�g� to Hi 
 Ki, then Ad Wi restricts an
automorphism ai of B�Hi�. But, if K is a Hilbert space, any automorphism
a of B�K� is inner: indeed if n is a ®xed unit vector in K and Pn is the rank
one projection onto Cn, then a�Pn� � Pg for some unit vector g and
U�Tn� � a�T �g (T 2 B�K�) de®nes a unitary with a � Ad U . Hence
ai � Ad Ui for Ui 2 U�Hi�. But then �U �i 
 I�Wi commutes with B�Hi� 
 I
and hence lies in I 
 B�Ki�. Hence �U �i 
 I�Wi � I 
 Vi, so that Wi � Ui 
 Vi.
Thus we get the required homomorphism G!Q

PU�Hi� � PU�Vi�, which is
clearly continuous.

Corollary. There is a (unique) projective representation pi of SU�1; 1� on Hi

satisfying pi�c�pi�g�pi�c�� � pi�g � cÿ1� for g 2LG and c 2 SU�1; 1�.

Proof. If H �F
`V , we may write H �aHi 
 Ki where the Hi's are the
distinct level ` irreducible representations of LG and the Ki's are multi-
plicity spaces. Then p�LG�00 �aB�Hi� 
 I and the unitary representation
of SU�1; 1� normalises this algebra. By the coset construction, each
c 2 SU�1; 1� has a decomposition p�c� �api�c� 
 ri�c�, where si�c� �
pi�c� 
 ri�c� is an ordinary representation of SU�1; 1� on Hi 
 Ki. But
pi�g � cÿ1� 
 I � si�c��pi�g� 
 I�si�c�� � pi�c�pi�g�pi�c��. Hence pi�c�pi�g�
pi�c�� � pi�g � cÿ1�. So, as before, the representation of SU�1; 1�, now
projective, is compatible with the central extension LG.
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7. In®nitesimal action of L0g on ®nite energy vectors

If g � Lie �G�, then Lie �LG� � Lg � C1�S1; g�. Let L0g be the algebraic Lie
algebra consisting of trigonometric polynomials with values in g. Its com-
plexi®cation is spanned by the functions Xn�h� � eÿinhX with X 2 g. Rot S1

and its Lie algebra act on L0g. The Lie algebra of Rot S1 is generated by id
where �d; f ��h� � ÿif 0�h� for f 2 L0g. Thus d may be identi®ed with the
operator ÿid=dh. We obtain the Lie algebra relations �Xn; Ym� � �X ; Y �n�m
and �d;Xn� � ÿnXn. For v 2 V , let v�n� � a�vn� where vn 2 L2�S1; V � is given
by vn�h� � eÿinhv. In particular, if �ei� is an orthonormal basis of V , then we
have fermions ei�n� for all n. If X denotes the vacuum vector inFV , then it is
easy to see from its description as an exterior algebra that an orthonormal
basis of FV is given by

ei1�n1�ei2�n2� � � � eip�np�ej1�m1��ej2�m2�� . . . ejq�mq��X

where ni � 0 and mj > 0. Moreover ei�n�X � 0 for n � 0 and ei�n��X � 0 for
n < 0. Since Rot S1 commutes with the Hardy space projection on L2�S1; V �,
it is canonically quantised. Let Rh be the corresponding representation on
FV . Then Rh � eiDh where D is self-adjoint. If rh is the action of Rot S1 on
L2�S1; V � given by �rhf ��z� � f �eihz�, then rh � eid where d � ÿi d

dh (we al-
ways regard functions on S1 as functions either of z 2 T or of h 2 �0; 2p�).
Now Rha� f �R�h � a�rhf �. Hence Rhv�m�R�h � eÿimhv�m�, so that Rh acts on
the basis vector ei1�n1�ei2�n2� � � � eip�np�ej1�m1��ej2�m2�� � � � ejq�mq��X as mul-
tiplication by eiMh where M �Pmj ÿ

P
ni. Since Rh � eiDh, it follows that

D acts on this basis vector as multiplication by M , i.e. this vector has energy
M �Pmj ÿ

P
ni. In particular DX � 0 and we can check that

�D; v�n�� � ÿnv�n�. Thus if f is a trigonometric power series with values in
V , we have �D; a� f �� � a�df �. Note that if T is a linear operator on F0

V
commuting with the ei�a�'s and ei�a��'s, then T � kI for k 2 C: for, as in
section 3, X is the unique vector such that ei�n��X � 0 (n � 0), ei�n�X � 0
(n > 0) and X is cyclic.

Theorem. Let Eij�n� �
P

m>0 ei�nÿ m�ej�ÿm�� ÿPm�0 ej�m��ei�m� n�,
and de®ne X �n� �P aijEij�n� for X �P aijEij 2 Lie U�V � � End�V �. Then,
as operators on H 0, we have
(a) �X �m�; a� f �� � a�Xm � f � if f is a trigonometric polynomial with values

in V ; equivalently �X �n�; v�m�� � �Xv��n� m�.
(b) �D;X �m�� � ÿmX �m�.
(c) �X �n�; Y �m����X ; Y ��n� m� � n�X ; Y �dn�m;0I where �X ; Y ��ÿTr�XY �

� Tr�XY �� for X ; Y 2 Lie U�V �.

Proof. (a) Observe that �ei�a��ej�b�; ek�c�� � ÿdacdikej�b� and �ej�b� ei�a��;
ek�c�� � dacdikej�b�. Moreover if i 6� j, then ei�a� anticommutes with both
ej�b� and ej�b��. Using these identities, it is easy to check that Eij�n� satis®es
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the commutation relations (a) with respect to the ei�n�'s. Note that
X �n�X � 0 for n � 0 since ei�n�X � 0 for n � 0, ei�n��X � 0 for n < 0 and
(\,formally) X �n�� � ÿX �ÿn� for X 2 Lie U�V �.
(b) Since �D; ei�m�� � ÿmei�m� and �D; ei�m��� � mei�m��, it follows that
�D;X �m�� � ÿmX �m�.
(c) From (a) we ®nd that T � �X ; �m�; Y �n�� ÿ �X ; Y ��m� n� commutes with
all ei�a�'s and hence also all ei�a��'s by the adjointness property. Hence
�X �m�; Y �n�� � �X ; Y ��m� n� � k�X ; Y ��m; n�I , where k�X ; Y ��m; n� is a sca-
lar, bilinear in X and Y . Now from (b), �X �m�; Y �n�� ÿ �X ; Y ��m� n� lowers
the energy by ÿmÿ n, so that k�X ; Y ��m; n� � 0 unless m� n � 0. To
compute the value of k when m � ÿn, we note that we may assume that
m � 0, since k�X ; Y ��m; n�� � k�Y ;X ��ÿn;ÿm� by the adjoint relations.
Taking vacuum expectations, we get

k�X ; Y ��ÿm;m� � ��X �ÿm�; Y �m��X;X� � �X �ÿm�X;
Y �ÿm�X� � ÿmTr�XY � � m�X ; Y �:

In fact if X �P aijEij and Y �P bijEij, we have

�X �ÿm�X; Y �ÿm�X� �
X
ijpq

Xmÿ1
r;s�0
�aijej�r��ei�r ÿ m�X; bpqeq�s��ep�sÿ m�X�

� m
X

aijbij � m�X ; Y �;

since the terms ei�a��ej�b�X with a � 0 and b < 0 are orthonormal.

8. The exponentiation theorem

We wish to show that the Lie algebra action just de®ned on FV expo-
nentiates to give the fundamental representation of LSU�N�oRot S1. We
have already discussed the action of Rot S1, which is canonically quantised.
So we now must show that if x is an element of L0g and X is the corre-
sponding operator constructed above, then p exp x and exp X have the same
image in PU�F�. To see that this completely determines p on LG, we need
the following result on products of exponentials.

Exponential lemma. Every element of LG is a product of exponentials in
Lg � C1�S1; g�. Products of exponentials in L0g are dense in LG.

Proof. If g 2 LG � C�S1;MN �C�� satis®es kgÿ Ik1 < 1, then log g �
log�I ÿ �I ÿ g�� lies in C1�S1; g� � Lg. Thus exp Lg contains an open
neighbourhood of I in LG. Since LG is connected, exp Lg must generate LG,
as required.

The bilinear formulas for the Lie algebra operators X immediately imply
Sobolev type estimates for the in®nitesimal action of L0g on ®nite energy
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vectors. We de®ne the Sobolev norms by knks � k�I � D�snk for s 2 R,
usually a half-integer. Recall that if A is a skew-adjoint operator, the smooth
vectors for A are the subspace C1�A� � TD�An� and for any n 2 C1�A� we
have eAtn �Pn

i�0
tk

k! A
kn� O�tn�1�.

Exponentiation Theorem. Let H �FV be the level one fermionic represen-
tation of LSU�V � and let H 0 be the subspace of ®nite energy vectors.
(1) For x 2 L0g, there is a constant K depending on s and x such that

kX � nks � Kknks�1 for n 2 H 0, X � p�x�.
(2) For each x 2 L0g, the corresponding operator X is essentially skew-

adjoint on H0 and leaves H 0 invariant.
(3) Each vector in H0 is a C1 vector for any x 2 L0g.
(4) For x 2 L0g, the unitary exp�X � agrees up to a scalar with p�exp�x��.

Proof. (1) It clearly su�ces to prove the estimates in the lemma for
X � Eij�n� and n of ®xed energy, say Dn � ln. Then Eij�n�n �P

m>0 ei�nÿ m�ej�ÿm��nÿPm�0 ej�m��ei�m� n�n. So kEij�n�nk � 2�jnj
� l�knk, since at most 2�jnj � l� of the terms in the sums can be non-zero
and each has norm bounded by knk. Hence for s � 0,

kEij�n�nks � �1� jnj � l�skEij�n�nk � 2�1� jnj � l�s�jnj � l�
� 2�1� jnj�s�1�1� l�s�1knk � 2�1� jnj�s�1knks�1:

(2) Clearly any X 2 L0g acts on H0. We need the Glimm-Ja�e-Nelson
commutator theorem see [11, 31] or [42]: if D is the energy operator on H0

and X : H0 ! H 0 is formally skew-adjoint with X �D� I�ÿ1, �D� I�ÿ1X and
�D� I�ÿ1=2�X ;D��D� I�ÿ1=2 bounded, then the closure of X is skew-adjoint.
The Sobolev estimates show that these conditions hold for D and X , since
�D;X � is actually in L0g.

(3) Since XH0 � H 0 and the C1 vectors for X are just \D�X n�, it follows
that the vectors in H0 are C1 vectors for X .

(4) We prove the commutation relation etX a� f �eÿtX � a�etxf � for f 2
L2�S1� 
 V . We start by noting that

a�Xf �n � Xa� f �nÿ a� f �Xn

for f a trigonometric polynomial with values in V , X 2 L0g and n 2 H 0. We
®x X and f and denote by C1�X � the space of C1 vectors for X ,
i.e. \D�X n�. Now say n 2 D�X � and f 2 L2�S1; V �. Take nn 2 H0, such that
nn ! n and Xnn ! Xn, and fn trigonometric polynomials with values in V
such that fn ! f . Then a� fn�nn ! a� f �n and Xa� fn�nn � a�Xfn�nn�
a� fn�Xnn ! a�Xf �n� a� f �Xn. Since X is closed, we deduce that a� f �n lies
in D�X � and a�Xf �n � Xa� f �nÿ a� f �Xn. Successive applications of this
identity imply that a� f �n lies in D�X n� for all n if n lies in C1�X �, so that
a� f �C1�X � � C1�X �.
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Now take n; g 2 C1�X � and consider F �t� � �eÿXta�extf �eXtn; g� �
�a�extf �eXtn; eXtg�. Since n; g lie in C1�X �, we have eX �t�s�n � eXtn�
sXeXtn� O�s2� and eX �t�s�g � eXtg� sXeXtg� O�s2�. For any f , we have
ex�t�s�f � extf � sxextf � O�s2� in L2�S1� 
 V . Since ka�g�k � kgk, it follows
that a�ex�t�s�f � � a�extf � � sa�xextf � � O�t2� in the operator norm. Hence
we get

F �t � s� � �a�extf �eXtn; eXtg� � s��a�extf �XeXtn; eXtg�
� �a�xextf �eXtn; eXtg� � �a�extf �eXtn;XeXtg�� � O�s2�

� �a�extf �eXtn; eXtg� � O�s2�:

since �X ; a�g�� � a�xg�. Thus F �t� is di�erentiable with F 0�t� � 0. Hence
F �t� is constant and therefore equal to F �0�. This proves that
eÿtX a�etxf �etX n � a� f �n for n 2 H 0 � C1�X �. Hence a�etxf � � etX a� f �eÿtX ,
as required. Thus etX implements the Bogoliubov automorphism corre-
sponding to etx.

Corollary. Let H be a level ` positive energy representation of LSU�N� and let
H 0 be the subspace of ®nite energy vectors.
(1) There is a projective representation of L0goR on H0 such that

�D;X �n�� � ÿnX �n�, D� � D, X �n�� � ÿX �ÿn� and �X �m�; Y �n�� �
�X ; Y ��n� m� � m`dm�n;0 �X ; Y �.
(2) For each x 2 L0g, the corresponding operator X is essentially skew-

adjoint on H0 and leaves H 0 invariant.
(3) For x 2 L0g, the unitary exp�X � agrees up to a scalar with the corre-

sponding group element in LG.
(4) Each vector in H0 is a C1 vector for any X .

Proof. We observe that the embedding LSU�N� � LU�N`� gives all repre-
sentations of LSU�N� at level `. The continuity properties of the action of
the larger group and its Lie algebra are immediately inherited by LSU�N�.
Note that it is clear from the functoriality of the fermionic construction that
the restriction of the fermionic representation of LU�N`� to LU�N� can be
identi®ed with F
` where F is the (level 1) fermionic representation of
LU�N�. The other properties follow immediately from the following result,
applied to irreducible summands K of H �F
`.

Lemma. Let X be a skew-adjoint operator on H with core H 0 such that
X �H0� � H 0. Let K be a closed subspace such that P�H 0� � H 0, where P is the
projection onto K. Let K0 � K \ H 0. Then X �K0� � K0 iff exp�Xt�K � K
for all t. In this case K0 is a core for X jK .

Proof. Suppose that K is invariant under exp�Xt�. Then exp�Xt� n �
n� tXn� � � � for n 2 K0 and hence XK0 � K \ H 0 � K0. Conversely, if
X �K0� � K0, take n 2 D�X � and let P be the orthogonal projection onto K.
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It will su�ce to show that Pn 2 D�X � and XPn � PXn, for then X commutes
with P in the sense of the spectral theorem. Since P �H0� � H0, we have
H 0 � H 0 \ KaH 0 \ K?. Since X is skew-adjoint and X �K0� � K0, it fol-
lows that X leaves H0 \ K? invariant. Thus PX � XP on H0. Take nn 2 H0

such that nn ! n and Xnn ! Xn. Then XPnn � PXnn ! PXn and Pnn ! n.
Since X is closed, XPn � PXn as required. Finally since Pnn ! Pn and
XPnn ! XPn, it follows that K0 is a core for X jK .

9. Classi®cation of positive energy representations of level `

Proposition. Let �p;H� be an irreducible positive energy projective represen-
tation of LGoRot S1 of level `.
(1) The action of L0goR on H 0 is algebraically irreducible.
(2) H�0� is irreducible as an SU�N�-module.
(3) If H�0� � Vf , then f1 ÿ fN � `.
(4) (Existence) If f1 ÿ fN � `, there is a an irreducible positive energy

representation of LG of level ` of the above form with H�0� � Vf as SU�N�-
modules.
(5) (Uniqueness) If H and H 0 are irreducible positive energy representations

of level ` of the above form with H�0� � H 0�0� as SU�N�-modules, then H and
H 0 are unitarily equivalent as projective representations of LGo Rot S1.

Proof. (1) Recall that H is irreducible as an LGoT-module i� it is irre-
ducible as an LG-module by the proposition in section 6. Any subspace K of
H 0 invariant under L0goR is clearly invariant under Rot S1. It therefore
coincides with the space of ®nite energy vectors of its closure. By the lemma
in section 8, its closure is invariant under all operators exp�X � for x 2 L0g.
But exp�L0g� generates a dense subgroup of LG, so the closure must
be invariant under LG and therefore coincide with the whole of H by
irreducibility. Hence K � H 0 as required.

(2) Let V be an irreducible SU�N�-submodule of H(0). From (1), the
L0goR-module generated by V is the whole of H 0. Since D ®xes V , it
follows that the L0g-module generated by V is the whole of H 0. The com-
mutation rules show that any monomial in the X �n�'s can be written as a
sum of monomials of the form PÿP0P�, where Pÿ is a monomial in the X �n�'s
for n < 0 (energy raising operators), P0 is a monomial in the X �0�'s (constant
energy operators) and P� is a monomial in the X �n�'s with n > 0 (energy
lowering operators). Hence H0 is spanned by products Pÿv (v 2 V ). Since the
lowest energy subspace of this L0g-module is V , H�0� � V , so that H�0� is
irreducible as a G-module.

(3) Suppose that H�0� � Vf and let v 2 H�0� be a highest weight vector,
so that �Eii�0� ÿ Ejj�0��v � � fi ÿ fj�v and Eij�0�v � 0 if i < j. Let E �
EN1�1�, F � E1N �ÿ1� and H � �E; F � � ENN �0� ÿ E11�0� � `. Thus H � � H ,
E� � F , �H ;E� � 2E and �H ; F � � ÿ2F . Moreover Ev � 0 and Hv � kv with
k � fN ÿ f1 � `. By induction on k, we have �E; F k�1� � �k � 1�F k�H ÿ kI�
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for k � 0. Hence �F k�1v; F k�1v� � �F �F k�1v; F kv� � �EF k�1v; F kv� �
�k � 1��kÿ k��F kv; F kv�. For these norms to be non-negative for all k � 0,
k has to be non-negative, so that f1 ÿ fN � ` as required.

(4) We have F
`V �0� � �KV �
`. By the results of section 6, the LG-
module generated by any irreducible summand Vf of FV �0� gives an irre-
ducible positive energy representation H with H�0� � Vf . So certainly any
irreducible summand in KV 
` appears as an H�0�. From the tensor product
rules with the kkV 's, these representations are precisely those with
f1 ÿ fN � `.

(5) Any monomial A in operators from L0g is a sum of monomials RDL
with R a monomial in energy raising operators, D a monomial in constant
energy operators and L a monomial in energy lowering operators. As in
section 2, if v;w 2 H�0� the inner products �A1v; A2w� are uniquely deter-
mined by v;w and the monomials Ai: for A�2A1 is a sum of terms RDL and
�RDLv;w� � �DLv;R�w� with R� an energy lowering operator. Hence, if H 0 is
another irreducible positive energy representation with H 0�0� � H�0� by a
unitary isomorphism v 7! v0, U�Av� � Av0 de®nes a unitary map of H0 onto
�H 0�0 intertwining L0g. This induces a unique unitary isomorphism H ! H 0

which intertwines the one parameter subgroups corresponding to the skew-
adjoint elements in L0g, since H 0 and H 00 are cores for the corresponding
skew-adjoint operators. But these subgroups generate a dense subgroup of
LG, so that U must intertwine the actions of LG, i.e. p0�g� � Up�g�U � in
PU�H 0� for g 2 LG. Thus H and H 0 are isomorphic as projective represen-
tations of LG. From section 6, H and H 0 are therefore unitarily equivalent as
projective representations of LGo Rot S1.

Corollary. The irreducible positive energy representations H of LG of level `
are uniquely determined by their lowest energy subspace H�0�, an irreducible
G-module. Only ®nitely many irreducible representations of G occur at level `:
their signatures must satisfy the quantisation condition f1 ÿ fN � `. The action
of L0goR on H0 is algebraically irreducible.

II. Local loop groups and their von Neumann algebras

10. von Neumann algebras

Let H be a Hilbert space. The commutant of S � B�H� is de®ned by
S0 � fT 2 B�H� : Tx � xT for all x 2 Sg. If S� � S, for example if S is a *-
algebra or a subgroup of U�H�, then S0 is a unital *-algebra, closed in the
weak or strong operator topology. Such an algebra is called a von Neumann
algebra. von Neumann's double commutant theorem states that S00 coincides
with the von Neumann algebra generated by S, i.e. the weak operator clo-
sure of the unital *-algebra generated by S. Thus a *-subalgebra M � B�H�
is a von Neumann algebra i� M � M 00. By the spectral theorem, the spectral
projections (or more generally bounded Borel functions) of any self-adjoint
or unitary operator in M must also lie in M . This implies in particular that M
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is generated both by its projections and its unitaries. Note that, if M � S0,
the projections in M correspond to subrepresentations for S, i.e. subspaces
invariant under S.

The centre of a von Neumann algebra M is given by Z�M� � M \M 0. A
von Neumann algebra is said to be a factor i� Z�M� � CI . A unitary rep-
resentation of a group or a *-representation of a *-algebra is said to be a
factor representation if the commutant is a factor. If H is a representation
with commutant M , then two subrepresentations H1 and H2 of H are
unitarily equivalent i� the corresponding projections P1; P2 2 M are the
initial and ®nal projections of a partial isometry U 2 M , i.e. U �U � P1 and
UU � � P2. P1 and P2 are then said to be equivalent in the sense of Murray
and von Neumann [26]. We shall only need the following elementary result,
which is an almost immediate consequence of the de®nitions.

Proposition. If �p;H� is a factor representation of a set S with S� � S and
�p1;H1� and �p2;H2� are subrepresentations, then
(1) there is a unique *-isomorphism h of p1�S�00 onto p2�S�00 such that

h�p1�x�� � p2�x� for x 2 S;
(2) the intertwiner space X � HomS�H1;H2� satis®es XH1 � H2, so in

particular is non-zero;
(3) h�a�T � Ta for all a 2 p1�S�00 and T 2 X;
(4) ifX0 � X withX0H1 � H2, then h�a� is the unique b 2 p2�S�00 such that

bT � Ta for all T 2 X0.

Proof. Let M � p�S�00 and Mi � pi�S�00. Then M 0Hi is invariant under both
M and M 0. Hence the corresponding projection lies in M \M 0 � C (since M
is a factor). So M 0Hi � H . Let pi be the projection onto Hi, so that pi 2 M 0.
Clearly Mi � Mpi. Moreover, the map hi : M ! Mi, a 7! api must be a *-
isomorphism: for api � 0 implies aM 0Hi � �0� and hence a � 0. By de®nition
hi�p�x�� � pi�x� for x 2 S. Now set h � h2h

ÿ1
1 ; h is unique because M1 is

generated by p1�S�.
Since X � HomS�H1;H2� � p2M 0p1, we have Th1�x� � h2�x�T for all

x 2 M . Hence h�a�T � Ta for a 2 M1 and T 2 HomS�H1;H2�. Moreover
XH1 � p2M 0H2 � p2H � H2. Conversely suppose that X0 � HomS�H1;H2�
is a subspace such that X0H1 is dense in H2 and a 2 M1, b 2 B�H2� satisfy
bT � Ta for all T 2 X0. Let c � bÿ h�a�. Then cX0 � �0� and hence
cH2 � �0�, so that c � 0. Thus b � h�a� as required.

11. Abstract modular theory

Let H be a complex Hilbert space, and K � H a closed real subspace with
K \ iK � �0� and K � iK dense in H . Let e and f be the projections onto K
and iK respectively and set r � �e� f �=2, t � �eÿ f �=2. Then K?, iK? and
iK satisfy the same conditions as K, where ? is taken with respect to the real
inner product Re�n; g�.

492 A. Wassermann



Proposition 1. (1) 0 � r � I , t, r are self-adjoint, t is conjugate-linear, r is
linear, and t, I ÿ r, r have zero kernels.

(2) t2 � r�I ÿ r�; rt � t�I ÿ r�; �I ÿ r�t � tr:
(3) et � t�I ÿ f �; ft � t�I ÿ e�:
(4) If t has polar decomposition t � jtjj � jjtj; then j2 � I ; ej � j�I ÿ f �

and fj � j�I ÿ e�:
(5) jK � iK? and �jn; g� 2 R for n; g 2 K:
(6) Let dit � �I ÿ r�itrÿit: Then jdit � ditj and ditK � K:

Proof. (1), (2) and (3) are straightforward. (4) follows from (3), because e
and f commute with t2 � �eÿ f �2=4, hence with jtj, and jtj has zero kernel.
(4) implies (5), since jej � I ÿ f . Finally since jrj � I ÿ r and j is conjugate-
linear, j commutes with dit. So dit commutes with j, r, jtj � ����������������

r�I ÿ r�p
and

hence t. So dit commutes with e and f .

Proposition 2 (characterisation of modular operators). (1) (Kubo-Martin-
Schwinger condition) For each n 2 K, the function f �t� � ditn on R extends
(uniquely) to a continuous bounded function f �z� on ÿ1=2 � Im z � 0,
holomorphic in ÿ1=2 < Im z < 0. Furthermore f �t ÿ i=2� � jf �t� for t 2 R.

(2) (KMS uniqueness) Suppose that ut is a one-parameter unitary group on
H and j1 is a conjugate-linear involution such that utK � K and j1ut � utj1.
Suppose that there is a dense subspace K1 of K such that for each n 2 K1 the
function g�t� � utn extends to a bounded continuous function g�z� on the strip
ÿ1=2 � Im z � 0 into H , holomorphic in ÿ1=2 < Im z < 0, such that
f �t ÿ i=2� � j1f �t� for t 2 R. Then ut � dit and j1 � j.

Proof. (1) (cf [33]) If n 2 K, then n � pn � �r � t�n � r
1
2�r12 � �I ÿ r�12j�n.

Thus n � r
1
2g, where g � �r12 � �I ÿ r�12j�n. Set f �z� � �I ÿ r�izr12ÿizg for

ÿ1=2 � Im z � 0.
(2) For n 2 K1, set h�z� � �g�z�; g��zÿ i=2��: Then h is continuous and
bounded on ÿ1=2 � Im z � 0, holomorphic on ÿ1=2 < Im z < 0. By
uniqueness of analytic extension, utf �z� � f �z� t� since they agree for z real.
Hence h�z� t� � h�z�, so that h is constant on lines parallel to the real axis
and hence constant everywhere. Since h�ÿi=4� � kg�ÿi=4�k2 � 0, it follows
that h�0� � 0, i.e. �j1n; n� � 0. Polarising, we get �j1n; g� 2 R for all
n; g 2 K. Since ut leaves K and iK invariant, it follows that ut commutes with
e and f and hence dit. Now let f �z� be the function corresponding to n and
dit. De®ne k�z� � �g�z�; jf �z�� for ÿ 1

2 � Im z � 0. Then k�t� � �utn; jd
itn� is

real for t 2 R and k�t ÿ i=2� � �j1utn; j2d
itn� � �j1utn; d

itn� is real for t 2 R.
k is bounded and continuous on ÿ 1

2 � Im z � 0 and holomorphic on
0 < Im z < 1

2. By Schwartz's re¯ection principle, k extends to a holo-
morphic function on C satisfying k�z� i� � k�z�. This extension is bounded
and therefore constant by Liouville's theorem. Hence k�t� � k�0� � k�ÿi=2�.
Thus �utd

ÿitn; jn� � �n; jn� � k�ÿi=2� � �j1n; n�. By polarisation it follows
that ut � dit and j � j1, as required.
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12. Modular operators and Takesaki devissage for von Neumann algebras

The main application of the modular theory for a closed real subspace is
when the subspace arises from a von Neumann algebra with a vector cyclic
for the algebra and its commutant. Let M � B�H� be a von Neumann al-
gebra and let X 2 H (the ``vacuum vector'') satisfy MX � H � M 0X. The
condition M 0X � H is clearly equivalent to the condition that X is separating
for M , i.e. aX � 0 i� a � 0 for a 2 M . If in addition M and H are Z2-graded,
then the graded commutant Mq equals jM 0jÿ1 where the Klein transfor-
mation j is given by multiplication by 1 on the even part of H and by i on
the odd part; in this case we will always require that X be even. Let
K � MsaX, a closed real subspace of H .

Lemma 1. K � iK is dense in H and K \ iK � �0�.

Proof. K� iK � MX � MsaX� iMsaX, so K � iK is dense. Now K?� iM 0saX,
since for a 2 Msa, b 2 M 0sa, we have Re�aX; ibX� � Reÿ i �abX;X� � 0,
because �ab�� � ab implies that �abX;X� is real. Hence iK? � M 0saX. Thus
K? � iK? � M 0X, so K? � iK? is dense. So K \ iK � �K? � iK?�? � �0�.

Let Dit and J be the modular operators on H associated with K � MsaX.
The main theorem of Tomita-Takesaki asserts that JMJ � M 0 and
DitMDÿit � M . (General proofs can be found in [8] or [33] for example; for
hyper®nite von Neumann algebras an elementary proof is given in [42],
based on [33] and [16].) Once the theorem is known, the map x 7! Jx�J gives
an isomorphism between Mop (M with multiplication reversed) and M 0 and
rt�x� � DitxDÿit gives a one-parameter group of automorphisms of M . Our
development, however, does not logically require any form of the main
theorem of Tomita-Takesaki; instead we verify it directly for fermions and
deduce it for subalgebras invariant under the modular group using a crucial
result of Takesaki (``Takesaki devissage'').

Lemma 2. If JMJ � M 0, then JMJ � M 0.

Proof (cf [33]). Clearly JX � X. If A;B 2 M 0sa, then �JBX;AX� is real since
AX;BX lie in iK? and J is also the modular conjugation operator for iK?.
Thus �AJBJX;X� � �JBX;AX� � �AX; JBX� � �JBJAX;X�. By complex
linearity in A and conjugate-linearity in B, it follows that �AJBJX;X� �
�JBJAX;X� for all A;B 2 M 0. Now take a; b 2 M 0, x; y 2 M and set A � a and
B � Jy�JbJxJ : Since JxJ ; JyJ 2 M 0, B lies in M 0. Hence �JbJaxX; yX� �
�aJbJxX; yX�. Since MX � H , this implies that aJbJ � JbJa. Thus
JM 0J � M 00 � M and so JMJ � M 0.

Corollary. If A � B�H� is an Abelian von Neumann algebra and X a cyclic
vector for A, then Dit � I ; JaX � a�X and JaJ � a� for a 2 A; and
A � JAJ � A0.
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Proof. Since A � A0, X is separating for A. Thus JaX � a�X extends by
continuity to an antiunitary. If a 2 Asa, the map f �z� � a satis®es the KMS
conditions for the trivial group and J , so they must be the modular oper-
ators. Since JAJ � A � A0, the last assertion follows from the lemma.

Theorem (Takesaki devissage [37]). Let M � B�H� be a von Neumann
algebra, X 2 H cyclic for M and M 0 and Dit, J the corresponding modular
operators. Suppose that DitMDÿit � M and JMJ � M 0. If N � M is a von
Neumann subalgebra such that DitNDÿit � N , then
(a) Dit and J restrict to the modular automorphism group Dit

1 and conju-
gation operator J1 of N for X on the closure H1 of NX.
(b) Dit

1NDÿit
1 � N and J1NJ1 � N 0.

(c) If e is the projection onto H1, then eMe � Ne and N � fx 2 M :
xe � exg (the Jones relations [18]).
(d) H1 � H i� M � N .
(e) The modular group ®xes the centre. In fact DitxDÿit � x and JxJ �

x� for x 2 Z�M� � M \M 0.

Proof. (a) By KMS uniqueness, Dit and J restrict to Dit
1 and J1 on H1 � eH .

(b) It is clear that AdDit
1 normalises Ne � N1 on H1. Now

J1NeJ1 � eJNJe � eJMJe � eM 0e � eN 0e � �eN�0. Thus J1N1J1 � N 01. By
Lemma 2, J1N1J1 � N 01.

(c) Since M 0 � N 0 and M 0 � JMJ , this implies that M � JN 0J . Compress-
ing by e we get eMe � eJN 0Je � JeN 0eJ � J1eN 0eJ1 � J1�N � e�0J1 � N � e.
But trivially Ne � eMe, so that eMe � Ne. Clearly N � hei0. Now suppose
that x 2 M commutes with e. Then xe � ye for some y 2 N . But then
�xÿ y�e � 0, so that �xÿ y�X � 0. SinceX is separating forM , x � y lies in N .

(d) Immediate from (c).
(e) Immediate from (a) and the corollary to Lemma 2.

13. Araki duality and modular theory for Cli�ord algebras

We develop the abstract results implicit in the work of Araki on the ca-
nonical commutation and anticommutation relations [1, 2]. This reduces the
computation of the modular operators for Cli�ord algebras to ``one particle
states'', i.e. to the prequantised Hilbert space. We ®rst recall that the as-
signment H 7! K�H� de®nes a functor from the additive theory of Hilbert
spaces and contractions to the multiplicative theory of Hilbert spaces and
contractions. A contraction A : H1 ! H2 between two Hilbert spaces is a
bounded linear map with kAk � 1. We de®ne K�A� to be A
k on
Kk�H1� � H
k

1 . Then K�A� gives a bounded linear operator from K�H1� to
K�H2� with kK�A�k � 1. Clearly if kAk; kBk � 1, then K�AB� � K�A�K�B�.
Also K�A�� � K�A��, so if A is unitary, then so too is K�A�. Similarly, if
H1 � H2 � H , then if A is self-adjoint or positive, so too is K�A�. In
particular if A � UP is the polar decomposition of A with U unitary, then
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K�A� � K�U�K�P � is the polar decomposition of K�A� by uniqueness.
Moreover K�Ait� � K�A�it if A is in addition positive (note that
�Ait�
k � �A
k�it). Similarly every conjugate-linear contraction T induces an
operator ~K�T ��n1 ^ n2 ^ � � � ^ nn� � Tnn ^ T nnÿ1 ^ � � � ^ Tn1. Note that
~K�T � � jÿ1K�iT �, where j is the Klein transformation. If T � UP is the
polar decomposition of T with U a conjugate-linear unitary, then
~K�T � � ~K�U�K�P � is the polar decomposition of ~K�T �. If U is a linear or
conjugate-linear unitary, then it is easy to check that K�U�a�n� K�U�� �
a�Un� and K�U�c�n�K�U�� � c�Un�.

Let H be a complex Hilbert space and K � H a closed real subspace of H
such that K \ iK � �0� and K � iK is dense in H . For n 2 H let a�n� denote
exterior multiplication by n and let c�n� � a�n� � a�n�� denote Cli�ord
multiplication. Thus c�n�c�g� � c�g�c�n� � 2Re�n; g�. Since the *-algebra
generated by the a�n�'s acts irreducibly on KH and since
a�n� � �c�n� ÿ ic�in��=2, the c�n�' s act irreducibly on KH .

Lemma. If M�K� is the von Neumann algebra generated by the c�n�'s (n 2 K),
then X is cyclic for M�K�.

Proof. Let H0 � M�K�X and assume by induction that all forms of degree
N or less lie in H0. Let x be an N -form and take f 2 K. Then
f ^ x � c� f �xÿ a� f ��x, so that f ^ x 2 H0. Since K � iK is dense in H
and H0 is a complex subspace of KH , it follows that n ^ x 2 H0 for all
n 2 H . Hence H0 contains all �N � 1�-forms.

Since X is cyclic for M�K?�, which lies in the graded commutant of
M�K�, it follows that X is cyclic and separating for M�K�. Let R, T ,
Dit � �I ÿ R�itRÿit and J be the corresponding modular operators for M�K�
and X.

Theorem. (i) J � ~K�j� � jÿ1K�ij�, Dit � K�dit�, where j and dit are the mod-
ular operators for K.

(ii) For n 2 H , Ditc�n�Dÿit � c�ditn� and jJc�n�Jjÿ1 � c�ijn�, where j is
the Klein transformation.

(iii) M�K?� is the graded commutant of M�K� and M�K�0 � JM�K�J
(Araki duality).

Remark. For another proof, analogous to that of [24] for bosons and the
canonical commutation relations, see [42].

Proof (cf [2]). Let dit and j be the modular operators associated with the
closed real subspace K � H . Let S be the conjugate-linear operator on
pP �CliffR�K��X de®ned by SaX � a�X for a 2 M � pP �CliffR�K��. This is
well-de®ned, because X is separating for M . Thus Sc�n1� � � � c�nn�X �
c�nn� � � � c�n1�X for ni 2 K. If the ni's are orthogonal, it follows that Sn1 ^ � � �
^nn � nn ^ � � � ^ n1. Since any ®nite dimensional subspace of K admits an
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orthonormal basis, this formula holds by linearity for arbitrary
n1; . . . ; nn 2 K. Since S is conjugate-linear, it follows that for ni; gi 2 K we
have S�n1 � ig1� ^ � � � ^ �nn � ign� � �nn ÿ ign� ^ � � � ^ �n1 ÿ ig1�.

Let J � ~K�j� � jÿ1K�ij� and Dit � K�dit�. Clearly DitJ � DitJ and Dit

preserves MsaX. To check the KMS condition, it su�ces to show that for
x 2 MX, the function F �t� � Ditx extends to a bounded continuous function
on ÿ 1

2 � Im z � 0, holomorphic on the interior, with F �t ÿ i=2� � JSF �t�.
We may assume that x � �n1 � ig1� ^ � � � ^ �nn � ign� with ni; gi 2 K. For
each i, let fi�z� be continuous bounded function on ÿ 1

2 � Im z � 0, holo-
morphic in the interior, fi�t� � dit�ni � igi� and fi�t ÿ i=2� � jdit�ni ÿ igi�.
Let F �z� � f1�z� ^ � � � ^ fn�z�. Then F �z� is bounded and continuous on
ÿ 1

2 � Im z � 0, holomorphic in the interior, and F �t� � Ditx. Now
F �t ÿ i=2� � f1�t ÿ i=2� ^ � � � ^ fn�t ÿ i=2� � jdit�n1 ÿ ig1� ^ � � � ^ jdit �nnÿ
ign� � ~K�j�SF �t� � JSF �t�. Thus F �t ÿ i=2� � JSF �t� as required. This
proves (i) and (ii) follows immediately. To prove (iii), note that ij�K� � K?,
so that M�K?� � jJM�K�Jjÿ1 by this covariance relation. But
M�K?� � M�K�q � jM�K�0jÿ1. Thus JM�K�J � M�K�0, so the result
follows from Lemma 2 in Section 12.

14. Prequantised geometric modular theory

In this section we compute the prequantised modular operators corre-
sponding to fermions on the circle by two methods: ®rstly using a KMS
argument due to Jones reminiscent of computations of Bisognano and
Wichmann [4]; and then using the fact that a Hilbert space, endowed with
two projections in general position, can be written as a direct integral of
two-dimensional irreducible components. Let H be the complex Hilbert
space L2�S1; V � where V � CN . We give H a new complex structure by
de®ning multiplication by i as i�2P ÿ I�, where P is the orthogonal projec-
tion onto Hardy space H 2�S1; V �. Let I be the upper semicircle and let
K � L2�I ; V �, a real closed subspace of HP . The real orthogonal projection
onto K, regarding H as a real inner product space, is given by Q, multipli-
cation by vI .

Theorem. (a) K \ iK � �0� and K � iK is dense in HP .
(b) K? � L2�Ic; V �:
(c) j � ÿi�2P ÿ I� where Ff �z� � zÿ1f �zÿ1� is the ¯ip, and dit � ut, where

�utf ��z� � �z sinh pt � cosh pt�ÿ1f �z cosh pt � sinh pt=z sinh pt � cosh pt�.
First proof. (a) It su�ces to show that P and Q are in general position. Now
conjugation by rp takes Q onto I ÿ Q and ®xes P while conjugation by the
¯ip Vf �z� � zÿ1f �zÿ1� takes Q onto I ÿ Q and P onto I ÿ P . Thus it will
su�ce to show that PH \ QH � �0�. Suppose that the negative Fourier
coe�cients of f 2 L2�I ; V � all vanish. Then so do those of w ? f for any
w 2 C1�S1�. But w ? f 2 C1�S1; V � is the boundary value of a holomorphic
function. If w is supported near 1, w ? f vanishes in a subinterval of Ic and
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therefore must vanish identically (since w ? f can be extended by re¯ection
across this subinterval). Since w ? f and f can be made arbitrarily close in
L2�S1; V �, we must have f � 0.

(b) The real orthogonal complement of L2�I ; V � in L2�S1; V � is clearly
L2�Ic; V �.

(c) Let K1 � K be the dense subset of QH consisting of functions Qp
where p is the restriction of a polynomial in eih. We must show that the map
f �t� � utQp extends to a bounded continuous function f �z� on the closed
strip ÿ1=2 � Im z � 0, holomorphic in the open strip with
f �t ÿ i=2� � jf �t� for t 2 R. Now f �t� � PutQp � �I ÿ P�utQp. Because of
the modi®ed complex structure on H � PH � �I ÿ P �H , we have to extend
f1�t� � PutQp to a holomorphic function with values in PH and �I ÿ P �utQp
to an antiholomorphic function with values in �I ÿ P �H . Note that if
h 2 �0; p� and ÿ3=4 < Im z < 1=2, the function szeih � cz is non-zero, where
sz � sinh pz and cz � cosh pz. For ÿ3=4 < Im z < 1=2, let pz�eih� �
�szeih � cz�ÿ1p�czeih � sz=szeih � cz�. Then Qpz is holomorphic for such z, so
f1�z� � PQpz gives a holomorphic extension of f1 to ÿ3=4 < Im z < 1=2.
Next note that f2�t� � ÿ�I ÿ P �ut�I ÿ Q�p, since �I ÿ P�p � 0. Set
f2�z� � ÿ�I ÿ P ��I ÿ Q�pz. This gives an antiholomorphic extension of f2 to
ÿ3=4 < Im z < 1=4, because szeih � cz does not vanish for h 2 �ÿp; 0�. Thus
f �z� � f1�z� � f2�z� is a holomorphic function from ÿ3=4 < Im z < 1=2
into H . It equals f �t� for t 2 R. If we show that f �t ÿ i=2� � jf �t�, then f �z�
will be bounded for Im z � 0 or ÿ1=2 and hence, by the maximum modulus
principle, on the strip ÿ1=2 � Im z � 0. Now jf �t� � ÿi�2P ÿ I�
Ff �t� � ÿiPQFpt � i�I ÿ P��I ÿ Q�Fpt. Since st�i=2 � �ict and ct�i=2 � �ist,
we have pt�i=2 � �iFpt. Hence f1�t ÿ i=2� � ÿiPQFpt and f2�t ÿ i=2� �
i�I ÿ P��I ÿ Q�Fpt, so that f �t ÿ i=2� � jf �t� as required.

Second proof. Let U : L2�S1; V � ! L2�R; V �, Uf �x� � �xÿ i�ÿ1f �x� i=xÿ i�
be the unitary induced by the Cayley transform. Let V : L2�R; V � !
L2�R; V � � L2�R; V � be the unitary de®ned by Vf � �cf�;cfÿ�, where bg de-
notes the Fourier transform of g and f��t� � et=2f ��et�. Let W � VU :
L2�S1; V � ! L2�R; V � � L2�R; V �. If en�h� � einh, it is easy to check that
We0 � �g�; gÿ� and Weÿ1 � �ÿgÿ;ÿg�� where g��x� � p

1
2�i� 1�e�px=2

�1� e�2px�ÿ1.
Clearly WQW � is the projection onto the ®rst summand L2�R; V �. Now

UutU� � v2pt, where �vsf ��x� � es=2f �esx�; and VvsV � � m�es�, where
es�t� � eist and m�es� is the corresponding multiplication operator (acting
diagonally). Hence WutW � � m�e2pt�. These operators generate a copy of
L1�R� on L2�R�, which by the corollary to Lemma 2 in section 12 equals its
own commutant on L2�R�. On the other hand P commutes with ut and
End V , so that WPW � lies in the commutant of the m�e2pt�'s and End V .

Hence WPW � � m�a� m�b�
m�c� m�d�

� �
with a; b; c; d 2 L1�R�. But Pe0 � e0 and

Peÿ1 � 0. Transporting these equations by W , we get equations for a; b; c; d
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which can be solved to yield a�x� � �1� e2px�ÿ1, b�x� � ÿc�x� �
iepx�1� e2px�ÿ1 and d�x� � e2px�1� e2px�ÿ1.

These formulas show that WQW � and WPW � are in general position, so
(a) follows. (b) is clear, since L2�I ; V �? � L2�Ic; V �. To prove (c), note
that e � Q and f � �2P ÿ I�Q�2P ÿ I�, so that r � PQP � P?QP? and
I ÿ r � PQ?P � P?QP?. Remembering that rit and �I ÿ r�it must be de®ned
using the complex structure i�2P ÿ I�, we get �I ÿ r�itrÿit � �I ÿ A�itAÿit,
where A � PQP � P?Q?P? � QPQ� Q?P?Q?. Hence WAW � � m�a� and
W ditW � � m��1ÿ a�itaÿit� � m�e2pt� � WutW �, so that dit � ut. Finally t �
�eÿ f �=2 � �2P ÿ I��QP ÿ PQ�. Now W �QP ÿ PQ�W � � W �QPQ?ÿ Q?PQ�
W � � 0

m�b�
m�b�
0

� �
so that j � ÿi�2P ÿ I�F1 where WF1W � � 0

ÿI
ÿI
0

ÿ �
. Now

UFU � � F 0, where �F 0f ��x� � ÿf �ÿx�, so that WFW � � VF 0V � � 0
ÿI
ÿI
0

ÿ �
.

Hence F1 � F , as required.

15. Haag-Araki duality and geometric modular theory
for fermions on the circle

LetH � L2�S1� 
 V with V � CN and let P be the orthogonal projection onto
the Hardy space H 2�S1� 
 V . Let pP denote the corresponding irreducible
representation of Cliff�H� on fermionic Fock space FV . For any interval
J � S1, let M�J� � B�FV � be the von Neumann algebra generated by the
operators pP �a� f �� with f 2 L2�J ; V �. Our main result was obtained jointly
with Jones [19, 42]; it follows almost immediately from the previous sections.

Theorem. Let I denote the upper semicircle with complement Ic � S1nI .
(a) The vacuum vector X is cyclic and separating for M�I�.
(b) (Haag-Araki duality) M�Ic� is the graded commutant of M�I� and

JM�I�J � M�I�0, where J is the modular conjugation with respect to X.
(c) (Geometric modular group) Let I � S1 be the upper semi-circle. The

modular group Dit of M�I� with respect to the vacuum vector X is implemented
by ut, where �utf ��z� � �z sinh pt � cosh pt�ÿ1f �z cosh pt � sinh pt=z sinh pt�
cosh pt� is the M�obius ¯ow ®xing the endpoints of I . In particular DitpP

�a� f ��Dÿit � pP �a�utf �� for f 2 H .
(d) (Geometric modular conjugation) If j is the Klein transformation, then

the antiunitary jJ is implemented by F , where Ff �z� � zÿ1f �zÿ1� is the ¯ip. In
particular JpP �a� f ��J � jÿ1pP �a�Ff ��j for f 2 H .

Remark. Analogous results hold when I is replaced by an arbitrary interval
J . This follows immediately by transport of structure using the canonically
quantised action of SU�1; 1�.

Proof. If HP � PH � P?H (H with multiplication by i given by i�2P ÿ I�),
thenFV � KHP and pp�a� f �� � a�Pf � � a�P?f �� on KHP for f 2 H . Hence
pP �a� f � � a� f ��� � c�Pf � � c�P?f � � c� f � for f 2 H . Now M�I� coincides
with the von Neumann algebra generated by pP �a� f � � a� f ��� for
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f 2 L2�I ; V �. It therefore may be identi®ed with the von Neumann algebra
generated by the c� f � with f 2 K � L2�I ; V �, a closed real subspace of HP .
From Section 13, the vacuum vector X is cyclic for M�I� and
JM�I�J � M�I�0 � jÿ1M�Ic�j, since L2�I ; V �? � L2�Ic; V �. From Section 14,
we see that Dit is the canonical quantisation of ut and the antiunitary jJ is
the canonical quantisation of F . Finally the relations Ditc� f �Dÿit � c�utf �
and jJc� f �Jjÿ1 � c�Ff � for f 2 HP immediately imply that DitpP �a� f ��
Dÿit � pP �a�utf �� and JpP �a� f ��J � jÿ1pP �a�Ff ��j for f 2 H .

16. Ergodicity of the modular group

Proposition. The action K�ut�
k of R on �KHP �
k is ergodic, i.e. has no ®xed
vectors apart from multiples of the vacuum vector X
k.

Proof. First note that the action ut of R on L2�T� is unitarily equivalent to
the direct sum of two copies of the left regular representation. In fact the
unitary equivalence between L2�T� and L2�R� induced by the Cayley
transform Uf �x� � �xÿ i�ÿ1f �x� i=xÿ i� carries ut onto the scaling action
v2pt of R on L2�R�, where �vsf ��x� � es=2f �esx�. For f 2 L2�R� de®ne
f� 2 L2�R� by f��t� � et=2f ��et� and set W � f � � � f�; fÿ�. Thus W is an
unitary between L2�R� and L2�R� � L2�R�. This unitary carries the scaling
action of R onto the direct sum of two copies of the regular representation.

Thus L2�T� � L2�R� � L2�R� as a representation of R. Now
H � L2�T; V � is a direct sum of copies of L2�T�. On the other hand
L2�R� � L2�R� (by conjugation), it follows that both H and H are sub-
representations of a direct sum of copies of L2�R�. But HP � PH � �I ÿ P�H
is a subrepresentation of H � H , so that HP is unitarily equivalent to a
subrepresentation of L2�R� 
Cn for some n.

Thus the action of R on �KHP �
k � K�HP 
Ck� is unitarily equivalent
to a subrepresentation of R on KH1, where H1 � L2�R� 
Cm for some
m � 2. It therefore su�ces to check that R has no ®xed vectors in kkH1 for
k � 1, since the action of R preserves degree.

Now kkH1 � H
k
1 . On the other hand if t 7! p�t� is any unitary repre-

sentation of R on H and k�t� is the left regular representation on L2�R�,
then k
 p and k
 I are unitarily equivalent: the unitary V , de®ned by
Vf �x� � p�x�f �x� for f 2 L2�R;H� � L2�R� 
 H , gives an intertwiner. It
follows that H
k

1 is unitarily equivalent to a direct sum of copies of the left
regular representation. Hence kkH1 is unitarily equivalent to a subrepre-
sentation of a direct sum of copies of the left regular representation. Since
the Fourier transform on L2�R� transforms k�t� into multiplication by
et�x� � eitx, no non-zero vectors in L2�R� are ®xed by k. Hence there are no
non-zero vectors in kkH1 ®xed by R for k � 1, as claimed.

Corollary. The modular group acts ergodically on the local algebra
M�I� � pP �Cliff�L2�I ; V ���00, i.e. it ®xes only the scalar operators. In partic-
ular M�I� must be a factor [in fact a type III1 factor].
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Proof. Suppose that x 2 M�I� is ®xed by the modular group. Then xX is
®xed by the modular group, so that xX � kX for k 2 C. Since X is separating
for M�I�, this forces x � kI . Since the modular group ®xes the centre, M�I�
must be a factor.

17. Consequences of modular theory for local loop groups

Using only Haag-Araki duality for fermions and Takesaki devissage, we
establish several important properties of the von Neumann algebras
generated by local loop groups in positive energy representations. These
include Haag duality in the vacuum representation, local equivalence, the
fact that local algebras are factors and a crucial irreducibility property for
local loop groups. This irreducibility result will be deduced from a von
Neumann density result, itself a consequence of a generalisation of Haag
duality; it can also be deduced from a careful study of the topology on the
loop group induced by its positive energy representations.

Let LI G be the local loop group consisting of loops concentrated in I ,
i.e. loops equal to 1 o� I , and let LI G be the corresponding subgroup of
LG. We need to know in what sense these subgroups generate LG.

Covering lemma. If S1 � Sn
k�1 Ik, then LG is generated by the subgroups LIk G.

Proof. By the exponential lemma we just have to prove that every expo-
nential exp�X � lies in the group generated by LIk G. Let �wk� � C1�S1� be a
smooth partition of the identity subordinate to �Ik�. Then X �Pwk � X , so
that exp�X � � exp�w1 � X � � � � exp�wn � X � with exp�wk � X � 2 LIk G.

Let p : LSU�N� ! PU�FV � be the basic representation of LSU�N�, so
that p�g�pP �a� f ��p�g�� � pP �a�g � f �� for f 2 L2�S1; V � and g 2 LSU�N�.
Let pi be an irreducible positive energy representation of level `. Haag-Araki
duality and the fermionic construction of pi imply that operators in pi�LI G�
and pi�LIc G�, de®ned up to a phase, actually commute (``locality''):

Proposition (locality). For any positive energy representation pi, we have
pi�g�pi�h�pi�g��pi�h�� � I for g 2LI SU�N� and h 2LIc SU�N�.

Proof. As above let M�I� � B�FV � be the von Neumann algebra generated
by fermions a� f � with f 2 L2�I ; V �. Since p�g� commutes with M�Ic� and is
even, it must lie in M�I� by Haag-Araki duality. Similarly p�h� lies in M�I�.
Since they are both even operators they must therefore commute. Clearly
this result holds also with p
` in place of p and passes to any subrepre-
sentation pi of p
`.

The embedding of LSU�N� in LSU�N`� gives a projective representation
P on FW where W � �CN �
`. Now FW is can naturally be identi®ed with
F
`V and under this identi®cation P � p
`. Let M � pP �Cliff�L2�I ;W ���00
and let N � p
`�LI SU�N��00 � P�LI SU�N��00, so that N � M . The opera-
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tors ut and F lie in SU��1; 1� so are compatible with the central extension
LG introduced in section 5. It follows immediately that N is invariant under
the modular group of M . In order to identify NX we need a preliminary
result.

Reeh-Schlieder theorem. Let p be an irreducible positive energy projective
representation of LG on Hand let v be a ®nite energy vector (i.e. an eigenvector
for rotations). Then the linear span of p�LI G�v is dense in H .

Proof (cf [32]). It su�ces to show that if g 2 H satis®es �p�g�v; g� � 0 for
all g 2LI G, then g � 0. We start by using the positive energy condition to
show that this identity holds for all g 2 LG. For z1; . . . ; zn 2 T and
g1; . . . ; gn 2LJ G, where J �� I , consider F �z1; . . . ; zn� ��Rz1p�g1� Rz2p�g2�
� � �Rznp�gn�v; g�. This vanishes if all the zi's are su�ciently close to 1. Now
freeze z1; . . . ; znÿ1. As a function of zn, the positive energy condition implies
that the function F extends to a continuous function on the closed unit disc,
holomorphic in the interior and vanishing on the unit circle near 1. By the
Schwarz re¯ection principle, F must vanish identically in zn. Now freeze all
values of zi except znÿ1. The same argument shows that F vanishes for all
values of znÿ1, and so on. After n steps, we see that F vanishes for all values
of zi on the unit circle. Thus �p�g�v; g� � 0 for all g in the group generated by
LJ G and its rotations, i.e. the whole group LG. Therefore, since p is
irreducible, g � 0 as required.

We may now apply Takesaki devissage with the following consequences.

Theorem A (factoriality). N � p
`�LI G�00, and hence each isomorphic
pi�LI G�00, is a factor.

Proof. By Takesaki devissage, N has ergodic modular group and therefore
must be a factor. If pi is a projection in p
`�LG�0 � p
`�LI G�0 corre-
sponding to the irreducible positive energy representation Hi, then pi�LI G�00
is isomorphic to p
`�LI G�00pi � N and is therefore also a factor.

Theorem B (local equivalence). For every positive energy representation pi of
level `, there is a unique *-isomorphism pi : p0�LI G�00 ! pi�LI G�00 sending
p0�g�to pi�g� for all g 2LI G. If X � HomLI G�H0;Hi�, then XX is dense in
Hi and pi�a�T � Ta for all T 2 Xand a 2 p0�LI G�00. If X0 is a subspace of X
with X0H0 dense in Hi, then pi�a� is the unique operator b 2 B�Hi� such
bT � Ta for all T 2 X0.

Proof. This is immediate from the proposition in Section 10, since p0 and
pi are subrepresentations of the factor representation p
` 
 I . Since
X � Xp0�LI G� and X is cyclic for p0�LI G�, it follows that
XX � XH0 � Hi.

Remarks. Note that, if pi; pj are projections onto copies of Hi;Hj in FW ,
explicit intertwiners Hj ! Hi are given by compressed fermi ®elds pia� f �pj

with f supported in Ic; these are essentially the smeared vector primary
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®elds that we study in Chapter IV. Theorem B is a weaker version of the
much stronger result that the restrictions of p0 and pi to LI G are unitarily
equivalent. This follows because p
` restricts to a type III factor represen-
tation of LI G (because the modular group is ergodic). Thus any non-zero
subrepresentations are unitarily equivalent. Local equivalence may also be
proved more directly using an argument of Borchers [6] to show that
the local algebras are ``properly in®nite'' instead of type III (see [42] and
[43]).

Theorem C (Haag duality). If p0 is the vacuum representation at level `, then
p0�LI G�00 � p0�LIc G�0. The corresponding modular operators are geometric.
Analogous results hold when I is replaced by an arbitrary interval.

Remark. Locality leads immediately to the canonical so-called ``Jones-
Wassermann'' inclusion pi�LI G�00 � pi�LIc G�0 [19, 41]. This inclusion
measures the failure of Haag duality in non-vacuum representations.

Proof. By the Reeh-Schlieder theorem, the vacuum vector is cyclic for
p0�LI G�00, and hence p0�LI G�0 (since it contains p0�LIc G�00) . Let e be
the projection onto NX. Then N ! Ne, x 7! xe is an isomorphism. Clearly
Ne may be identi®ed with p0�LI G�00. Its commutant is JNJe, so p0�LIc G�00.
The identi®cation of the modular operators is immediate. Now
SU�1; 1� � SU��1; 1� acts on the vacuum representation ®xing the vacuum
vector and carries I onto any other interval of the circle. Since the modular
operators lie in SU��1; 1�, the results for an arbitrary interval follow by
transport of structure.

Theorem D (generalised Haag duality). Let e be the projection onto the vac-
uum subrepresentation of p
`. Then pP �Cliff�L2�I ;W ���00

T�Ce�0 � p
`

�LI G�00. Moreover p
`�LI G�00 is the subalgebra of the ``observable algebra''
p
`�LG�00commuting with all ®elds pP �a� f �� with f localised in Ic.

Proof. The ®rst assertion is just the second of the Jones relations N �
fx 2 M : ex � xeg and therefore a consequence of Takesaki devissage. To
prove the second, note that

p
`�LI G�00 � pP �Cliff�L2�I ;W ���00
\

p
`�LG�00 � pP �Cliff�L2�I ;W ���00\
�Ce�0 � p
`�LI G�00:

Thus we obtain p
`�LI G�00 � pP �Cliff�L2�I ;W ���00
T

p
`�LG�00. But
pP �Cliff�L2�I ;W ���00 is equal to the graded commutant of
pP �Cliff�L2�Ic;W ���. Since all operators in p
`�LG�00 are even, it follows that
pP �Cliff�L2�Ic;W ���0T p
`�LG�00 � p
`�LI G�00, as required.

Theorem E (von Neumann density). Let I1 and I2 be touching intervals ob-
tained by removing a point from the proper interval I. Then if p is a positive
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energy representation of LG (not necessarily irreducible), we have
p�LI1G�00 _ p�LI2G�00 � p�LI G�00 (``irrelevance of points'').

Proof. By local equivalence, there is an isomorphism p between p0�LI G�00
and p�LI G�00 taking p0�g� onto p�g� for g 2LI G. Thus p carries
p0�LI1G�00 _ p0�LI2G�00 onto p�LI1G�00 _ p�LI2G�00. It therefore su�ces to
prove the result for the vacuum representation p0. Let J1 � Ic

1 and
J2 � Ic

2 . Now for k � 1; 2 we have p
`�LJk G�00 � pP �Cliff�L2�Ik;W ���0
\�Ce�0. So

p
`�LJ1G�00\ p
`�LJ2G�00� pP �Cliff�L2�I1;W ���0\ pP �Cliff�L2�I2;W ���0\�Ce�0
� pP �Cliff�L2�I ;W ���0 \ �Ce�0 � p
`�LIc G�00:

Here we have used Theorem C and the equality L2�I ;W � � L2�I1;W ��
L2�I2;W �. Taking commutants, we get p
`�LJ1G�0 _ p
`�LJ2G�0 �
p
`�LIc G�0. Compressing by e, this yields p0�LJ1G�0_ p0�LJ2G�0 � p0
�LIc G�0. Using Haag duality in the vacuum representation to identify
these commutants, we get p0�LI1G�00 _ p0�LI2G�00 � p0�LI G�00, as
required.

Theorem F (irreducibility). Let A be ®nite subset of S1 and let LAG be the
subgroup of LG consisting of loops trivial to all orders at points of A. LetLAG
be the corresponding subgroup ofLG. If p is a positive energy representation
of LG (not necessarily irreducible), we have p�LAG�00 � p�LG�00. In particular
the irreducible positive energy representations of LG stay irreducible and
inequivalent when restricted to LAG.

Proof. Clearly LAG �LI1G � � � � �LIn G, if S1nA is the disjoint union of the
consecutive intervals I1,. . ., In. Let Jk be the interval obtained by adding the
common endpoint to Ik [ Ik�1 (we set In�1 � I1). By von Neumann density,
p�LIk G�00 _ p�LIk�1G�00 � p�LJk G�00. Hence p�LAG�00 � W p�LJk G�00. But
the subgroups LJk G generate LG algebraically. Hence p�LAG�00 �
p�LG�00. Taking commutants, we get p�LAG�0 � p�LG�0. By Schur's
lemma, this implies that the irreducible positive energy representations of
LG stay irreducible and inequivalent when restricted to LAG.

Remark. Direct proofs of Haag duality (Theorem C) have been discovered
since the announcement in [19] that do not use Takesaki devissage from
fermions. Theorems A, B and F can also be proved without using Takesaki
devissage. In fact Jones and I proved in [42] that the topology on LG
induced by pulling back the strong operator topology on U�FP � makes
LAG dense in LG. Since any level ` representation p is continuous for this
topology, it follows that p�LAG� is dense in p�LG� in the strong operator
topology. So p�LAG�00 � p�LG�00 and Theorem F follows. The reader is
warned that several incorrect proofs of these results have appeared in
published articles.
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III. The basic ordinary di�erential equation

18. The basic ODE and the transport problem

Consider the ODE

df
dz
� Pf

z
� Qf
1ÿ z

�1�

where f �z� takes values in V � CN and P ;Q 2 End V . Suppose that P has
distinct eigenvalues ki with corresponding eigenvectors ni, none of which
di�er by positive integers, and Q is a non-zero multiple of a rank one
idempotent in general position with respect to P . Thus Q2 � dQ, Tr�Q� � d
with d 6� 0, so that Q�x� � /�x�v for v 2 V , / 2 V � with /�v� � d. ``General
position'' means that v �P dini with di 6� 0 for all i and /�ni� 6� 0 for all i;
the eigenvectors can therefore be normalised so that /�ni� � 1. Let
R � Qÿ P and suppose that R satis®es the same conditions as P with respect
to Q. Let �fj;ÿlj� be the normalised eigenvectors and eigenvalues of R. Let
fi�z� �

P
ni;nzki�n be the formal power series solutions of (1) expanded

about 0 with ni;0 � ni. The fi�z�'s are de®ned and converge in
fz : jzj < 1; z =2 �0; 1�g. If g�z� � f �zÿ1�, then

dg
dz
� Rg

z
� Qg
1ÿ z

; �2�

so we can look for formal power series solutions hj�z� �
P

fj;nzljÿn of (1)
expanded about 1 with fj;0 � fj. The hj�z�'s are de®ned and converge in
fz : jzj > 1; z =2 �1;1�g. The solutions fi�z� and hj�z� extend analytically to
single-valued holomorphic functions on Cn�0;1�.

Problem. Compute the transport coe�cients cij for which fi�z� �
P

cijhj�z�
for z 2 Cn�0;1�.
This problem will be solved by ®nding a rational canonical form for the
matrices P ;Q;R which links the ODE with the generalised hypergeometric
equation, ®rst studied by Thomae. It can be seen directly that the projected
solutions �1ÿ z�/� fi�z�� can be represented by multiple Euler integrals. This
allows one coe�cient of the transport matrix �cij� to be computed when the
ki's and lj's are real and d is negative. The rational canonical form shows
that the transport matrices are holomorphic functions of the ki's and lj's
alone, symmetric in an obvious sense. So the computation of the cij's follows
by analytic continuation and symmetry from the particular solution:

Theorem. The coe�cients of the transport matrix are given by the formula

cij � eip�kiÿlj�
Q

k 6�i C�ki ÿ kk � 1�Q` 6�j C�lj ÿ l`�Q
` 6�j C�ki ÿ l` � 1�Qk 6�i C�lj ÿ kk� :
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For applications it will be convenient to have a slightly generalised version
of this result. Let B be a matrix of the form ÿaI � bQ (b 6� 0) where Q is a
rank one idempotent. Let A be a matrix such that both A and Bÿ A are in
general position with respect to Q and have distinct eigenvalues not di�ering
by integers (so distinct). Around 0 the ODE

df
dz
� Af

z
� Bf
1ÿ z

�3�

has a canonical basis of solutions fi�z� � nizki � ni;1zki�1 � � � �, where
Ani � kini and /�ni� � 1 if Q�n� � /�n�v. Similarly around1, the ODE has
a canonical basis of solutions hj�z� � fizli � fi;1zliÿ1 � � � � where
�Aÿ B�fi � lifi and /�fi� � 1.

Corollary. In Cn�0;1� we have fi�z� �
P

cijhj�z�, where

cij � eip�kiÿlj�
Q

k 6�i C�ki ÿ kk � 1�Q` 6�j C�lj ÿ l`�Q
` 6�j C�ki ÿ l` � a� 1�Qk 6�i C�lj ÿ kk ÿ a� :

Proof. By a gauge transformation f �z� 7! �1ÿ z�cf �z�, the ODE �3� is
changed into the ODE considered before. It is then trivial to check that
the transport relation for that ODE implies the stated transport relation
for �3�.

19. Analytic transformation of the ODE (cf [17])

Consider the ODE f 0�z� � A�t; z�f �z� where A�t; z� �Pn�0 An�t�znÿ1 with
each matrix An�t� 2 End V a polynomial (or holomorphic function) in
t 2 W � Cm and A�t; z� is convergent in 0 < jzj < R for all t 2 Cm.

Proposition. Let U � ft 2 Cm : A0�t� has no eigenvalues di�ering by positive
integersg. For t 2 U , there is a unique gauge transformation g�t; z� 2 GL�V �,
holomorphic on U � fz : jzj < Rg; such that g�t; z�ÿ1A�t; z�g�t; z�ÿ
g�t; z�ÿ1@g�t; z�=@z � A0�t�=z.

Proof. If we write g�t; z� �Pn�0 gn�t�zn with g0�t� � I , then the gn�t�'s are
given by the recurrence relation

ngn�t� � n�nÿ ad A0�t��ÿ1
Xn

m�1
Am�t�gnÿm�t�:
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Let B be a closed ball in U . Then supn kn�nÿ ad A0�t��ÿ1k is bounded by
M <1 on B. So kgn�t�k is bounded on B by the solutions fn of the recur-
rence relation

nfn �
Xn

m�1
bmfnÿm;

where bm � M supt2B kAm�t�k and
P

m�1 bmzm is convergent in jzj < R. But
then f �z� �Pn�0 fnzn is the formal power series solution of zf 0�z� �
�Pm�1 bmzm�f �z� with f �0� � 1, i.e. f 0�z� � b�z�f �z� where b�z� �P

m�0 bm�1zm. This has the unique solution f �z� � exp
R z
0 b�w�dw so that in

particular f �z� �P fnzn is convergent in jzj < R. Since kgn�t�k � fn, it
follows that

P
gn�t�zn converges uniformly on f�t; z� : t 2 B; jzj � rg for any

r < R. Since t 7! gn�t� is holomorphic in t, for ®xed z, g�z; t� is the uniform
limit on compacta of holomorphic functions in t. Since the uniform limit on
compacta of holomorphic functions is holomorphic, it follows that
t 7! g�t; z� is holomorphic on U for ®xed z.

To show that g�t; z� is invertible for ®xed t, note that @zg � Agÿ gA0=z.
Replacing A by ÿAt, we ®nd f such that @zf � ÿfA� A0f =z. Hence
@z� fg� � �A0; fg�=z. The only formal power series solution h of this equation
with h�0� � I is h � I . Hence fg � I as required.

Remarks. This argument applies also when A0�t� � 0: Clearly we may apply
the proposition to the basic ODE. The argument with A0�t� � 0 near points
z 6� 0; 1 shows that the gauge transformation g�z� extends to a holomorphic
map Cn�1;1� ! GL�N ;C� such that g�z�ÿ1A�z�g�z� ÿ g�z�ÿ1g0�z� � A0=z
for z =2 �1;1�. The gauge transformation reduces the basic ODE about 0 to
the ODE f 0�z� � zÿ1A0f �z� which has solutions zA0v � exp�A0 log z�v de®ned
in Cn�0;1� say. Applying the gauge transformation, it follows that any
formal power series solution of the original ODE is automatically conver-
gent in jzj < 1 and extends to a single-valued holomorphic function on
Cn�0;1�.

20. Algebraic transformation of the ODE

Let P be a matrix with distinct eigenvalues ki and corresponding eigenvec-
tors vi. Let Q be proportional to a rank one idempotent on V so that
Q�x� � /�x�v with / 2 V �; v 2 V and /�v� � d 6� 0. We assume that P is in
general position with respect to Q. This means that the eigenvectors ni

satisfy /�vi� 6� 0 and that v �P aini with ai 6� 0 for all i. The next result
gives a rational canonical form for the matrices P , Q and R.

Proposition (Rational Canonical Form). If P has distinct eigenvalues and Q is
a non-zero multiple of a rank one idempotent in general position with respect to
P , there is a (non-orthonormal!) basis of V such that
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P �

0 1 0 0

0 0 1 0

0 0 0 1 0

� � � � � �
� � � � � �
0 1

a1 a2 aN

0BBBBBBBBBBB@

1CCCCCCCCCCCA
; Q �

0 0 0 0

� � � � � �
� � � � � �

b1 b2 bN

0BBBBBBBBBBB@

1CCCCCCCCCCCA
;

ÿR � P ÿ Q �

0 1 0 0

0 0 1 0

0 0 0 1 0

� � � � � �
� � � � � �
0 1

c1 c2 cN

0BBBBBBBBBBB@

1CCCCCCCCCCCA
;

where bN � Tr�Q� 6� 0 and ci � ai ÿ bi. Conversely if P and Q are of the above
form and the roots of a�t� � tN ÿP aitiÿ1 (the characteristic polynomial of P )
are distinct, then P and Q are in general position i� b�t� �P bitiÿ1 and a�t�
have no common roots i� c�t� � a�t� ÿ b�t� and a�t� have no common roots.
(Here c�t� is the characteristic polynomial of P ÿ Q.)

Remark. This gives a unique canonical form for P ;Q;R � Qÿ P with
equivalence given by conjugation by matrices in GL�N ;C�: for a�t� and c�t�
are the characteristic polynomials of P and P ÿ Q, so that the constants ai; bj

are invariants (since b�t� � a�t� ÿ c�t�). Moreover the orbit space of the
pairs �P ;R� under the action by conjugation of GL�N ;C� can naturally be
identi®ed with the space of rational canonical forms.

Proof. Let Q�x� � /�x�v, with /�v� 6� 0. Since Q and P are in general posi-
tion, the elements /;/ � P ; � � � ;/ � P Nÿ1 form a basis of V �. In particular
there is a unique solution w of /�w� � /�Pw� � � � � � /�P Nÿ2w� � 0,
/�P Nÿ1w� � 1. The set w; Pw; . . . ; P Nÿ1w must be linearly independent,
because otherwise P Nÿ1w would have to be a linear combination of
w; Pw; . . . ; P Nÿ2w contradicting /�P Nÿ1w� � 1. Thus �P jw� is a basis of V .
Clearly P and Q have the stated form with respect to this basis. Furthermore
bN � Tr�Q�.

We next must check that if P and Q have the stated form, then no
eigenvector u 6� 0 of P can satisfy Qu � 0 and no eigenvector w of P t

can satisfy Qtw � 0. For w, the condition Qtw � 0 means that
w � �x1; x2; . . . ; xNÿ1; 0� with xi 2 C. The condition P tw � kw forces
x1 � kx2, x2 � kx3, . . ., xNÿ1 � 0. Hence xi � 0 for all i and w � 0. Now
suppose that Pu � ku and Qu � 0. Then it is easily veri®ed that u is
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proportional to �1; k; k2; . . . ; kNÿ1�t. Thus Qu � �0; 0; . . . ; 0; b�k��t, so that
Qu 6� 0 i� b�k� 6� 0. Finally the characteristic polynomial of R is
c�t� � a�t� ÿ b�t�. Clearly a�t� and b�t� have no common roots i� c�t� and
b�t� have no common roots, so the last assertion follows.

21. Symmetry and analyticity properties of transport matrices

Proposition. The transport matrix cij from 0 to 1 of the basic ODE depends
only on the eigenvalues ki of P and lj of P ÿ Q: This dependence is holo-
morphic. Moreover the coe�cients cij; indexed by the eigenvalues ki and lj;
have the symmetry property cij�k1; . . . ; kN ; l1; . . . ; lN � � cri;sj�kr1; . . . ; krN ;
ls1; . . . ; lsN � for r; s 2 SN .

Proof. We can conjugate by a matrix in GL�N ;C� so that P , Q and R are in
rational canonical form. The transport matrix from 0 to 1 is invariantly
de®ned, so does not change under such a conjugation. Thus the assertions
are invariant under conjugation, so it su�ces to prove them when P ;Q;R
are in rational canonical form. Setting g�z� � f �z=�zÿ 1��, where f �z� is a
solution of the basic ODE, we get the ODE

dg
dz
� Pg

z
� Rg

zÿ 1
�4�

where R � Qÿ P . Thus we have to compute the transport matrices for (4)
from 0 to 1 where the solutions at 0 are labelled by the eigenvalues ki of P
and at 1 by the eigenvalues of lj of ÿR. We shall consider variations of P , Q,
and R within rational canonical form. P and R can be speci®ed by pre-
scribing the eigenvalues �ki� of P and �lj� of ÿR. This completely determines
the ai's and ci's and hence the bi's. The ki's and lj's should be distinct and no
two ki's or lj's should di�er by a positive integer. We also impose the linear
constraint that

P
ki ÿ li 6� 0. Thus we obtain an open path-connected

subset U0 of the 2N -dimensional linear space W � f�k; l�g � C2N . Applying
the proposition in section 19 with t � �k; l� 2 W and A�t; z� �
zÿ1P � �zÿ 1�ÿ1R, we deduce that the gauge transformations g�t; z�, h�t; z�
transforming A�t; z� into zÿ1P and �zÿ 1�ÿ1R respectively depend holo-
morphically on t 2 U for a ®xed z 2 �0; 1�. We already saw in section 20 that
the normalised eigenvectors of P and R are given by

ni�t� � b�ki�ÿ1�1; ki; k
2
i ; . . . ; kNÿ1

i �t fj�t� � b�lj�ÿ1�1; lj; l
2
j ; . . . ; lNÿ1

j �t:

Thus the normalised solutions at 0 are zki g�t; z�ni�t� and the normalised
solutions at 1 are given by �zÿ 1�lj h�t; z�fj�t�. So the transport matrix cij�t�
(independent of z) is speci®ed by the equation

zki g�t; z�ni�t� �
X

cij�t��zÿ 1�ÿlj h�t; z�fj�t�
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for jzÿ 1=2j < 1=2. Fix such a value of z (say z � 1=2) and let �wj�t�� be the
dual basis to �fj�t��. Clearly wj�t� is a rational function of �k; l� so is
holomorphic on U . Moreover

cij�t� � �zÿ 1�lj zki�wj�t�; h�t; z�ÿ1g�t; z�ni�t��:

This equation shows that cij�t� depends holomorphically on t 2 U0 and has
the stated symmetry properties.

22. Projected power series solutions

Let k � ki be an eigenvalue of P and consider the corresponding (formal)
power series solution fi�z� �

P
ni;nzki�n of the basic ODE. Dropping the

index i for clarity, we have

zf 0�z� � Pf � Q�z� z2 � z3 � � � ��f ;

with f �z� �P nnzk�n and Pn0 � kn0. Substituting in the formal power series
and dividing out by zk, we getX

n�0
�n� k�nnzn �

X
n�0

Pnnzn � Q�z� z2 � z3 � � � ��
X
n�0

nnzn:

Thus for n � 1 we get

�n� kÿ P�nn � Q�n0 � � � � � nnÿ1�

and hence

Qnn � Q�n� kÿ P �ÿ1Q�n0 � � � � � nnÿ1�:

Let Q�n0 � � � � � nn� � anv, where an 2 C. Thus we obtain the recurrence
relation an ÿ anÿ1 � v�k� n�an, so that an � vP �k� n�anÿ1, where the ra-
tional function vP �t� is de®ned by Q� Q�tI ÿ P �ÿ1Q � vP �t�Q. Thus, rein-
troducing the index i, we have

ai;n � ai;0

Yn

m�1
vP �ki � m�; �5�

where ai;0 � /�ni�. We now must compute vP �t�. Bearing in mind that
equation (2) gives the corresponding power series expansions about 1, we
de®ne vR�t� by Q� Q�tI ÿ R�ÿ1Q � vR�t�Q.

Inversion lemma. vR�t� � vP �ÿt�ÿ1.
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Proof. Let A be an invertible matrix with QAÿ1Q � �1ÿ a�Q, where
a 6� 0. Expanding �Aÿ Q�ÿ1 � �I ÿ Aÿ1Q�ÿ1Aÿ1, we ®nd that Q�Aÿ Q�ÿ1
Q � �aÿ1 ÿ 1�Q. Hence

vR�t�Q � Q� Q�t ÿ R�ÿ1Q � Q� Q�t � P ÿ Q�ÿ1Q � aÿ1Q;

if Q�t � P �ÿ1Q � �1ÿ a�Q. But Q�t � P �ÿ1Q � ÿQ�ÿt ÿ P �ÿ1 Q � �1ÿ vP
�ÿt��Q, so that a � vP �ÿt� and hence vR�t� � aÿ1 � vP �ÿt�ÿ1 as required.

Corollary. vp�t� �
Q�t ÿ li�=

Q�t ÿ kj� where the lj's are the eigenvalues of
P ÿ Q.

Proof. XP �t� has the form p�t�=Q�t ÿ ki�, where p�t� is a monic polynomial
of degree N . Similarly XR�t� has the form q�t�=Q�t � li� where the li's are
the eigenvalues of ÿR � P ÿ Q. Since XR�t� � XP �ÿt�ÿ1, we see that
p�t� �Q�t ÿ li� and q�t� �Q�t � ki�, as required.

Corollary.
P

ki ÿ
P

li � d.

Proof. This follows by taking the trace of the identity P � R � Q.

From (5) and the formula for vP �t�, we have for n � 1

ai;n � ai;0

YN
j�1

Yn

m�1

m� ki ÿ lj

m� ki ÿ kj
;

where ai;0 � /�ni�.

23. Euler-Thomae integral representation of projected solutions (cf [38, 47])

We assume here that the eigenvalues ki of P are real with k1 > k2 > � � � > kN ;
that the eigenvalues li of P ÿ Q are real with l1 > l2 > � � � > lN ; and that
k1 � 1 > lj > k1 for all j. In particular this implies that d � Tr�Q� must be
negative. We start by obtaining an integral representation of the projected
solutions �1ÿ z�/� fi�z�� around 0. Recalling that the eigenvectors ni and fi

of P and P ÿ Q are normalised so that /�ni� � 1 � /�fi�, where
Q�x� � /�x�v � /�x�g, we have already shown that

�1ÿ z�ÿ1zÿki/� fi�z�� �
X
n�0

ai;nzn �
X
n�0

zn �
YN
j�1

Yn

m�1

m� ki ÿ lj

m� ki ÿ kj
:

Using the formula �a�n � a�a� 1� � � � �a� nÿ 1� � C�a� n�=C�a�, we get

�1ÿ z�ÿ1zÿki/� f1�z�� �
X
n�0

�k1 ÿ l1�1�n
n!

Y
j6�1

C�k1ÿlj � n�1�C�k1ÿkj �1�
C�k1ÿlj �1�C�k1ÿkj � n�1� :
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Using the beta function identity C�a�C�b�=C�a� b� � R 10 taÿ1�1ÿ t�bÿ1dt for
a; b > 0, we obtain

/� f1�z�� ��1ÿ z�zk1K
Z 1

0

Z 1

0

� � �
Z 1

0

�1ÿ zt2 � � � tN �l1ÿk1ÿ1Y
j6�1

t
k1ÿlj
j �1ÿ tj�ljÿkjÿ1 dtj;

�6�

where

K �
Y
j 6�1

C�k1 ÿ kj � 1�
C�k1 ÿ lj � 1�C�lj ÿ kj� :

(The inequalities li > ki and k1 ÿ lj > ÿ1 guarantee that this summation by
integrals is valid.) Note that this Euler type integral representation is also
valid for z real and negative, since it is analytic in z where de®ned.
The solutions about 1 have a Laurent expansion (for jzj large)
gj�z� � fjzlj � fj;1zljÿ1 � � � � where fj are the eigenvectors of P ÿ Q
with �P ÿ Q�fj � ljfj. Hence the projected solution /�gj�z�� satis®es
/�gj�z�� � �fj; g�zlj because of the normalisation /�fj� � 1. In particular if x
is large and negative /�gj�x�� � jxjlj epilj . Let cij be the transport matrix
connecting the solutions at 0 and1, so that f1�z� �

P
c1jgj�z�. Since Q and

P are in general position, we lose no information by writing the above
equation as /� f1�z�� �

P
c1j/�gj�z��. Since l1 is the largest of the lj's, we

®nd that for x large and negative,

/� f1�x�� � c11jxjl1eipl1 : �7�

On the other hand by (6) we have for x << 0

/� f1�x�� � Keipk1 jxjl1
Y
j 6�i

Z 1

0

t
l1ÿljÿ1
j �1ÿ tj�ljÿkjÿ1dtj: �8�

Comparing (7) and (8), we obtain

c11 � eip�k1ÿl1�K
Y
j6�1

Z 1

0

t
l1ÿljÿ1
j �1ÿ tj�ljÿkjÿ1dtj

� Keip�k1ÿl1�
Y
j6�1

C�l1 ÿ lj�C�lj ÿ kj�
C�l1 ÿ kj� :

Substituting in the value of K, we get the fundamental formula:

c11 � eip�k1ÿl1�
Y
j6�1

C�k1 ÿ kj � 1�C�l1 ÿ lj�
C�k1 ÿ lj � 1�C�l1 ÿ kj� : �9�
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24. Computation of transport matrices

Theorem. The transport matrix cij from the solutions at 0 to the solutions at1
of the basic ODE is given by

cij � eip�kiÿlj�
Q

k 6�i C�ki ÿ kk � 1�Q` 6�j C�lj ÿ l`�Q
` 6�j C�ki ÿ l` � 1�Qk 6�i C�lj ÿ kk� :

Proof. We obtained this formula in section 23 for c11 when ki; lj took on
special values. On the other hand c11 and the right hand side are analytic
functions of ki; lj. The special values sweep out an open subset of the real
part of the parameter space U0, so by analytic continuation we must have
equality for all parameters in U0. The formula for cij now follows imme-
diately from the symmetry property of the cij's.

IV. Vector and dual vector primary ®elds

25. Existence and uniqueness of vector and dual vector primary ®elds

Let V be an irreducible representation of SU�N�. Then V � C1�S1; V � has
an action of LGoRot S1 with LG acting by multiplication and Rot S1 by
rotation, raf �h� � f �h� a�. There is corresponding in®nitesimal action of
L0goR which leaves invariant the ®nite energy subspaceV0. We may write
V0 �PV�n� where V�n� � zÿn 
 V . Set vn � znv for v 2 V . Thus
dvn � ÿnvn (so that d � ÿid=dh) and Xnvm � �Xv�m�n. Let Hi and Hj be
irreducible positive energy representations at level `. A map
/ : V0 
 H 0

j ! H0
i commuting with the action of L0goRot S1 is called a

primary ®eld with charge V . For v 2 V we de®ne /�v; n� � /�vn� : H0
i ! H 0

j :
these are called the modes of /. The intertwining property of / is expressed
in terms of the modes through the commutation relations:

�X �n�;/�v;m�� � /�X � v;m� n�; �D;/�v;m�� � ÿm/�v;m�:

Uniqueness Theorem. If / : V0 
 H 0
j ! H 0

i is a primary ®eld, then / restricts
to a G-invariant map /0 ofV�0� 
 Hj�0� � V 
 Hj�0� into Hi�0�.Moreover /
is uniquely determined by /0, the initial term of /.

Proof.V�0� 
 Hj�0� is ®xed by Rot S1 and hence so is its image under /. It
therefore must lie in Hi�0�. Since / is G-equivariant (or equivalently
g-equivariant), the restriction of / is G-equivariant. To prove uniqueness,
we must show that if the initial term /0 vanishes then so too does /. It
clearly su�ces to show that �/�n
 f �; g� � 0 for all n 2 H 0

j , f 2V0 and
g 2 H 0

i . By assumption this is true for n 2 Hj�0�, v 2V�0� and g 2 Hi�0�. By
Rot S1-invariance, this is also true if v 2V�n� for n 6� 0 and hence for any
v 2V0.
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Now we assume by induction on n that �/�ananÿ1 � � � a1n
 v�; g� � 0
whenever n 2 Hj�0�, g 2 Hi�0�, v 2V0 and ak � Xk�mk� with mk < 0. Then

�/�an�1an � � � a1n
 v�; g� � ÿ �/�an � � � a1n
 an�1v�; g�
� �/�an � � � a1n
 v�; a�n�1g�;

and both terms vanish, the ®rst by induction and the second because

a�n�1g � Xn�1�mn�1��g � ÿXn�1�ÿmn�1�g � 0:

Finally we prove by induction on n that �/�n
 v�; bn � � � b1g� � 0 for all
n 2 H 0

j , v 2V0, g 2 Hi�0� and bk � Xk�mk� with mk < 0. In fact

�/�n
 v�; bn�1bn � � � b1g� � �/�b�n�1n
 v� n
 b�n�1v�; bn � � � b1g�;

which vanishes by induction.

Adjoints of primary ®elds. Let /�v; n� : H 0
j ! H 0

i be a primary ®eld of charge
V . Thus /�v; n� takes Hj�m� into Hi�mÿ n� and satis®es
�X �m�;/�v; n�� � /�X � v; n� m�, �D;/�v; n�� � ÿn/�v; n�. Hence the adjoint
operator /�v; n�� carries Hi�m� into Hj�m� n�. Let w�v�; n� � /�v;ÿn��
where v� 2 V � is de®ned using the inner product: v��w� � �w; v�. Thus
w�v�; n� : Hi�m� ! Hj�mÿ n�, so that w�v�; n� takes H0

i into H 0
j . Taking

adjoints in the above equation, we get �D;w�v�; n�� � ÿnw�v�; n� and
�X �m�;w�v�; n�� � w�X � v�; n� m�. Thus w�v�; z� is a primary ®eld of charge
V � called the adjoint of /�v; z�. Note that the initial terms of w and / are
related by the simple formula w�v�; 0� � /�v; 0��. Moreover for n 2 H 0

j ,
g 2 H 0

i we have �/�v; n�n; g� � �n;w�v�;ÿn�g�.

Fermionic initial terms. Let V � V( � CN and W � V( 
C`. The irre-
ducible summands of KW � �KV �
` are precisely the permissible lowest
energy spaces at level `. Note that KW can naturally be identi®ed with the
lowest energy subspace of FW �F
`V .

Lemma. Each non-zero intertwiner T 2 HomG�V( 
 Vf ; Vg� arises by taking
the composition of the exterior multiplication map S : W 
 K�W � ! K�W �
with projections onto irreducible summands of the three factors, i.e.
T � pgS�p( 
 pf �.

Proof. Let ef � e
f1ÿf2
1 
 �e1 ^ e2�
f2ÿf3 
 � � � 
 �e1 ^ � � � ^ eNÿ1�
fNÿ1ÿfN


I
`ÿf1�fN be the highest weight vector for a copy of Vf in �KV �
`. Let
gi � fi if i 6� k and gk � fk � 1 so that g is a permissible signature obtained
by adding one box to f . Clearly the corresponding highest weight vector eg

is obtained by exterior multiplication by ek in the f1 ÿ fk copy of KV in
�KV �
`. Let S : W 
 K�W � ! K�W � be the map w
 x 7! w ^ x. Let p( be
the projection onto the f1 ÿ fk copy of V in W � V 
C`. Then, up to a sign,
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S�p( 
 I� : V 
 �KV �
` ! �KV �
` is the operation of exterior multiplica-
tion by elements of V on the f1 ÿ fk copy of KV . Let pf , pg be the projections
onto the irreducible modules Vf , Vg generated by ef and eg. Then
T � pgS�p( 
 pf � : V 
 Vf ! Vg satis®es T �ek 
 ef � � �eg. Hence T is non-
zero. Since S and the three projections are SU�N�-equivariant, it follows that
T is also, as required.

Construction of all vector primary ®elds. Any SU�N�-intertwiner
/�0� : V( 
 Hj�0� ! Hi�0� is the initial term of a vector primary ®eld. All
vector primary ®elds arise as compressions of fermions so satisfy
k/� f �k � Akf k2 for f 2 C1�S1; V(�. The map f 7! /� f � extends
continuously to L2�S1; V � and satis®es the global covariance relation
pj�g�/� f �pi�g�� � /�g � f � for g 2LGo Rot S1.

Proof. By the result on initial terms, it is possible to ®nd an SU�N�-equi-
variant map V ! W , v 7! v and projections pi and pj onto SU�N�-sub-
modules of KW isomorphic to Vi and Vj such that pia�v0�pj : Vj ! Vi is the
given initial term. But Vi and Vj generate LG modules Hi and Hj with
corresponding projections Pi and Pj. The required primary ®eld is
/ij�v; n� � Pia�vn�Pj which clearly has all the stated properties.

Dual vector primary ®elds. Since the adjoint of a vector primary ®eld is a
dual vector primary ®eld, we immediately deduce the following result.

Theorem. Any SU�N�-intertwiner /�0� : V( 
 Hj�0� ! Hi�0� is the initial
term of a dual vector primary ®eld. All vector dual primary ®elds arise
as compressions of adjoints of fermions so satisfy k/� f �k � Akf k2 for
f 2 C1�S1; V(�. The map f 7! /� f � extends continuously to L2�S1; V(�
and satis®es the global covariance relation pj�g�/� f �pi�g�� � /�g � f � for
g 2LGo Rot S1.

26. Transport equations for four-point functions and braiding of primary ®elds

We now establish the braiding properties of primary ®elds. We divide the
circle up into two complementary open intervals I , Ic with I the upper
semicircle, Ic the lower semicircle say. Let f ; g be test functions with f
supported in I and g in Ic, so that f 2 C1c �I� and g 2 C1c �Ic�. In general the
braiding relations for primary ®elds will have the following form

/U
ik �u; f �/V

kj�v; g� �
X

ck;h/
V
ih�v; elkh

� g�/U
hj�u; eÿlkh

� f �;

where the braiding matrix �ckh� and the phase corrections lkh also depend on
i, k, h and j. For f 2 C1c �S1nf1g�, the expression elf is de®ned (unambigu-
ously) by cutting the circle at 1, so that el � f �eih� � eilhf �eih� for h 2 �0; 2p�.
To prove the braiding relation we introduce the formal power series
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Fk�z� �
X
n�0

zn�/U
ik �u; n�/V

kj�v;ÿn�n; g�; Gh�z� �
X
n�0

zn�/V
ih�v; n�/U

hj�u;ÿn�n; g�;

where n and g range over lowest energy vectors. These power series are called
(reduced) four-point functions and take values in HomG�U 
 V 
 Vj; Vi�.
Since the modes /U

ij �n� and /V
pq�n� are uniformly bounded in norm, they

de®ne holomorphic functions for jzj < 1. We start by showing how the
matrix coe�cients of products of primary ®elds can be recovered from four-
point functions.

Proposition 1. Let Fk�z� �
P

n�0�/U
ik �u; n�/V

kj�v;ÿn�n; g�zn �P Fnzn, conver-
gent in jzj < 1. If f 2 C1c �I�, g 2 C1c �Ic� and ef �eih� � f �eÿih�, then

�/U
ik �u; f �/V

kj�v; g�n; g� � lim
r"1

1

2p

Z 2p

0

ef ? g�eih�Fk�reih� dh:

Proof. If f �z� �P fnzn and g�z� � gnzn, then

�/U
ik�u; f �/V

kj�v; g�n; g� �
X
n�0

fngÿn�/U
ik �u; n�/V

kj�v;ÿn�n; g�

� lim
r"1

1

2p

Z 2p

0

ef ? g�eih�Fk�reih� dh:

Corollary. Suppose that f 2 C1c �I�, g 2 C1c �Ic� and suppose further that Fk�z�
extends to a continuous function on S1nf1g. Then

�/U
ik �u; f �/V

kj�v; g�n; g� �
1

2p

Z 2pÿ

0�
ef ? g�eih�Fk�eih� dh:

Proof. The assumptions on f and g imply that the support of ef ? g�eih� is
contained in �d; 2pÿ d� for some d > 0, so the result follows.

The next result explains how to translate from transport equations for
four point functions to braiding relations for smeared primary ®elds. It is
the analogue of the Bargmann-Hall-Wightman theorem in axiomatic
quantum ®eld theory [20, 36].

Proposition 2. Suppose that U and V are the vector representation or its dual.
Let

Fk�z� �
X
�/U

ik �u; n�/V
kj�v;ÿn�n; g�zn; Gh�z� �

X
�/V

ih�v; n�/U
hj�u;ÿn�n; g�zn;

where n and g are lowest energy vectors. If Fk�z�;Gh�zÿ1� extend to continuous
functions on S1nf1g with

516 A. Wassermann



Fk�eih� �
X

ckheilkhhGh�eÿih�;

where lkh 2 R, then for f 2 C1c �0; p�, g 2 C1c �p; ; 2p� we have

�/U
ik �u; f �/V

kj�v; g�n; g� �
X

ckh�/V
ih�v; elkh

� g�/U
hj�u; eÿlkh

� f �n; g�;

where el�eih� � eilh for h 2 �0; 2p�.

Proof. For h 2 �0; 2p� we have Fk�eih� �P ckheilkhhGh�eÿih�. Substituting in
the equation of the corollary and changing variables from h to 2pÿ h, we
obtain

�/U
ik �u; f �/V

kj�v; g�n; g� �
X

ckh
1

2p

Z 2pÿ

0�
e2ilkhpeÿilkhheg ? f �eih�Gk�eih� dh:

It can be checked directly that eÿl � �eg ? f � � eÿ2pil gel � g ? �eÿl � f � (the
corresponding identity is trivial for point measures supported in �0; p� and
�p; 2p� and follows in general by weak continuity); this implies the braiding
relation.

A standard argument with lowering and raising operators allows us to
extend this braiding relation to arbitrary ®nite energy vectors n and g and
hence arbitrary vectors.

Proposition 3. If

�/U
ik �u; f �/V

kj�v; g�n; g� �
X

ckh�/V
ih�v; elkh

� g�/U
hj�u; eÿlkh

� f �n; g�;

for n; g lowest energy vectors, then the relation holds for all vectors n; g.

Proof. By bilinearity and continuity, it will su�ce to prove the braiding
relation for ®nite energy vectors n; g. Suppose that g is a lowest energy
vector. We start by proving that the braiding relations holds for n; g by
induction on the energy of n. When n has lowest energy, the relation is true
by assumption. Now suppose that the relation holds for n1; g. Let us prove it
for n; g where n � X �ÿn�n1, where n > 0. Then

�/U
ik �u; f �/V

kj�v; g�n; g� � �/U
ik �u; f �/V

kj�v; g�X �ÿn�n1; g�
� ÿ�/U

ik �u; f �/V
kj�Xv; eÿn � g�n1; g� ÿ �/U

ik �Xu; eÿn � f �/V
kj�v; g�n1; g�

� ÿ
X

h

ckh�/V
ih�Xv; elkh

eÿng�/U
hj�u; eÿlkh

f �n1; g�

ÿ
X

h

ckh�/V
ih�v; elkh

g�/U
hj�u; eÿlkh

eÿnf �n1; g�

�
X

h

ckh�/V
ih�v; elkh

g�/U
hj�u; eÿlkh

f �n; g�:
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This proves the braiding relation for all n and all lowest energy vectors g. A
similar inductive argument shows the braiding relation holds for all n and all g.

Corollary 1. If f and g are supported in S1nf1g and the support of g is
anticlockwise after the support of f , then

/U
ik �u; f �/V

kj�v; g� �
X

ckh/
V
ih�v; elkh

� g�/U
hj�u; eÿlkh

� f �:

Proof. This result follows immediately from the proposition, using a partition
of unity and rotating if necessary so that neither the support of f nor g pass 1.

Corollary 2. If f and g are supported in S1nf1g and the support of g is
anticlockwise after the support of f , then

/U
ik �u; f �/V

kj�v; g� �
X

dkh/
V
ih�v; elkh

� g�/U
hj�u; eÿlkh

� f �;

where dkh � e2pilkh ckh.

Proof. This follows by applying a rotation of 180� in the proposition and
then repeating the reasoning in the proof of corollary 1.

27. Sugawara's formula

Let H be a positive energy irreducible representation at level ` and let �Xi� be
an orthonormal basis of g. Let L0 be the operator de®ned on H 0 by

L0 � 1

N � ` ÿ
X

i

1

2
Xi�0�Xi�0� ÿ

X
n>0

X
i

Xi�ÿn�Xi�n�
 !

:

Then L0 � D� D=2�N � `� if ÿPi Xi�0�Xi�0� acts on H�0� as multiplication
by D.

Remark. Note that the operator C � ÿPXiXi �
P

EijEji ÿ �
P

Eii�2=N acts
in Vf as the constant

Df �
X

f 2
i � fi�N ÿ 2i� 1�

h i
ÿ

X
fi

� �2.
N :

In particular, for the adjoint representation on g (f1 � 1, f2 � f3
� � � � � fNÿ1 � 0, fN � ÿ1) we have D � 2N .

Proof (cf [30]). Since
P

i Xi�a�Xi�b� is independent of the orthonormal
basis �Xi�, it commutes with G and hence each X �0� for X 2 g. ThusP

i�X ;Xi��a�Xi�b� � Xi�a��X ;Xi��b� � 0 for all a; b. If A �Pi
1
2 Xi�0�Xi�0��P

n>0 Xi�ÿn�Xi�n�, then using the above relation we get
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�X �1�;A� � N`X �1� �
X

i

1

2
��X ;Xi��1�Xi�0� � Xi�0��X ;Xi��1��

�
X

n

�X ;Xi��ÿn� 1�Xi�n� � Xi�ÿn��X ;Xi��n� 1�

� N`X �1� � 1

2

X
i

��X ;Xi��1�;Xi�0�� � N`X �1� � 1

2

X
i

��X ;Xi�;Xi��0�;

since ��X ;Xi�;Xi� � 0 by invariance of ��; ��. Hence �X �1�;A� � �N � `�X �1�,
since ÿPi ad �Xi�2 � 2N . Now formally X �1�� � ÿX �ÿ1� and A� � A, so
taking adjoints we get �X �ÿ1�;A� � ÿ�N � `�X �ÿ1�, so that �N � `�D� A
commutes with all X ��1�'s. Since �g; g� � g, these generate L0g, and hence
�N � `�D� A � kI for some k 2 C. Evaluating on H�0�, we get k � ÿD=2.

28. The Knizhnik-Zamolodchikov ODE (cf [23])

Let /�a; n� : H0
j ! H 0

k and /�b;m� : H 0
k ! H0

i be primary ®elds of
charges V2 and V3 respectively. Let anm be the matrix coe�cient anm �
�/�v2; n�/�v3;m�v4; v1�, where V4 � Hj�0� and V1 � Hi�0�. Since Dv4 � 0
� Dv1 and �D;/�v2; n�� � ÿn/�v2; n�, �D;/�v3;m�� � ÿm/�v3;m�, it follows
immediately that an;m � 0 unless n� m � 0. Moreover /�a;m�v � 0 if n > 0,
so that anm � 0 if m > 0. We de®ne four commuting actions of SU�N� on
Hom�V2 
 V3 
 V4; V1� by p1�g�T � gT , p2�g�T � T �gÿ1 
 I 
 I�, p3�g�T �
T �I 
 gÿ1 
 I� and p4�g�T � T �I 
 I 
 gÿ1�. Thus p1�g�p2�g� p3�g�p4�g�T �
T if T is G-equivariant.

Now let �Xi� be an orthonormal basis of g and de®ne operators Xij on
W � HomG�V2 
 V3 
 V4; V1� as ÿ

P
pi�Xk�pj�Xk�. Thus Xij � Xji. More-

over, if i; j; k are distinct, then Xij � Xjk � Xki � h on W , where h is a
constant. In fact, if m is the missing index,

Xij � Xjk � Xki � ÿ 1
2

hX
p

�pi�Xp� � pj�Xp� � pk�Xp��2 ÿ pi�Xp�2

ÿ pj�Xp�2 ÿ pk�Xp�2
i

 I

� ÿ 1
2

hX
�ÿpm�Xp��2 � Di � Dj � Dk

i
� �Dm ÿ Di ÿ Dj ÿ Dk�=2;

since g acts trivially on W .

Theorem. The formal power series f �v; z� �Pn�0�/�v2; n�/�v3;ÿn�v4; v1�zn,
taking values in W, satis®es the Knizhnik-Zamolodchikov ODE

�N � `� df
dz
� X34 ÿ �Dk ÿ D3 ÿ D4�=2

z
� X23

zÿ 1

� �
f �z�:
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Proof. This is proved by inserting D in the 4-point function f �z� and
comparing it with the Sugawara formula D � L0 ÿ h. In fact zf 0�z� �P

n�0�/�v2; n�D/�v3;ÿn�v4; v1�zn, since �D;/�v;m�� � ÿm/�v;m� and
Dv4 � 0. Now on H 0

k we have D � L0 ÿ h where h � Dk=2�N � `�, so that

zf 0�z� � ÿh � f �z�ÿ�N� `�ÿ1
X
n�0;i

hX
m>0

�/�v2; n�Xi�ÿm�Xi�m�/�v3;ÿn�v4; v1�zn

� 1

2
�/�v2; n�Xi�0�Xi�0�/�v3;ÿn�v4; v1�zn

i
:

Now �X �n�;/�v;m�� � /�X � v; n� m�, so that /�v2; n�Xi�m� � Xi�m�/�v2; n�
ÿ/�Xi � v2; n� m� and Xi�m�/�v3; n� � /�v3; n�Xi�m� � /�Xi � v3; n� m�.
Substituting in these expressions, we get

zf 0�z� � ÿh � f �z� � �N � `�ÿ1
X
n�0;i

X
m>0

�/�Xiv2; nÿ m�/�Xiv3;ÿn� m�v4; v1�zn

ÿ �2�N � `��ÿ1
X
n�0;i
��Xi�0�/�v2; n� ÿ /�Xiv2; n���/�v3;ÿn�Xi�0�

� /�Xiv3;ÿn��v4; v1�zn

� �N � `�ÿ1�ÿDk=2ÿ 1

2
X23

z
1ÿ z

ÿ 1

2
�X23 � X13 � X14 � X24��f �z�

� �N � `�ÿ1�X34 ÿ 1

2
�Dk ÿ D3 ÿ D4� � X23

z
zÿ 1

�f �z�:

29. Braiding relations between vector and dual vector primary ®elds

Consider the four-point functions Fk�z� �
P

n�0�/U
ik �u;ÿn�/V

kj�v; n�n; g�zn

and Gh�z� �
P

n�0�/V
ih�v;ÿn�/U

hj�u; n�n; g�zn, where the charges U and V are
either CN or its dual. Thus any Vk appears with multiplicity one in the tensor
product V 
 Vj or U 
 Vj, and all but possibly one of these summands will
be permissible at level `.

Proposition. (a) fk�z� � zkk Fk�z� satis®es the KZ ODE

�N � `� df
dz
� Xvj

z
f �z� � Xuv

zÿ 1
f �z�;

where kk � �Dk ÿ Dv ÿ Dj�=2�N � `� is the eigenvalue of �N � `�ÿ1Xvj

corresponding to the summand Vk � V 
 Vj.
(b) gh�z� � zlh Gh�zÿ1� satis®es the same ODE, where lh��Di ÿ Dv ÿ Dh�=

2�N � `� is the eigenvalue of �N � `�ÿ1�Xvj � Xuv� corresponding to the
summand Vh � U 
 Vj.
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Proof. (a) Since

Xvj � ÿ
X

pv�Xi�pj�Xi� � ÿ 1

2

X
�pv�X � � pj�X ��2 � 1

2

X
pq�Xi�2

� 1

2

X
pj�Xi�2;

�N � `�ÿ1Xvj acts as the scalar kk � �Dk ÿ Dv ÿ Dj�=2�N � `� on the
subspace Vk � V 
 Vj. Thus the result follows from the previous section.

(b) Similarly mh � Dh ÿ Du ÿ Dj�=2�N � `� eigenvalue of �N � `�ÿ1Xuj

corresponding to the summand Vh of U 
 Vj. Let l � �Di ÿ Du ÿ Dvÿ
Dj�=2�N � `�. It is easy to verify that h�z� � zlÿmh Gh�zÿ1� satis®es the same
ODE, since �N � `�ÿ1�Xuv � Xvj � Xju� � l on HomG�U 
 V 
 Vj; Vi�. Here
lh � lÿ mh � �Di ÿ Dv ÿ Dh�=2�N � `� is the eigenvalue of �N � `�ÿ1
�Xvj � Xuv� corresponding to the summand Vh � U 
 Vj.

Thus the solutions fk�z� form part of a complete set of solutions about 0 of
the KZ ODE; and the solutions gh�z� form part of a solution set about1 of
the same ODE. They may only form part, because one of the summands Vk or
Vh, and hence eigenvalues kk or lh, might correspond to a representation not
permissible at level `; there can be at most one such summand. Let fk�z� and
gh�z� denote the two complete sets of solutions, regardless of whether the
eigenvalues kk or lh are permissible. They de®ne holomorphic functions in
Cn�0;1�. Let ckh be the transport matrix relating the solutions at 0 to the
solutions around 1, so that fk�z� �

P
ckhgh�z� for z 2 Cn�0;1�. Thus

Fk�z� �
P

ckhzlkh Gh�zÿ1�, for z 2 Cn�0;1� where lkh � lh ÿ kk � �Di � Djÿ
Dh ÿ Dk�=2�N � `�.Whenever an Fk orGh does not correspond to a product of
primary ®elds (because Vk or Vh is not permissible at level `), we will ®nd that
the corresponding transport coe�cient ckh is zero. (This is not accidental. As
explained in [43], there is an algebraic boundary condition which picks out the
solutions that arise as four-point functions.) All the examples we will consider
will be those for which the theory of the previous chapter is applicable.

Theorem A (generalised hypergeometric braiding). Let F 2 L2�I ; V � and
G 2 L2�J ; V ��where I and J are intervals in S1nf1gwith J anticlockwise after I .
Then

/(
gf �F �/(

fg�G� �
X

mfh/
(
gh�elfh

G�/(
hg�eÿlfh

F �

with mfh 6� 0, if h > g and lfh � �2Dg ÿ Df ÿ Dh�=2�N � `�.

Proof. The KZ ODE reads

�N � `� df
dz
� X(f f �z�

z
� X((f �z�

zÿ 1
;

where f �z� takes values in W � HomG�V( 
 V( 
 Vg; Vg�. Now the
eigenvalue of X(( corresponding to the trivial representation is
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�0ÿ D( ÿ D(�=2 � Nÿ1 ÿ N and has multiplicity one, while that corre-
sponding to the adjoint representation is �DAd ÿ D( ÿ D(�=2 � Nÿ1 with
multiplicity at most N ÿ 1. Thus X(( � Nÿ1 ÿ NQ, if Q is the rank one
projection in W corresponding to the trivial representation. So

ÿ�N � `�ÿ1X(( �
N

N � `Qÿ 1

N�N � `� :

Thus a � 1=N�N � `� and b � N=�N � `� (in the notation of section 18).
We next check that A � �N � `�ÿ1X(f and Q are in general position. In

fact if we identify W with EndG�Vg 
 V(�, then the inner product becomes
Tr�xy��. The identity operator I is the generator of the range of Q with Q�x�
proportional to Tr�x�. The eigenvectors of A are just given by the orthogonal
projections eg onto the irreducible summands Vg of Vf 
 V(. Since
Tr�eg� > 0, it follows that A and Q are in general position.

The eigenvalues of A are given by kf � �Df ÿ D( ÿ Dg�=2�N � `�, so that
jkf ÿ kf1 j � jDf ÿ Df1 j=2�N � `�. This has the form jgi ÿ gj ÿ i� jj=�N � `�
for i 6� j, if f and f1 are obtained by removing boxes from the ith
and jth rows of g. Since gi � N ÿ i is strictly increasing and g1 ÿ gN � `,
the maximum possible di�erence is jgN ÿ g1 ÿ N � 1j=�N � `� �
1ÿ �N � `�ÿ1 < 1. Hence 0 < jkf ÿ kf1 j < 1 if f 6� f1. Similarly
lh � �Dg ÿ Dh ÿ D(�=2�N � `� and the di�erence jlh ÿ lh1 j has the form
jgi ÿ gj ÿ i� jj=�N � `� for i 6� j, if h and h1 are obtained by adding boxes
to the ith and jth rows of g. Hence 0 < jlh ÿ lh1 j < 1 if h 6� h1.

Caveat. The indexing sets for the fj' and hk's are distinct, even though they
have the same cardinality. This is easy to see if one draws f as a Young
diagram. The fj's correspond to corners pointing north-west while the hk's
correspond to corners pointing south-east.

The anomaly lfh is given by the stated formula by our preamble, so it
only remains to check that permitted terms cfh are non-zero and forbidden
terms zero. In fact the numerator is always non-zero because C�x� 6� 0 for all
x =2 ÿN. Thus the only way cfh can vanish is if one of the arguments of C in
the denominator

Q
` 6�j C�ki ÿ l` � a� 1�Qk 6�i C�lj ÿ kk ÿ a� is a non-posi-

tive integer. Now lh � �Dg ÿ Dh ÿ D(�=2�N � `� and kf � �Df ÿ D(
ÿDg�=2�N � `�. Suppose that h is obtained by adding a box to the ith row of
g and f is obtained by removing a box from the jth row of g. Then
kf ÿ lh � �N � `�ÿ1�gj ÿ gi � 1� iÿ jÿ Nÿ1�. Thus

kf ÿ lh � a � �N � `�ÿ1�gj ÿ gi � 1� iÿ j�:

This has modulus less than 1 unless i � 1, j � N and g1 ÿ gN � `, when it
gives ÿ1. It is then easy to see that if f or h is non-permissible, the corre-
sponding coe�cient vanishes and otherwise it is non-zero.

The next example of braiding could have been done using the classical
theory of the hypergeometric function [17, 47]; however, since the equation
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is in matrix form and some knowledge of Young's orthogonal form is re-
quired to translate this matrix equation into the hypergeometric equation, it
is much simpler to use the matrix and eigenvalue techniques.

Theorem B (hypergeometric braiding). Let F 2 L2�I ; V � and G 2 L2�J ; V �
where I and J are intervals in S1nf1g with J anticlockwise after I . Then
/(

hg�F �/(
gf �G� �

P
lgg1/

(
hg1�eagg1

G�/(
g1f �eÿagg1

F � with lgg1 6� 0, if h > g;
g1 > f and agg1 � �Dh � Df ÿ Dg ÿ Dg1�=2�N � `�.

Proof. In this case W � HomG�V( 
 V( 
 Vf ; Vh� has dimension 2. The
eigenvalues of �N � `�ÿ1X(( correspond to the summands V(( and
V(

(
. We have k(( � �D(( ÿ 2D(�=2�N � `� � �N ÿ 1�=N�N � `� and k(

(
�

�D(
(
ÿ 2D(�=2�N � `� � �ÿN ÿ 1�=N�N � `�. If Q is the projection corre-

sponding to V(
(
and bQÿ aI � ÿ�N � `�ÿ1X((, then b � 2=N�N � `� and

a � �N ÿ 1�=N�N � `�.
We have kg � �Dg ÿ Df ÿ D(�=2�N � `� and lg � �Dh ÿ Dg ÿ D(�=

2�N � `�. Thus jkg ÿ kg1 j � jlg ÿ lg1 j � jDg ÿ Dg1 j=2�N � `� � jfi ÿ iÿ
fj � jj= �N � `�, if g and g1 are obtained by adding boxes to f in the ith and
jth rows. As above, it follows that jkg ÿ kg1 j � jlg ÿ lg1 j < 1.

We next check that the operators A � �N � `�ÿ1X(f and Q are in general
position. The operator X(( is a linear combination of the identity operator
id and r, where r�T � � T �S 
 I� and S is the ¯ip on V( 
 V(. The operators
Ti in W which diagonalise X(f are obtained by composing intertwiners
V( 
 Vf ! Vgi and V( 
 Vgi ! Vh. These intertwiners are speci®ed by their
action on vectors ei 
 v where �ei� is a basis of V( and v is a highest weight
vector. If g1 and g2 are obtained by adding boxes to f in rows i and j with
i; j, it is easy to see that T2�ei 
 ej 
 vf � is a non-zero highest weight vector in
Vh while r�T2��ei 
 ej 
 vf � � T2�ej 
 ei 
 vf � � 0. So T2 is not an eigen-
vector of r. This proves that A and Q are in general position.

The anomaly agg1 is as stated by our preamble, so it only remains to
check that permitted terms cgg1 are non-zero and forbidden terms zero. As
above, a term can vanish i� one of the arguments in the denominator
C�kg ÿ lg0

1
� a� 1�C�lg0

1
ÿ kg0 ÿ a� is a non-positive integer (where g0

denotes the other diagram to g between f and h). Now kg ÿ lg1 ��Dg � Dg1 ÿ Df ÿ Dh�=2�N � `�. Hence kg ÿ lg0 � 1=N�N � `�, so that
kg ÿ lg0 � a� 1 � 1� �N � `�ÿ1 and lg0 ÿ kg ÿ a � ÿ�N � `�ÿ1. This
shows that, if g is permissible, none of the arguments is a non-positive
integer and hence that cgg 6� 0. On the other hand kg ÿ lg �
� fi ÿ iÿ fj � j�=�N � `� � 1=N�N � `�, if g is obtained by adding a box to
the ith row of f . Thus kg ÿ lg � a� 1 � 1� � fi ÿ iÿ fj � j� 1�=�N � `�,
which can never be a non-positive integer, while

lg0 ÿ kg0 ÿ a � � fi ÿ iÿ fj � jÿ 1�=�N � `�:
This has modulus less than 1 unless i � N , j � 1 and f1 ÿ fN � `, when it
gives ÿ1. This is the critical case where g is permissible (it is obtained by
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adding a box to the last row of f ) while g0 is inadmissible (it is obtained by
adding a box to the ®rst row of f ). In this case therefore cgg0 � 0 while in all
other cases the coe�cient is non-zero.

Theorem C (Abelian braiding). Let F 2 L2�I ; V � and G 2 L2�Ic; V ��. Let

g 6� g1 be signatures, permissible at level `, obtained by adding one box to f .

Then /(
gf �F �/(

fg1�G� � e/(
gh�elG�/(

hg1�eÿlF � with e 6� 0 and l � �Dg�
Dg1 ÿ Df ÿ Dh�=2.

Proof. The corresponding ODE takes values in the one-dimensional space
HomG�V( 
 V( 
 Vg1 ; Vg� so e must be non-zero and l is as stated by our
preamble.

Theorem D (Abelian braiding). Suppose that g is the unique signature such
that h > g > f , so that h is obtained either by adding two boxes in the same
row of f (symmetric case �) or in the same column (antisymmetric case ÿ).
Let F 2 L2�I ; V � and G 2 L2�J ; V � where I and J are intervals in S1nf1g with J
anticlockwise after I . Then there are non-zero constants d� 6� dÿ depending
only on the case such that

/(
hg�F �/(

gf �G� � d�/(
hg�eaG�/(

gf �eÿaF �

with d� 6� 0 and a � �Dh � Df ÿ 2Dg�=2. In fact d� � eipm� where
m� � ��N ÿ 1�=N�N � `�.

Proof. We use the same reasoning as in the proof of Theorem C. The ODE
is now a scalar equation f 0 � �kgzÿ1 � m��zÿ 1�ÿ1�f . The m� and mÿ are the
eigenvalues of �N � `�ÿ1X(( corresponding to the summands V(( and
V(

(
respectively. So m� � ��N ÿ 1�=N�N � `�. The normalised solution near

0 of the ODE is zkg�1ÿ z�m� while near 1 it is zkg�m��1ÿ zÿ1�m� . Taking
z � ÿx, with x real and positive, it follows immediately that the transport
coe�cient is eipm� .

Summary of braiding properties. If we de®ne a(
gf � /(

gf �eÿaF � where
a � �Dg ÿ Df ÿ D(�=2�N � `� and a(

fg � /(
fg�eaF ��, then the adjoint relation

between these two primary ®elds implies that �a(
gf �� � a(

fg . Incorporating the
anomalies el into the smeared primary ®elds in this way, the braiding
properties established above for vector and dual vector primary ®elds may
be stated in the following form.

Theorem. Let �aij�, �bij� denote vector primary ®elds smeared in intervals I
and J in S1nf1g with J anticlockwise after I .
(a) agf b�g1f �

P
mhb�hgahg1 with mh 6� 0, if h > g; g1 > f .

(b) agf bfh �
P

lf 1bgf 1
af 1h with lf1 6� 0 if h < f1 < g.

(c) agf b�g1f � eb�hgahg1 with e 6� 0
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(d) ahgbgf � d�bhgagf where d� 6� dÿ are non-zero, with � if h is obtained
from f by adding two boxes in the same row and ÿ if they are in the same
column.

Note that (c) and (d) may be regarded as degenerate versions of (a) and
(b) respectively so may be combined. Rotating through 180� as before, or
taking adjoints and simply rewriting the above equations, we obtain our
®nal result. (For simplicity we have suppressed the resulting phase changes
in the coe�cients.)

Corollary. Let �aij�, �bij� denote vector primary ®elds smeared in intervals I
and J in S1nf1g with J anticlockwise after I .
(a) bgf a�g1f �

P
mha�hgbhg1 with mh 6� 0, if h > g; g1 > is permissible.

(b) bgf afh �
P

lf1agf1bf 1h with lf1 6� 0 if h < f1 < g.
(c) bgf a�g1f � ea�hgbhg1 with e 6� 0.
(d) bhgagf � dÿ1�ahgbgf with d� 6� dÿ non-zero.

V. Connes fusion of positive energy representations

30. De®nition and elementary properties of Connes fusion
for positive energy representations

In [42] and [43] we gave a fairly extensive treatment of Connes' tensor
product operation on bimodules over von Neumann algebras. It was then
applied to de®ne a fusion operation on positive energy representations of
LG. Here we give a simpli®ed direct treatment of fusion with more em-
phasis on loop groups than von Neumann algebras. Let X and Y be positive
energy representations of LG at level `. To de®ne their fusion, we consider
intertwiners (or ®elds) x 2 X � HomLIc G�H0;X �, y 2 Y � HomLI G�H0; Y �
instead of the vectors (or states) n � xX and g � yX they create from the
vacuum. We de®ne an inner product on the algebraic tensor product X
Y
by the four-point formula hx1 
 y1; x2 
 y2i � �x�2x1y�2y1X;X�.

Lemma. The four-point formula de®nes an ( pre-) inner product onX
Y. The
Hilbert space completion H � X 2 Y naturally admits a continuous unitary
representation p of L�1G �LI G �LIc G of level `.

Proof. If z �P xi 
 yi 2 X
Y, then hz; zi �P�x�i xjy�i yjX;X�. Now
xij � x�i xj lies in M � p0�LIc G�0 � p0�LI G�00. The operator X � �xij�
2 Mn�M� is non-negative, so has the form X � A�A for some A � �aij�
2 Mn�M�. Similarly, if yij � y�i yj 2 M 0, then Y � �yij� 2 Mn�M 0� can be
written Y � B�B for some B � �bij� 2 Mn�M 0�. Hence

hz; zi �
X
p;q;i;j

�a�piapjb�qibqjX;X� �
X
p;q

X
i

apibqiX
2 � 0:
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We next check thatLI G �LIc G acts continuously on X
Y, preserving the
inner product. The action of g � h on x
 y is given by �g � h��x
 y�� gx
 hy.
It clearly preserves the inner product, so the group action passes to the
Hilbert space completion. Note that since we have de®ned things on the
level of central extensions, we have to check that f 2 T �LI G \LIc G acts
by the correct scalar. This is immediate. Finally we must show that the
matrix coe�cients for vectors in X
Y are continuous onLI G �LIc G. But

hgx1 
 hy1; x2 
 y2i � �x�2gx1y�2hy1X;X� � �x1y�2hy1X; g�x2X�:
Since the maps LI G! X , g 7! g�x2X and LIc G! Y , h 7! hy1X are
continuous, the matrix coe�cient above is continuous.

Lemma. There are canonical unitary isomorphisms H0 2 X � X � X 2 H0.

Proof. If Y � H0, the unitary X 2 H0 ! X is given by x
 y 7! xy X and the
unitary H0 2 X ! X is given by y 
 x 7! xyX.

Lemma. If J is another interval of the circle and the above construction is
accomplished using the local loop groups LJ G and LJc G to give a Hilbert
space K with a level ` unitary representation r of LJ G �LJc G, then if
/ 2 SU�1; 1� carries I onto J , there is a natural unitary U/ : H ! K that
U/�p�g��U �/ � r�g � /ÿ1�.

Proof. Take / 2 SU�1; 1� such that /�I� � J . If x 2 XI � HomLIc G�H0;X �
and y 2 YI � HomLI G�H0; Y �. Choose once and for all unitary represen-
tatives pX �/� and pY �/� (there is no choice for p0�/�). De®ne
x0 � pX �/�xp0�/�� and y0 � pY �/�yp0�/��. The assignments x 7! x0, y 7! y0

give isomorphisms XI ! XJ , YI ! YJ which preserve the inner
products since p0�/�X � X. Since pX �/�pX �g�pX �/�� � pX �g � /ÿ1� and
py�/�pY �g�pY �/�� � pY �g � /ÿ1� for / 2 SU�1; 1� and g 2LG, the map
U/ : x
 y 7! x0 
 y0 extends to a unitary between X 2 I Y and X 2 J Y such
that U/pI�g�U�/ � pJ �g � /ÿ1� for g 2LI G �LIc G.

Hilbert space continuity lemma. The natural map X
Y! X 2 Y extends
canonically to continuous maps X 
Y! X 2 Y and X
 Y ! X 2 Y . In fact
kP xi 
 yik2 � k

P
xix�i k

P kyiXk2 and k
P

xi 
 yik2 � k
P

yiy�i k
P kxiXk2.

Proof (cf [25]). If z �P xi 
 yi 2 X
Y, then
P��x�i xj�y�i yjX;X� �P

y�i pY �x�i xj�yjX;X�, since Sij � x�i xj lies in p0�LIc G�0 � p0�LI G�00. Let
gj � yjX and g � �g1; . . . ; gn� 2 H n

0 . ThenX xi 
 yi

2 � �pY �S�g; g� � kSkkgk2 �
X xix�i

X kyiXk2:

Here we used the fact that S � x�x where x is the column vector with entries
xi; this gives kSk � kx�xk � kxx�k � kP xix�i k. Similarly we can prove that
kP xi 
 yik2 � k

P
yiy�i k

P kxiXk2.
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Corollary (associativity of fusion). There is a natural unitary isomorphism
X 2 �Y 2 Z� ! �X 2 Y �2 Z.

Proof. The assignment �x
 y� 
 z! x
 �y 
 z� makes sense by the lemma
and clearly implements the unitary equivalence of bimodules.

31. Connes fusion with the vector representation

In the previous chapter we proved that if �aij�, �bij� are vector primary ®elds
smeared in intervals I and J in S1nf1g with J anticlockwise after I , then:

(a) bgf a�g1f �
P

mha�hgbhg1 with mh 6� 0 if h > g; g1 is permissible.
(b) bgf afh �

P
lf1agf1bf1h with lf1 6� 0 if h < f1 < g.

We use these braiding relations to establish the main technical result
required in the computation of H( 2 Hf . This answers the following natural
question. The operator a�(0a(0 on H0 commutes with LIc G, so lies in
p0�LI G�00. Thus, by local equivalence, we have the right to ask what its
image is under the natural isomorphism pf : p0�LI G�00 ! pf �LI G�00.

Theorem (transport formula). pf �a�(0a(0� �
P

kga�gf agf with kg > 0.

Remark. It is possible, using induction or the braiding computations in [43],
to obtain the precise values of the coe�cients. Since the precise numerical
values are not important for us, we have preferred a proof which makes it
manifest why the right hand side must have the stated form with strictly
positive coe�cients kg.

Proof. (1) We proceed by induction on jf j �P fi. Suppose that
pf �a�(0a(0� �

P
kga�gf agf and pf �b�(0b(0� �

P
kgb�gf bgf with kg > 0. Po-

larising the second identity, we get pf �b�(0b
0
(0� �

P
kgb�gf b0gf . In particular

if x 2LJ G, we may take b0ij � pi�x�bijpj�x�� and thus obtain

pf �b�(0p(�x�b(0p0�x��� �
X

kgb�gf pg�x�bgf pf �x��:

Since pf �p0�x��� � pf �x��, we may cancel pf �x� on both sides to get

pf �b�(0p(�x�b(0� �
X

kgb�gf pg�x�bgf :

(2) Take x 2LJ G. By the braiding relations and (1), we have

a�gf pg�b�(0p(�x�b(0�agf � pf �b�(0p(�x�b(0�a�gf agf

�
X

g1

X
h;k

kg1mhlkb�g1f a�hg1ahkpk�x�bkf :

If xi 2LJ G, let Y � �yij� be the operator-valued matrix with entries
yij � a�gf pg�b�(0p(�xÿ1i xj�b(0�agf . Then Y is positive, so that

P�yijnj; ni� � 0
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for ni 2 Hf . Substituting the expression on the left hand side above, this
gives X

i;j

X
g1

kg1�b�g1f pg1�xÿ1i �
X

mhlka�hg1ahk

� �
pk�xi�bkf nj; ni� � 0:

On the other hand, von Neumann density implies that
p�LJ G �LJc G�00 � p�LG�00 for any positive energy representation at level `.
This implies that vectors of the form g � �gk�, where gk � pk�x�bkf n with
n 2 Hf and x 2LJ G, span a dense subset of aHk. But from the above
equation we have

P
kg1mhlk�ahkgk; ahg1gg1� � 0, and this inequality holds for

all choices of gk. In particular, taking all but one gg1 equal to zero, we get
kg1mhlg1 > 0. Thus in the expression bg1f a�gf agf �

P
h;k mhlka�hg1ahkbkf , we

have mhlg1 > 0.
(3) Now for x 2LJ G; we have

b�g1f pg1�a�(0a(0�pg1�x�bg1f � b�g1f pg1�x�bg1f

X
kga�gf agf

�
X

kgmhlkb�g1f a�hg1ph�x�ahkbkf :

If xi 2LJ G, let Z � �zij� be the operator-valued matrix with entries zij �
b�g1f pg1�a�(0a(0�pg1�xÿ1i xj�bg1f . Then Z is positive, so that if ni 2 Hf ,P�zijnj; ni� � 0. Let g � �gk� where gk �

P
pk�xi�bkf ni. As above, von

Neumann density implies the vectors g are dense in aHk. Moreover we
have X

kgmhlk�ahkgk; ahg1gg1� � �pg1�a�(0a(0�gg1 ; gg1�:

Since this is true for all gk's, all the terms with k 6� g1 must give a zero
contribution and

�pg1�a�(0a(0�gg1 ; gg1� �
X

kgmhlg1�ahg1gg1 ; ahg1gg1�:

But we already saw that mhlg1 > 0 and hence pg1�a�(0a(0� �
P

Kha�hg1ahg1 ,
with Kh > 0, as required.

Corollary. If Hf is any irreducible positive energy representation of level `,
then as positive energy bimodules we have

H( 2 Hf �aHg;

where g runs over all permissible Young diagrams that can be obtained by
adding a box to f . Moreover the action of LI G �LIc G on H( 2 Hf extends
uniquely to an action of LGo Rot S1.
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Proof. Let X0 � HomLIc G�H0;H(� be the linear span of intertwiners
x � p(�h�a(0, where h 2LI G and a is a vector primary ®eld supported in I .
Since xX � �p(�h�a(0p0�h���p0�h�X, it follows from the Reeh-Schlieder
theorem that X0X is dense in X0H0. But then the von Neumann density
argument (for example) implies that X0X is dense in H(. If
x �P p(�h�j��a�j�(0 2 X0, set xgf �

P
pg�h�j��a�j�gf . Let y 2 HomLI G�H0;Hf �.

By the transport formula

�x�xy�yX;X� � �y�pf �x�x�yX;X� �
X

g

kg�x�gf xgf yX; yX� �
X

g

kgkxgf yXk2:

This formula shows that xgf is independent of the expression for x. More
importantly, by polarising we get an isometry U of the closure of X0 
Y in
H( 2 Hf into aHg, sending x
 y to ak1=2g xgf yX. By the Hilbert space
continuity lemma, X0 
Y is dense in H( 2 Hf . Since each of the maps xgf

can be non-zero, Schur's lemma implies that U is surjective and hence a
unitary. The action of L�1G extends uniquely to LG by Schur's lemma.
The extension to Rot S1 is uniquely determined by the fact that Rot S1 has
to ®x the lowest energy subspaces of each irreducible summand of Hf 2 H(.

32. Connes fusion with exterior powers of the vector representation

We now extend the methods of the previous section to the exterior powers
kkV � Vk. We shall simply write �k� for the corresponding signature, i.e. k
rows with one box in each. For a 2 L2�I ; V �, we shall write /gf �a� for
/(

gf �eÿagf a�, where agf � �Dg ÿ Df ÿ D(�=2�N � `� is the phase anomaly
introduced in Section 29. For any path P of length k, f0 < f1 < � � � < fk with
fi permissible, we de®ne aP � /fkfkÿ1�ak� � � �/f1f0�a1� for ai 2 L2�I ; V �. In
particular we let P0 be the path 0 < �1� < �2� < � � � < �k�.

Theorem. If ai; bi are test functions in L2�I ; V �, then

pf �b�P0aP0� �
X
g>kf

X
P :f!g

kP �g�bP

 !� X
P :f!g

kP �g�aP

 !
;

where P ranges over all paths f0 � f < f1 < � � � < fk � g with each fi

permissible and where for ®xed g either k�g� � 0 or kP �g� 6� 0 for all P .

Proof. (1) The linear span of vectors afk>fkÿ1>���>f1>f /fkfkÿ1�ak� /fkÿ1fkÿ2�akÿ1� � � �/f1f �a1�n with aj 2 L2�Ij; V � (where Ij � I) and n 2 Hf is dense in
afk>fkÿ1>���>f1>f Hfk .

Proof. We prove the result by induction on k. For k � 1, let H denote the
closure of this subspace so that H is invariant under L�1G and hence LG.
By Schur's lemma H must coincide with af1>f Hf1 as required. By induction
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the linear span of vectors afkÿ1>���>f1>f /fkÿ1fkÿ2�akÿ1� � � �/f1f �a1�n with
ai 2 L2�I ; V � and n 2 Hf is dense in afkÿ1>���>f1>f Hfkÿ1 . The proof is com-
pleted by noting that if g is ®xed and h1; . . . ; hm < g (not necessarily distinct)
then the vectors a/ghi

�a�ni with a 2 L2�I ; V � and ni 2 Hhi span a dense
subspace of Hg 
Cm. Again the closure of the subspace isLG invariant and
the result follows by Schur's lemma, because the ni's vary independently.

(2) We have

pf �b�P0aP0� �
X
g>kf

X
P ;Q:f!g

lPQ�g�b�P aQ;

where g ranges over all permissible signatures that can be obtained by adding k
boxes to f and P , Q range over all permissible paths g � fk >
fkÿ1 > � � � > f1 > f and l�g� � �lPQ�g�� is a non-negative matrix.

Proof.We assume the result by induction on jf j �P fi. By polarisation, it is
enough to prove the result with bj � aj for all j. If h > f , let xhf � /hf �c�
with c 2 L2�Ic; V � and y � aP0 . Then for f 0 > f ®xed, xf 0f pf �y�y� �
pf 0 �y�y�xf 0f . Substituting for pf �y�y� and using the braiding relations with
vector primary ®elds and their duals, xf 0f pf �y�y� can be rewritten as

xf 0f pf �y�y� �
X

g0

X
f1>f

X
P ;Q

lP ;Q�g0�a�P aQxf1f ;

where g0 ranges over signatures obtained by adding k boxes to f 0, P
ranges over paths f 0 < h1 < � � � < hk � g0 and Q ranges over paths
f1 < h1 < � � � < hk � g0. By (1), the vectors af1>f xf1f Hf span a dense
subset of af1>f Hf1 . Since xf 0f pf �y�y� � pf 0 �y�y�xf 0f , it follows that
pf 0 �y�y� �

P
g0
P

f1>f

P
P ;Q lP ;Q�g0�a�P aQ. Since pf 0 �y�y� lies in B�Hf 0 �, only

terms with f1 � f 0 appear in the above expression so that

pf 0 �y�y� �
X

g0

X
P ;Q

lP ;Q�g0�a�P aQ;

where P and Q range over paths from f 0 to g0. Now suppose
z � y1 � � � � � ym with yi having the same form as y. Then

pf 0 �z�z� �
X

g0

X
P ;Q

lP ;Q�g0�
X

i;j

a�P ;iaQ;j:

But �pf 0 �z�z�n; n� � 0 for n 2 Hf 0 and the linear span of vectors aQaQn is
dense in aQHg0 . Fixing g0, it follows that

P
lP ;Q�g0��nP ; nQ� � 0 for all

choices of nP in Hg0 . Taking all the nP 's proportional to a ®xed vector in Hg0 ,
we deduce that l�g0� must be a non-negative matrix.
(3) If g > k f is permissible, then l�g� has rank at most one; otherwise
l�g� � 0. If l�g� 6� 0, then lPQ�g� � kP �g�kQ�g� with kP �g� 6� 0 for all P .
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Proof. We have

pf �b�a� �
X
g>kf

X
P ;Q:f!g

lPQ�g�bP a�Q;

where a � aP0 and b � bP0 . We choose aj to be concentrated in disjoint
intervals Ij with Ij preceding Ij�1 going anticlockwise. Fix i and let a0, a0Q be
the intertwiners resulting from swapping ai and ai�1. Then a0 � dÿa where
dÿ 6� 0 while either a0Q � aQaQ � bQaQ1

and a0Q1
� cQaQ � dQaQ1

, with
aQ; bQ; cQ; dQ 6� 0, or a0Q � d�aQ. Here if Q is the path f < f1 < � � � < fk � g,
then Q1 is the other possible path f < f 01 < � � � < f 0k � g with f 0j � fj for
j 6� i. In the second case, d� occurs if fi�1 is obtained by adding two boxes
to the same row of fiÿ1 while dÿ occurs if they are added to the same
column.

Now we still have pf �b�a0� �
P

g>kf

P
P :f!g lPQ�g�b�P a0P . If Q and Q1 are

distinct, it follows that dÿlPQ � aQlPQ � cQlPQ1
and dÿlPQ � bQlPQ�

dQ1
lPQ1

for all P . In the case where Q1 � Q, we get dÿlPQ � d�lPQ. Now for
a vector �kQ�, consider the equations dÿkQ � aQkQ � cQkQ1

and dÿkQ1
�

bQkQ � dQkQ1
; or dÿkQ � d�kQ. These are satis®ed when kQ � lPQ. We claim

that, if g >k f , these equations have up to a scalar multiple at most one non-
zero solution, with all entries non-zero, and otherwise only the zero solution.
This shows that l�g� has rank at most one with the stated form if g >k f and
l�g� � 0 otherwise.

We shall say that two paths are adjacent if one is obtained from the other
by changing just one signature. We shall say that two paths Q and Q1 are
connected if there is a chain of adjacent paths from Q to Q1. We will show
below that any other path Q1 from f to g is connected to Q. This shows on
the one hand that if a path Q is obtained by successively adding two boxes to
the same row, we have dÿkQ � d�kQ, so that kQ � 0 since d� 6� dÿ; while on
the other hand if Q and Q1 are adjacent, kQ1

is uniquely determined by kQ

and is non-zero if kQ is.
We complete the proof by showing by induction on k that any two paths

f � f0 < f1 < � � � < fk � g and f � f 00 < f 01 < � � � < f 0k � g are connected.
The result is trivial for k � 1. Suppose the result is known for k ÿ 1. Given
two paths f � f0 < f1 < � � � < fk � g and f � f 00 < f 01 < � � � < f 0k � g, either
f1 � f 01 or f1 6� f 01. If f1 � f 01 � h, the result follows because the paths
h � f1 < � � � < fk � g and h � f 01 < � � � < f 0k � g must be connected by the
induction hypothesis. If f1 6� f 01, there is a unique signature f 002 with
f 002 > f1; f 01. We can then ®nd a path f 002 < f 003 < � � � < f 00k � g. The paths
Q : f < f1 < f 002 < � � � < f 00k � g and Q01 : f < f 01 < f 002 < � � � < f 00k � g are
adjacent. By induction Q is connected to Q0 and Q1 is connected to Q01.
Hence Q is connected to Q1, as required.
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Corollary. H�k�2 Hf �ag>kf ;k�g�6�0Hg �ag>kf Hg.

Proof. If h 2LI G, then we have

pf �b�P0p�k��h�aP0� �
X
g>kf

� X
P :f!g

kP bP

��
pg�h�

� X
P :f!g

kP aP

�
:

Now the intertwiners x � p�k��h�aP0 span a subspace X0 of HomLIc �H0;H�k��.
As before the transport formula shows that the assignment
x
 y 7!ag

P
kP �g�pg�h�aP yX extends to a linear isometry T of X0 
Y

into ak�g�6�0Hg. T intertwines L�1G, so by Schur's lemma extends to an
isometry of the closure of X0 
Y in H�k�2 Hf onto ak�g�6�0Hg. On the
other hand, by the argument used in the corollary in the previous section,
X0X is dense in H�k�. Therefore, by the Hilbert space continuity lemma, the
image of X0 
Y is dense in H�k�2 Hf . Hence H�k�2 Hf �ak�g�6�0Hg, as
required.

33. The fusion ring

Our aim now is to show that if Hi and Hj are irreducible positive energy
representations, then Hi 2 Hj �aNk

ijHk where the fusion coe�cients Nk
ij are

®nite and to be determined.

Lemma (closure under fusion). (1) Each irreducible positive energy represen-

tation Hi appears in some H2n
( .

(2) The Hi's are closed under Connes fusion.

Proof. (1) Since Hf 2 H( �aHg, it follows easily by induction that each
Hg is contained in H2m

( for some m.
(2) Since Hf � H2m

( for some m and Hg � H2n
( for some n, we have

Hf 2 Hg � H2�m�n�
( . By induction H2k

( is a direct sum of irreducible pos-

itive energy bimodules. By Schur's lemma any subrepresentation of H2�m�n�
(

must be a direct sum of irreducible positive energy bimodules. In particular
this applies to Hf 2 Hg, as required.

Corollary. If X and Y are positive energy representations, the action of
LI G �LIc G on X 2 Y extends uniquely to an action of LGo Rot S1.

Proof. The action extends uniquely toLG by Schur's lemma. The extension
to Rot S1 is uniquely determined by the fact that Rot S1 has to ®x the lowest
energy subspaces of each irreducible summand of X 2 Y .

Braiding lemma. The map B : X
Y! Y 2 X , B�x
 y� � R�p�Rp�y�R�p

Rp�x�R�p� extends to a unitary of X 2 Y onto Y 2 X intertwining the actions
of LG.
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Proof. Note that the B is well-de®ned, for rotation through p interchanges
LI G and LIc G. Hence RpxR�p lies in HomLI G�H0;X � and RpyR�p lies in
HomLIc G�H0; Y �. So RpyR�p 
 RpxR�p lies in Y
X. Since RpX � X, the map
B preserves the inner product. Interchanging the roÃ les of X and Y , we get an
inverse of B which also preserves the inner product. Hence B extends by
continuity to a unitary of X 2 Y onto Y 2 X . Finally, we check that B has
the correct intertwining property. Let g 2LI G and h 2LIc G. Then

B�gx
 hy� � R�p�Rp�hy�R�p 
 Rp�gx�R�p�� R�p��h � rp��g � rp��RpyR�p 
 RpxR�p��
� R�p�h � rp��g � rp�R�pRp�RpyR�p 
 RpxR�p� � ghR�p�RpyR�p 
 RpxR�p�
� ghB�x
 y�;

as required.

Corollary 1. X 2 Y is isomorphic to Y 2 X as an LG-module.

Let R be the representation ring of formal sums
P

miHi (mi 2 Z) with
multiplication extending fusion. R is called the fusion ring (at level `).

Corollary 2. The fusion ring R is a commutative ring with an identity.

Proof. R is commutative by the braiding lemma and closed under multi-
plication by the previous lemmas. Multiplication is associative because
fusion is.

34. The general fusion rules (Verlinde formulas)

In order to determine the general coe�cients Nk
ij in the fusion rules

Hi 2 Hj �aNk
ijHk, we ®rst have to determine the structure of the fusion

ring. Before doing so, we will need some elementary facts on the a�ne Weyl
group. The integer lattice K � ZN acts by translation on RN . The symmetric
group SN acts on RN by permuting the coordinates and normalises K,
so we get an action of the semidirect product Ko SN . The subgroup
K0 � f�N � `��mi� :

P
mi � 0g � K is invariant under SN , so we can con-

sider the semidirect product W � K0oSN . The sign of a permutation de®nes
a homomorphism det of SN , and hence W , into f�1g.

Lemma. (a) f�xi� : jxi ÿ xjj � N � `g forms a fundamental domain for the
action of K0 on RN .

(b) D � f�xi� : x1 � � � � � xN ; x1 ÿ xN � N � `g forms a fundamental
domain for the action of K0oSN on RN .

(c) A point is in the orbit of the interior of D consists of points i� its
stabiliser is trivial. For every other point x there is an transposition r 2 SN

such that r�x� ÿ x lies in K0.
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Proof. (a) Take �xi� 2 RN . Write xi � ai � mi with 0 � ai < N � ` and
mi 2 �N � `�Z. Without loss of generality, we may assume that
a1 � � � � � aN . Now �mi� can be written as the sum of a term
�bi� � �N � `��M ;M ; . . . ;M ;M ÿ 1;M ÿ 1; . . . ;M ÿ 1� and an element �ci�
of K0. Thus x � a� b� c with c 2 K0. It is easy to see that y � a� b sat-
is®es jyi ÿ yjj � N � `. (b) follows immediately from (a) since the domain
there is invariant under SN . Finally, since int�D� � f�xi� : x1 > � � � >
xN ; x1 ÿ xN < N � `g, it is easy to see that any point in int�D� has trivial
stabiliser. If x 2 @D, then either xi � xi�1 for some i, in which case
r � �i; i� 1� ®xes x; or x1 ÿ xN � N � `, in which case r � �1;N� satis®es
r�x� ÿ x � �ÿN ÿ `; 0; . . . ; 0;N � `�. Thus (c) follows for points in D and
therefore in general, since D is a fundamental domain.

Corollary. Let d � �N ÿ 1;N ÿ 2; . . . ; 1; 0�: Then m 2 ZN has trivial stabiliser
in W � K0oSN i� m � r� f � d� for a unique r 2 W and signature
f1 � f2 � � � � fN with f1 ÿ fN � `; m has non-trivial stabiliser i� there is a
transposition r 2 SN such that r�m� ÿ m lies in K0.

Proof. In the ®rst case m � r�x� for r 2 W and x 2 RN with x1 > . . . > xN

and x1 ÿ xN < N � `. Since the xi's must be integers, we can write x � f � d
with f1 � � � � � fN . Then f1 ÿ fN � x1 ÿ xN ÿ �N ÿ 1� < `� 1, so that
f1 ÿ fN � `.

Recall that the character of Vf is given by Weyl's character formula
vf �z� � det�zfj�dj

i �=det�zdj
i �. Let S be the space of permitted (normalised)

signatures at level `, i.e. S � fh : h1 � � � � � hN ; h1 ÿ hN � `; hN � 0g. We
now de®ne a ringS as follows. For h 2 S, let D�h� 2 SU�N� be the diagonal
matrix with D�h�kk � exp�2pi�hk � N ÿ k ÿ H�=�N � `�� where H � �P hk�
N ÿ k�=N and setT � fD�h� : h 2 Sg. We denote the set of functions onT
by CT. Let h : R�SU�N�� ! CT be the map of restriction of characters,
i.e. h��V �� � vV jT. By de®nition h is a ring *-homomorphism. Set
S � h�R�SU�N��� and let hf � h�Vf �.

Proposition. (1) Xr� f�d�ÿdjT � det�r�Xf jT for r 2 SN and Xf�mjT � Xf jT for
m 2 K0.

(2) The hf 's with f permissible form a Z-basis of S.
(3) ker�h� is the ideal in R�SU�N�� generated by Vf with f1 ÿ fN � `� 1.
(4) If Vf 
 Vg �aN h

fgVh; then hf hg �
P

N h
fg det�rh�hh0 where h ranges

over those signatures in the classical rule for which there is a rh 2 K0oSN

(necessarily unique) such that h0 � rh�h� d� ÿ d is permissible.
(5) If f ; h are permissible, then jfg1 : g1 permissible, f < g1 <k hgj �

jfg2 : g2 permissible, f <k g2 < hgj.

Proof. The statements in (1) follow immediately from the form of the D�h�'s.
The V�k�'s generate R�SU�N�� and, if f1 ÿ fN � `� 1, it is easy to see that
vf �t� � 0 for all t 2T: for f1 � N ÿ 1ÿ fN � N � ` and hence the numer-
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ator in vf �t� must vanish. The hf 's with f permissible are therefore closed
under multiplication by h�k�'s. Since the h�k�'s generate S, the Z-linear span
of the hf 's with f permissible must equal S. The characters v�k� distinguish
the points of T and v�0� � 1. Hence SC is a unital subalgebra of CT sep-
arating points. So given x; y 2T, we can ®nd f 2 SC such that f �x� � 1
and f �y� � 0. Multiplying these together for all y 6� x, it follows that SC

contains dx and hence coincides with CT. So the hf 's must be linearly in-
dependent over C, so a fortiori over Z. This proves (2). Let I � R�SU�N�� be
the ideal generated by the �Vg�'s with g1 ÿ gN � `� 1. Since R�SU�N�� is
generated by the V�k�'s and we have the tensor product rule
Vf 
 V�k� �ag>kf Vg, it follows that R�SU�N��=I is spanned by the image of
the �Vf �'s as a Z-module. But I � ker�h� and the h��Vf ��'s are linearly inde-
pendent over Z. Hence the images of the �Vf �'s give a Z-basis of R�SU�N��=I
and therefore I � ker�h�, so (3) follows. The assertion in (4) follows from (1)
by applying h and using the corollary to the lemma above. In fact, if h� d
has non-trivial stabiliser, we can ®nd a transposition r 2 SN such that
r�h� d� ÿ hÿ d lies in K0. Hence Xh�t� � ÿXr�h�d�ÿd�t� � ÿXh�t�, so that
vh�t� � Xh�t� � 0 for all t 2T. When the stabiliser is trivial, we clearly have
hh � det�rh�hh0 . Finally (5) follows by comparing coe�cients of hh in
hf h�k�h( �

P
g1>kf

P
h>g1 hh �

P
g2>f

P
h>kg2 hh.

Theorem. (1) H�k�2 Hf �ag>k
f Hg, where the sum is over permissible g.

(2) The Z-linear map ch : R!S de®ned by ch�Hf � � vf jT is a ring
isomorphism.

(3) The characters of R are given by �Hf � 7! ch�Hf ; h� � vf �z� for z 2T.
(4) The fusion coe�cients Nk

ij's can be computed using the multiplication
rules for the basis ch�Hf � of S.

(5) Each representation Hf has a unique conjugate representation Hf such
that Hf 2 Hf contains H0. In fact Hf � Hf 0 , where f 0i � ÿfNÿi�1, and H0

appears exactly once in Hf 2 Hf 0 . The map Hf 7! Hf makes R into an inv-
olutive ring and ch becomes a *-isomorphism.

Proof. (1) We know that Hf 2 H�k� �ag>kf Hg with equality when k � 1.
We prove by induction on jf j �P fj that Hf 2 H�k� �ag1>kf Hg1 . It su�ces
to show that if this holds for f then it holds for all g with g > f . Tensoring
by H( and using part (5) of the preceding proposition, we get

a
g>f

Hg 2 H�k� �a
g1>kf

a
h>g1

Hh �a
g>f

a
h>kg

Hh:

Since Hg 2 H�k� �ah>kgHh, we must have equality for all g, completing the
induction.
(2) Let ch be the Z-linear isomorphism ch : R ! S extending ch�Hf � � hf .
Then by (1), ch�H�k�2 Hf � � h�k�hf . This implies that ch restricts to a ring
homomorphism on the subring of R generated by the H�k�'s. On the other
hand the h�k�'s generate S, so the image of this subring is the whole of S.
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Since ch is injective, the ring generated by the H�k�'s must be the whole of R
and ch is thus a ring homomorphism, as required.
(3) and (4) follow immediately from the isomorphism ch and the fact that
SC � CT.
(5) We put an inner product on SC � RC by taking hf as an orthonormal
basis, so that �hf ; hg� � dfg. We claim that �hf hg; hh� � �hg; hf hh� for all hf .
Note that hf � hf 0 where f 0i � ÿfNÿi�1. Let h�f be the adjoint of multipli-
cation by hf . The multiplication rules for h�k� imply that h��k� � h�k� for
k � 1; . . . ;N . Thus the homomorphism hf 7! hf

� is the identity on a set of
generators of S and therefore on the whole of S, so the claim follows.
In particular �hf hg; h0� � �hg; hf � � �hg; hf 0 � � dgf 0 . Translating to R, we
retrieve all the assertions in (5).

The following results are immediate consequences of the theorem and
preceding proposition.

Corollary 1 (Verlinde formulas [40, 21]. If the ``classical'' tensor product rules
for SU�N� are given by Vf 
 Vg �aN h

fgVh, then the ``quantum'' fusion rules
for LSU�N� at level ` are given by

Hf 2 Hg �aNh
fg det�rh�Hh0 ;

where h ranges over those signatures in the classical rule for which there is a
rh 2 K0oSN (necessarily unique) such that h0 � rh�h� d� ÿ d is permissible.

Corollary 2 (Segal-Goodman-Wenzl rule [35, 14]). The map Vf 7! Hf extends
to a *-homomorphism of R�SU�N�� (the representation ring of SU�N�) onto
the fusion ring R. The kernel of this homomorphism is the ideal generated by
the (non-permissible) representations Vf with f1 ÿ fN � `� 1.
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