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1. Introduction

This is one of a series of papers devoted to the study of conformal field theory
from the point of view of operator algebras (see [41] and [42] for an overview
of the whole series). In order to make the paper accessible and self-contained,
we have not assumed a detailed knowledge of either operator algebras or
conformal field theory, including short-cuts and direct proofs wherever
possible. This research programme was originally motivated by V. Jones’
suggestion that there might be a deeper ‘operator algebraic’ explanation of
the coincidence between certain unitary representations of the infinite braid
group that had turned up independently in the theory of subfactors, exactly
solvable models in statistical mechanics and conformal field theory (CFT).
To understand why there should be any link between these subjects, recall
that, amongst other things, the classical ‘additive’ theory of von Neumann
algebras [26] was developed to provide a framework for studying unitary
representations of Lie groups. In concrete examples, for example the
Plancherel theorem for semisimple groups, this abstract framework had to be
complemented by a considerably harder analysis of intertwining operators
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and associated differential equations. The link between CFT and operator
algebras comes from the recently developed ‘multiplicative’ (quantum?)
theory of von Neumann algebras. This theory has three basic sources: firstly
the algebraic approach to quantum field theory (QFT) of Doplicher, Haag
and Roberts [10]; then in Connes’ theory of bimodules and their tensor
products of fusion [9]; and lastly in Jones’ theory of subfactors [18]. Our work
reconciles these ideas with the theory of primary fields, one of the funda-
mental concepts in CFT. Our work has the following consequences, some of
which will be taken up in subsequent papers:

(1) Several new constructions of subfactors.

(2) Non-trival algebraic QFT’s in 1+ 1 dimensions with finitely many
sectors and non-integer statistical (or quantum) dimension (‘‘algebraic
CFT”).

(3) A definition of quantum invariant theory without using quantum
groups at roots of unity.

(4) A computable and manifestly unitary definition of fusion for positive
energy representations (““Connes fusion”) making them into a tensor cate-
gory.

(5) Analytic properties of primary fields (“‘constructive CFT”).

To our knowledge, no previous work has suceeded in integrating the theory
of primary fields with the ideas of algebraic QFT nor in revealing the very
simple analytic structure of primary fields. As we explain below, the main
thrust of our work is the explicit computation of Connes fusion of positive
energy representations. Finiteness of statistical dimension (or Jones index) is
a natural consequence, not a technical mathematical inconvenience. It is
perhaps worth emphasising that the theory of operator algebras only pro-
vides a framework for studying CFT. As in the case of group representa-
tions, it must be complemented by a detailed analysis of certain interwining
operators, the primary fields, and their associated differential equations. As
we discuss later, however, the operator algebraic point of view can be used
to reveal basic positivity and unitarity properties in CFT that have previ-
ously seem to have been overlooked.

Novel features of our treatment are the construction of representations
and primary fields from fermions. This makes unitarity of the representa-
tions and boundedness properties of smeared vector primary fields obvious.
The only formal “vertex algebra” aspects of the theory of primary fields
borrowed from [39] are the trivial proof of uniqueness and the statement of
the Knizhnik-Zamolodchikov equation; our short derivation of the KZ
equation circumvents the well-known contour integral proof implicit but not
given in [39]. The proof that the axioms of algebraic QFT are satisfied in the
non-vacuum sectors is new and relies heavily on our fermionic construction;
the easier properties in the vacuum sector have been known for some time
[7, 15]. The treatment of braiding relations for smeared primary fields is
new but inspired by the Bargmann-Hall-Wightman theorem [20, 36]. To our
knowledge, the application of Connes fusion to a non-trivial model in QFT



Operator algebras and conformal field theory 469

is quite new. Our definition is a slightly simplified version of Connes’
original definition, tailor-made for CFT because of the “four-point function
formula”; no general theory is required.

The finite-dimensional irreducible unitary representations of SU(N) and
their tensor product rules are well known to mathematicians and physicists.
The representatlons V; are classified by signatures or Young diagrams
fi>foz- > fy and, if V=4 k€N, we have the tensor product rule
Vi@ Vg = (—B/ V,, where g ranges over all diagrams that can be obtained
by adding % boxes to f with no two in the same row. For the infinite-
dimensional loop group LSU(N) = C*(S',SU(N)), the appropriate unitary
representations to consider in place of finite-dimensional representations are
the projective unitary representations of positive energy. Positive energy
representations form one of the most important foundation stones of con-
formal field theory [5, 12, 23]. The classification of positive energy repre-
sentations is straightforward and has been known for some time now. A
positive energy representation Hy is classified by its level £, a positive integer,
and its signature f, which must satisfy the permissibility condition
f1 — fv < {. Extending the tensor product rules to representations of a fixed
level, however, presents a problem. It is already extremely difficult just
giving a coherent definition of the tensor product, since the naive one fails
hopelessly because it does not preserve the level. On the other hand physi-
cists have known for years how to ‘fuse’ representations in terms of short
range expansions of products of associated quantum fields (primary fields).
We provide one solution to this ‘problem of fusion’ in conformal field
theory by giving a mathematically sound definition of the tensor product
that ties up with the intuitive picture of physicists. Our solution relates
positive energy representations of loop groups to bimodules over von
Neumann algebras. Connes defined a tensor product operation on such
bimodules — “Connes fusion” — which translates directly into a definition of
fusion for positive energy representations. The general fusion rules follow
from the particular rules Hy X Hy) = ®q>/ Hy, where g must now also be
permissible. In this way the level ¢ representatlons of LSU(N) exhibit a
structure similar to that of the irreducible representations of a finite group.
There are several other approaches to fusion of positive energy represen-
tations, notably those of Segal [35] and Kazhdan & Lusztig [22]. Our picture
seems to be a unitary boundary value of Segal’s holomorphic proposal for
fusion, based on a disc with two smaller discs removed. When the discs
shrink to points on the Riemann sphere, Segal’s definition should degen-
erate to the algebraic geometric fusion of Kazhdan & Lusztig. We now give
an informal summary of the paper.

Fermions. Let Cliff(H) be the Clifford algebra of a complex Hilbert space H,
generated by a linear map f—a(f) (f € H) satisfying a(f)a(g)+

a(g)a(f) =0 and a(f)a(g)" +alg)a(f)=(f,g). It acts irreducibly on
Fock space AH via a(f)w = f A w. Other representations of CIiff(H) arise

by considering the real linear map c(f) = a(f)+a(f)" which satisfies
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c(f)elg) + c(g)e( f) = 2Re(f, g); note that a( /) = (c(f) — ic(if)). Since ¢
relies only on the underlying real Hilbert space Hr, complex structures on
Hgr commuting with i give new irreducible representations of Cliff(#). The
structures correspond to projections P with multiplication by i given by i on
PH and —i on (PH)l. The corresponding representation mp is given by
np(a( f)) =3 (c(f) —ic(i(2P — I)f)). Using ideas that go back to Dirac and
von Neumann, we give our own short proof of I. Segal’s equivalence cri-
terion: if P — Q is a Hilbert-Schmidt operator, then np and np are unitarily
equivalent. On the other hand if u € U(H), then a(uf’) and a(ug) also satisfy
the complex Clifford algebra relations. Thus a( /) — a(uf) gives an auto-
morphism of Cliff(H). We say that this “Bogoliubov” automorphism is
implemented in 7p iff wp(a(uf)) = Unp(a( f))U* for some unitary U. This
gives a projective representation of the subgroup of implementable unitaries
Up(H). Segal’s equivalence criterion leads immediately to a quantisation
criterion: if [u, P] is a Hilbert-Schmidt operator, then u € Up(H).

Positive energy representations. Let G = SU(N) and let LG = C*(S', G) be
the loop group, with the rotation group Rot S' acting as automorphisms. If
H =1I1*(S",€") and P is the projection onto Hardy space H>(S',C"),
LSU(N)xRot S' C Up(H) so we get a projective representation
75" LU(N)xRot §' — PU(Z®") where # denotes Fock space AHp. Now
Rot S! acts with positive energy, where an action Uy on H is said to have
positive energy if H =@, _ H(n) with Upé = "¢ for & € H(n), H(n) is
finite-dimensional and H(0) # (0). This implies that # ¢ splits as a direct
sum of irreducibles H;, called the level ¢ positive energy representations. The
H;s are classified by their lowest energy subspaces H;(0), which are
irreducible modules for the constant loops SU(N). Their signatures
f1> fo>---> fy must satisfy f1 — fy < /4, so f%g has only finitely many
inequivalent irreducible summands. This classification is achieved by de-
fining an infinitesimal action of the algebraic Lie algebra L°g on the finite
energy subspace H’ =" H(n) using bilinear terms a( f)a(g)". Our main
contribution here is to match up these operators with the skew-adjoint
operators predicted by analysis. The quantisation criterion also implies that
the Mobius transformations of determinant 1 act projectively on each
positive energy representation compatibly with LG. The vacuum represen-
tation Hy corresponds to the trivial representation of G; the Mobius
transformations of determinant —1 also act on H,, but this time by
conjugate-linear isometries. This presentation of the theory of positive
energy representations is adequate for the needs of this paper; in [42] we
show from scratch that any irreducible positive energy representation of
LSU(N)x Rot S! arises as a subrepresentation of some % %‘é.

von Neumann algebras. We briefly summarise those parts of the general
theory of operator algebras that are background for this paper. (They
will serve only as motivation, since all the advanced results we need will be
proved directly for local fermion or loop group algebras.) A von Neumann
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algebra is simply the commutant %' = {T € B(H) : Tx = xT for all x € &}
of a subset . of B(H) with &* = 9. Typically .% will be a *-subalgebra of
B(H) or a subgroup of U(H); the von Neumann algebra generated by .& is
then just #”. A von Neumann algebra M is called a factor if its centre
contains only scalar operators. Modules over a factor were classified by
Murray and von Neumann [26] using a dimension function, the range of
values giving an invariant of the factor: the non-negative integers (type I),
the non-negative reals (type II) and {0,00} (type IIT). Further structure
comes from the modular operators A” and J of Tomita-Takesaki [8]: if Qis a
cyclic vector for M and M’ and S = JA'/? is the polar decomposition of the
map S:MQ — MQ,aQ — a*Q, then JMJ =M’ and A"MA™ =M. On
the one hand the operators A” provide a further invariant of type III factors,
the Connes spectrum (), Spec A, a closed subgroup of R [9]; see also [42];
while on the other hand J makes the underlying Hilbert space H, into a
bimodule over M, the vacuum bimodule, with the action of the opposite
algebra M°P given by a — Ja*J. Bimodules are closely related to subfactors
and endomorphisms: a bimodule defines a subfactor by the inclusion
M°P C M’; and an endomorphism p : M — M can be used to define a new
bimodule structure on Hy. Connes fusion [9] gives an associative tensor
product operation on bimodules that generalises composition of endo-
morphisms: given bimodules X and Y, their fusion X X Y is the completion
of Homyer (Hy, X) @ Homy,(Hp, Y) with respect to the pre-inner product
(x1 @y1,%2 ® ) = (Bx1¥5mQ, Q). Roughly speaking Jones, Ocneanu and
Popa [18, 19, 29, 42] proved that an irreducible bimodule is classified by the
tensor category it generates under fusion, provided the category contains
only finitely many isomorphism classes of irreducible bimodules.

Modular theory for fermions. For fermions and bosons, modular theory
provides the most convenient framework for proving the much older result
in algebraic quantum field theory known as ‘“Haag-Araki duality”. This
deals with the symmetry between observables in a region and its (space-like)
complement. As in [24], we consider more generally a modular subspace K
of a complex Hilbert space H, i.e. a closed real subspace such that
KNiK =(0) and K+iK is dense in H. (Thus K = M;,Q in Tomita-
Takesaki theory.) If S =JA"? is the polar decomposition of the map
S:K+iK — K+iK,¢+in — &—in, then JK = iK+ and A’K = K; in the
text following [33] we avoid unbounded operators by taking the equivalent
definitions J = phase(E — F) and A" = (2I — E — F)"(E + F)", where E and
F are the projections onto K and iK. The modular operators J and A” are
uniquely characterised by the Kubo-Martin-Schwinger (KMS) condition:
commuting operators J and A" give the modular operators if A“K =K
and, for each ¢ € K, f(f) = A"¢ extends to a bounded continuous func-
tion on the strip —% <Imz <0, holomorphic in the interior, with
t—i/2) = J1@).

This theory can be used to prove an abstract result, implicit in the work
of Araki [1, 2]. Let K be a modular subspace of H and let M(K) be the von
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Neumann algebra on AH generated by the operators ¢(¢) for & € H. Then
M(K%) is the graded commutant of M (K) (“‘Araki duality”) and the mod-
ular operators for M(K) on AH come from the quantisations of the corre-
sponding operators for K. This reduces computations to ‘‘one-particle
states”, i.e. the prequantised Hilbert space. We then perform the pre-
quantised computation explicitly when H = L>(S', V) and K = L*(1, V), with
I a proper subinterval of S! with complement 7¢. We deduce that if M (1) is
the von Neumann algebra on AHp generated by a(f)’s with f € L*(I,V),
then M (I¢) is the graded commutant of M (/) (Haag-Araki duality) A” and J
come from the Mobius flow and flip fixing the end points of 7.

Local loop groups. Let LiSU(N) be the subgroup of LSU(N) consisting of
loops equal to 1 off I. The von Neumann algebra N(I) generated by L;G is a
subalgebra of the local fermion algebra M (I) invariant under conjugation by
the modular group A", since it is geometric. The modular operators of N(I)
can therefore be read off from those of M (I) by a result in [37] (“Takesaki
devissage™’); we give our own short proof of a slightly modified version of
Takesaki’s result. We deduce the following properties of the local sub-
groups, predicted by the Doplicher-Haag-Roberts axioms [10]. The use of
devissage, relating different models, is new and seems unavoidable in
proving factoriality and local equivalence.

1. Locality In any positive energy representation L;SU(N) and L;.SU(N)
commute.

2. Factoriality. m;(L;SU(N))" is a factor if (m;, H;) is an irreducible
positive energy representation.

3. Local equivalence. There is a unique *-isomorphism 7, : mo(L;G)" —
m:(L;G)" sending my(g) to mi(g) for g € L;G such that Ta = m;(a)T for all
T e HOII’ILIG(H(),Hi).

4. Haag duality. If ny is the vacuum representation at level ¢, then
7o(LiSU(N))" = no(LieSU(N))'.

5. Irreducibility. Let A be a finite subset of S! and let LASU(N) be the
subgroup of LSU(N) of loops trivial to all orders at points of 4. If =« is
positive energy, then n(L*SU(N))" = n(LSU(N))', so the irreducible positive
energy representations of LSU(N) stay irreducible and inequivalent when
restricted to LASU(N).

Vector primary fields. Let P, and P; be projections onto the irreducible
summands H; and H; of n3’ and fix an SU(N)-equivariant embedding of €V
in € @' If £ e 128", ) c L2(S", € @ '), we may “compress” the
smeared fermion field a(f) to get an operator ¢;(f) = Pa(f)
P; € Hom(H,;, H;). By construction ¢,( f) satisfies a group covariance re-
lation g¢(f)g~! = ¢(g - f) for g € LSU(N)x Rot S! as well as the L*> bound
NN < IIfIl,. If £ is supported in I¢, then ¢( /) gives a concrete element in
Homy, sy (v (Hj, H;); this space of intertwiners is known to be non-zero by
local equivalence. Clearly ¢ defines a map L*(S',C") ® H; — H; which
intertwines the action of LSU(N)xRot S'. The modes ¢(v,n) = ¢(z"v)
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satisfy Lie algebra covariance relations [D,¢(v,n)] =—¢(v,n), [X(m),
¢(v,n)] = ¢p(Xv,n + m). Exactly as in [39], the field ¢ is uniquely determined
by these relations and its initial term ¢(v,0) in Homg(¥; ® V, ¥;). Our main
new result is that all vector primary fields arise by compressing fermions and
therefore satisfy the L? bound above.

Braiding relations. If f and g have disjoint supports in S', then a(f)a(g) =
—a(g)a(f) and a(f)a(g)" = —alg) a(f). Similar but more complex
“braiding relations” hold for vector primary fields and their adjoints. These
may be summarised as follows. Let a,b € L*(S', cV ) be supported in inter-
vals 7 and J in S"\{1} with J anticlockwise after /. Define a,; = qbng (e_ya)
and by = ¢ (e,b), with o = (Ay — Ay — Ap)/2(N + £) and e,(e”) = ™.
Then

byram =Y pagrbpn,  borayf =Y vidpybag,,

with all coefficients non-zero. The proof of these relations is similar to that
of the Bargmann-Hall-Wightman theorem [11, 20, 36]. To prove the first for
example let Fi(z) = > (¢y (u,n)¢y;(v, —n)v;, v;)z", a power series convergent
for |z| <1 with values in W = Homgy)(V; @ U® V, V). To prove the
braiding relation, it suffices to show that /% extends continuously to S'\{1}
and Fy(e') = 3" cppe’Fy(e) there. Using Sugawara’s formula for D, we
show directly that the F}’s satisfy the Knizhnik-Zamolodchikov ODE [23]

dF _PF _QF

dz z 1-z2’

where P, Q € End(W) (the original proof in [23], referred to in [39], is dif-
ferent and less elementary). In all cases we need, the matrix P has distinct
eigenvalues, none of which differ by positive integers, and Q is a non-zero
multiple of a rank one idempotent in general position with respect to P. For
two vector primary fields this ODE reduces to the classical hypergeometric
ODE and the required relation on S'\{1} follows from Gauss’ formula for
transporting solutions at 0 to co. In general the ODE can be related to the
generalised hypergeometric ODE for which the corresponding transport
relations were first obtained by Thomae [38] in 1867 in terms of products of
gamma functions. Such a link exists because there is a basis of W for which
P and P — Q are both in rational canonical form. In this basis, the ODE is
just the matrix form of the generalised hypergeometric ODE.

Transport formulas. The operator ajparo on Hy commutes with LSU (N),
so lies in 7o(L;SU(N))". Therefore, by local equivalence, we have the right
to consider its image under m,. We obtain the fundamental ‘“‘transport
formula™ ny(afypamo) = X Agay,aqr, with g > 0. Thus for 7 € Homy,g
(Ho,Hy), we have

Talyago = Z AgtyragsT.
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We will prove the transport formula by induction using the braiding rela-
tions; the original proof in [43] used the transport relations between 0 and 1
of the basic ODE above.

Definition of Connes fusion. We develop the ideas of fusion directly at the
level of loop groups without appeal to the general theory of bimodules over
von Neumann algebras [9, 34, 42, 43]. Let X, Y be positive energy repre-
sentations of LSU(N) at level . Let % = Homy, gyw)(Ho,X) and
% = Homy, sy vy (Ho, Y). These spaces of bounded intertwiners or fields re-
place vectors or states in X and Y. Thus x € Z ““creates” the state xQ from
the vacuum Q. The fusion X X Y is defined to be the completion of Z @ #
with respect to the pre-inner product (x; ® yi,x2 ® ») = (X3x11501Q,Q), a
four-point function. X X ¥ admits a natural action of L;SU(N) X LSU(N).
The map & ® # — X K Y extends to continuous maps X ® % — X X Y and
Z®Y — XK Y. This implies that if 2y C Z and Z,Q =X, then %y ® ¥
has dense image in X X Y. Fusion is associative and X X Hy = X = Hy X X.

Explicit computation of fusion. We use the transport formula to prove the
fusion rule Ho X Hy = (—DHQ where g ranges over permissible signatures
obtained by adding a box to f. The transport formula is still true if a s is
replaced by linear combinations x,, of intertwiners 7 (h)a,s with h € L;G.
But then for y € Homy sy (Ho, Hy) we have (x*xy*yQ,Q) = (y*m,(x"x)
yQ,Q)= Z)tnggnyHz. Thus U(x®y) = (—Bi;/zngyQ gives the required
unitary intertwiner from Hn X H; onto (PH,. Similar reasoning can be
used to prove that Hy X Hyy < @.cm Hy, where g runs over all permissible
signatures that can be obtained by adding k& boxes to f with no two boxes in
the same row. This time a transport formula must be proved with app
replaced by a path aj_jar—14—2---amo indexed by exterior powers. This
device of considering products of vector primary fields means that we can
avoid the use of smeared primary fields corresponding to the exterior powers
JFCY which need not be bounded [43].

The fusion ring. It follows immediately from the fusion rule with H that the
Hj’s are closed under fusion. Moreover, if R denotes the operator corre-
sponding to rotation by 180°, then the formula B(x ® y) = R*[RyR* ® RxR*]
gives a unitary intertwining X X Y and ¥ X X; this is a less refined form of the
braiding operation that makes the level £ representations into a braided tensor
category [44]. Thus the representation ring # of formal sums ) mH; be-
comes a commutative ring. For each permitted signature %, let z, € SU(N) be
the diagonal matrix with entries exp(2mi(hy + N —k — H)/(N + £)) where
H = (3 hi 4+ N — k) /N; these give a subset 7. Let ¥ C €7 be the image of
R(SU(N)) under the map of restriction of characters. Our main result asserts
that the natural Z-module isomorphism ch : # — % defined by [Hy] — [V/]
is a ring isomorphism. This completely determines the fusion rules. They agree
with the well-known “Verlinde formulas” [40, 21], in which the usual tensor
product rules for SU(N) are modified by an action of the affine Weyl group.
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Discussion. Many of the early versions of the results in Chapter II were
worked out in discussions with Jones in 1989-1990 (see [19] and [42]). We
were mainly interested in the inclusion 7;(L;G)" C m;(L;cG)" defined by the
“failure of Haag duality”. Algebraic quantum field theory [15] provided a
series of predictions about these local loop group algebras which we inter-
preted (in the language of [30]) and verified. In particular two of the main
theorems, Haag-Araki duality and loop group irreducibility, were originally
obtained with Jones. In the case of geometric modular theory for fermions
on S', each of us came up with different proofs which appear in simplified
form here (see also [42]). The original proofs of irreducibility have been
superseded by the simpler and more widely applicable method described
above. One of our original proofs followed from the stronger result that LG
is dense in LG in the natural topology on Up(H), so that n(L1G) is strong
operator dense in n(LG) for any positive energy representation; the analo-
gous result fails for Diff S' and its discrete series representations. The
geometric method of descent from local fermion algebras to local loop
group algebras and its application to Haag duality and local equivalence
were first suggested by me, but it was Jones who pointed out that this
approach tacitly assumed Takesaki’s result [37] (““Takesaki devissage™).

The first paper of this series [42] is an expanded version of expository
lectures given in the Borel seminar in Bern in 1994. Since it was intended as
an introduction to the general theory, we included a complete treatment of
the whole theory of fusion, braiding and subfactors for the important special
case of LSU(2). In the second paper of the series [43] we made a detailed
study of primary fields from several points of view. (See Jones’ Séminaire
Bourbaki talk [48] for a detailed summary.) We constructed all primary
fields as compressions of tensor products of fermionic operators, thus es-
tablishing their analytic properties. To do so, we had to complete and extend
the Lie algebraic approach of Tsuchiya and Kanie [39] and in particular
prove the conjectured four-point property of physicists. Fusion of positive
energy representations was computed using the braiding properties of pri-
mary fields. The braiding coefficients appeared as transport coefficients
between different singular points of the basic ODE studied here; these co-
efficients were derived using Karamata’s Tauberian theorem and a unitary
trick. Since the smeared primary fields could be unbounded, their action had
to be controlled by Sobolev norms; and a detailed argument had to be
supplied for extending the braiding relations to arbitrary bounded inter-
twiners.

In this paper we give a more elementary approach to fusion using only
vector primary fields and their adjoints. It is not possible to overemphasise
the central role (prophesied by Connes) played by the fermionic model in
our work, nor the importance of considering the relationships between
different models (stressed by P. Goddard). The boundedness of the corre-
sponding smeared fields is very significant. Not only does it simplify the
analysis, but more importantly it can be seen to lie at the heart of the crucial
irreducibility result (due to the duality between smeared primary fields and
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loop group observables). This is an example of Goddard’s philosophy that
“vertex operators tell you what to do.” With the important exception of the
Lie algebra operators (indispensable for proving the KZ equation), we have
tried to keep exclusively to bounded operators. This is in line with Rudolf
Haag’s philosophy that quantum field theory can and should be understood
in terms of (algebras of) bounded operators [15]. Here, because of the
boundedness of vector primary fields, there is no choice.

In the fourth paper of this series [44] we explain how the positive energy
representations at a fixed level become a braided tensor category. We have
already seen a simplified version of the braiding operation when proving
that Connes fusion is commutative. The key to understanding this braiding
structure lies in the “monodromy’’ action of the braid group on products of
vector primary fields. The important feature of braiding allows us to make
contact with the subfactors of the hyperfinite type II; factor defined by
Jones and Wenzl [18, 19, 45] using special traces on the infinite braid group.
In particular this explains the coincidence between the monodromy repre-
sentation of the braid group in [39] and the Hecke algebra representations of
Jones and Wenzl. Further developments include understanding the “mod-
ularity” of the category, the property which allows 3-manifold invariants to
be defined. This involves studying the elliptic KZ equations as well as
finding and versifying precise versions of the axioms for a CFT; the ideas
behind our computation of fusion seem to give a general method for un-
derstanding unitarity and positivity properties of quite general CFTs. In
addition the analytic properties of primary fields implied by our construc-
tion (such as the fact that g’°¢(z) is a Hilbert-Schmidt operator for |g| < 1)
should allow primary fields to be interpreted as morphisms corresponding to
3-holed spheres or trinions in Segal’s language. This should yield a precise
analytic version of Segal’s “modular functor”, using the “operator for-
malism” for trinion decompositions of Riemann surfaces.

The braiding properties of vector primary fields can also be developed
through a more systematic use of the conformal inclusion SU(N)X
SU(¢) C SU(NY). The level one representations and vector primary fields of
SU(N?), when restricted to SU(N) x SU(¢) and decomposed into tensor
products, yield all representations and vector primary fields of SU(N) at
level £ and SU(¢) at level N. The level one representations of LSU(NY) arise
by restricting the fermionic representation of LU(N¥) to LSU(N{) x LU(1)
(here U(1) is the centre of U(N¥)). Our fermionic construction of primary
fields for LSU(N) in this and the previous paper have been a simplification
of the more sophisticated picture provided by the above conformal inclu-
sion, first considered from this point of view by Tsuchiya & Nakanishi [27].
Here we have ignored the role of the group SU (). If it is brought into play,
it is possible to give a less elementary but more conceptual non-computa-
tional proof that all the braiding coefficients are non-zero, based on the
Abelian braiding of fermions or vector primary fields at level one. This
approach, which will be taken up in detail when we consider subfactors
defined by conformal inclusions, has the advantage firstly that it makes the
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non-vanishing of the coefficients manifest and secondly that it does not
require the explicit solutions of the KZ ODE and their monodromy prop-
erties that we have used here and in the second paper. It therefore extends to
other groups where less information about the KZ ODE is available at
present.
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I. Positive energy representations of LSU(N)
2. Irreducible representations of SU(N)

We give a brief account of the representation theory of SU(N) from a point
of view relevant to this paper. This account closely parallels our develop-
ment of the classification and fusion of positive energy representations of
LSU(N), so provides a simple prototype. Let V = €V be the vector repre-
sentation. We shall consider irreducible representations of SU(N) appearing
in tensor powers V®". Let R(SU(N)) denote the representation ring of
SU(N), the ring of formal integer combinations of such irreducible repre-
sentations. Let g be the Lie algebra of SU(N), the traceless skew-adjoint
matrices. Thus g acts on V®™, hence each irreducible representation W, and
Endg(W) = Endg(W). This representation of g extends linearly to a *-rep-
resentation of its complexification g¢, the traceless matrices. g¢ is spanned
by the elementary matrices E;; (i # j) and traceless diagonal matrices. Let T
denote the subgroup of diagonal matrices z = (z1,22,...,2zy) in SU(N).
Given an irreducible representation SU(N) — U(W), we can write
W= @geZN W, with n(z)v = z9 for v € W,, z € T. We call g a weight and W,
a weight space; g is only determined up to addition of a vector (a,aq,...,a)
for a € Z. The monomial matrices in SU(N) permute the weight spaces by
permuting the entries of g = (g1,...,9gn), so there is always a weight with
g1 > g2 > ... > gy. Such a weight is called a signature. If the weights are
ordered lexicographically, the raising operators n(E;;) (i < j) carry weight
spaces into weight spaces of higher weight; their adjoints n(E;;) (i > j) are
called lowering operators and decrease weight.

Clearly every irreducible representation # contains a highest weight
vector v. Now W is irreducible for g¢ and every monomial 4 of operators in
g¢ 1s a sum of products LDR where L is a product of lowering operators, D is
a product of diagonal operators and R is a product of raising operators.
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Since LDRv is proportional to v or has lower weight, v is unique up to a
multiple. On the other hand (4,v, 4,v) is uniquely determined by the weight
of v and the 4,’s, since 434, can be written as a sum of operators LDR and
(LDRv,v) = (DRv,L*v) with L* a raising operator. Thus if W’ is another
irreducible representation with the same highest weight and corresponding
vector v/, Avw— Av' is a unitary W — W’ intertwining g and hence
G = exp(g). Thus irreducible representations are classified by their signa-
tures. Every signature occurs: if f; > fo > -+ > fy > 0, the vector ey =

(f‘ f2) ®(er Nex) N @ @ ey Aey A+ Aey)™™ is the unique high-
est weight vector in A! V®(f"f2) ®@2ZVELN) @@ NyE Cpe (T ).
By uniqueness, e; generates an irreducible submodule.

A signature f with fy > 0 is represented by a Young diagram with at
most N rows and f; boxes in the ith row. Thus ¥ corresponds to the diagram
[0 and /¥ to the diagram [k] with k rows, with one box in each row. We
write g > f if g can be obtained by adding one box to f. More generally we
write g >4 f if g can be obtained by adding k£ boxes to f* with no two in the
same row.

Lemma. Homg(V; ® Wy, V) is at most one-dimensional and only non-zero
if g>k f. When k=1, ll is non-zero iff g > f. Hence V}®VD—@

>/
and V; @ 'V <@ ’

q>f

Proof. Let vy and v, be highest weight vectors m Vy and V,. If
T € Homg(Vy ® Vi, V) with T(vy @ v) =0 for all v € 4 ¥V, then applymg
lowering operators we see that 7 = 0. If 7 # 0, we take w = ¢;, A ... A e, of
highest weight such that T'(v; ® w) # 0. Applying raising operators, we see
that T'(v, ® w) is highest weight in ¥}, so is proportional to v,. So the weight
of vy ® w is a signature and g >, f. If S is another non-zero intertwiner, we
may choose o such that R = § — o7 satisfies R(vy @ w) = 0. If R # 0, we may
choose w' of highest weight such that R(vy ® w) # 0. But this gives a con-
tradiction, since R(v; ® w) would be annihilated by all raising operators and
have weight lower than v,. So Homg(Vy ® Vg, V) is at most one-dimen-
sional.
If g is obtained by adding a box to the ith row of f, then the map

T AR @ 2psh-f) g ... g Ny Ry
! V®(!Jl*.‘]2) ® )V2V®(927!]3) R ® N pean

given by exterior multiplication by ¥ on the (f; — f;)th copy of AV com-
mutes with G and satisfies T(e; ® ¢;) = ¢,. Thus if P and Q denote the
projections onto the submodules generated by e, and e, respectively,
OT(P ®I) gives a non-zero intertwiner Vy @ V — V.

For z;€ C and a signature f, we define the symmetric function
X/ (z) :det(/]-’*”*’) /det(zf~). The denominator here is a Vandermonde
determinant given by Hl-<j(2i —z;). If Xi(z) = Z”< " Zi1 ..z, then it is
elementary to show that XpX, =3 _ X, for k=1,. . In particular
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Xi(z) coincides with Xjy(z); and it follows, by induction on fi — fy and
the number of boxes in the fith column, that each X(z) is an integral
polynomial in the Xj(z)’s.

Theorem. (1) V; @ Vi = D, Vs-

(2) R(SU(N)) is generated by the exterior powers and the map ch : [Vy] —
Xy gives a ring isomorphism between R(SU(N)) and Ly, the ring of symmetric
integral polynomials in z, where []z; = 1.

(3) (Weyl’s character formula [44]) 7,(z) = Tr(ns(z)) = Xy (z) for all f.

Proof. (1) We know that V; ® kv < @zm- y V,. We prove by induction on
f| =321 that V; @ ¥ :,@gmf%l' It suffices to show that if this holds for
f then it holds for all g with g > f. Now, comparing the coefficients of X} in
(Xr X )Xo = (XpXo)Xe, we see that |[{g1:h>rg1>f} = [{g2:h> g2
>i f}]. Tensoring by Vg, we deduce that @V, ® Vi = ©g,>i1 Cisg, Vi =
Dyss Dhsyg Vi Since V; @ Vg < @h>kth’ we must have equality for all g,
completing the induction.

(2) Let ch be the Z-linear isomorphism ch : R(SU(N)) — &y extending
ch(Vy) = Xr. Then by (1), ch(Vjy¥y) = XiX;. This implies that ch restricts to
a ring homomorphism on the subring of R(SU(N)) generated by the exterior
powers. On the other hand the X;’s generate &y, so the image of this
subring is the whole of #y. Since ch is injective, the ring generated by the
exterior powers must be the whole of R(SU(N)) and ch is thus a ring ho-
momorphism, as required.

(3) The maps [Vy] — y4(z) and [Vf] — Xy(z) define ring homomorphisms
R(SU(N)) — €. These coincide on the exterior powers and therefore
everywhere.

3. Fermions and quantisation

Given a complex Hilbert space H, the complex Clifford algebra CIliff(H) is
the unital *-algebra generated by a complex linear map f +— a(f) (f € H)
satisfying the anticommutation relations a(f)a(g)+ a(g)a(f) =0 and
a(falg)" +a(g)*a(f) = (f,g) (complex Clifford algebra relations). The
Clifford algebra has a natural action = on AH (fermionic Fock space) given
by n(a( f))w = f A w, called the complex wave representation. The complex
wave representation is irreducible. For Q is the unique vector such that
a(f)* Q=0 for all £ (this condition is equivalent to orthogonality to
S o1 AAH) and Q is cyclic for the a( f)’s. Thus if 7 € End(AH) commutes
with all a(f)"’s, TQ = Q for A € C; and if T also commutes with all a( f)’s,
T =AMl

To produce other irreducible representations of Cliff(H), we introduce
the operators ¢( f) = a(f) +a(f)". Thus ¢ satisfies ¢( ) = c(f)", f +— <(f)
is real-linear and c( f)c(g) + c(g9)c(f) = 2Re(f,g) (real Clifford algebra

relations). The equations ¢( /) = a(f) + a(f)" and a(f) =(c(f) — ic(if))/2
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give a correspondence between complex and real Clifford algebra relations.
Since ¢ relies only on the underlying real Hilbert space Hgr, complex
structures on Hr commuting with i give new irreducible representations of
CIliff(H). These complex structures correspond to projections P in H: mul-
tiplication by i is given by i on PH and —i on (PH)". Unravelling this
definition, we find that the projection P defines an irreducible representa-
tion 7p of CIiff(H) on fermionic Fock space % p = APHQA(PH)* given
by mp(a(f)) =a(Pf)+a((P*f)")". (Equivalently m,(a(f))= (c(f)—ic
(i(2P—1)f))/2 on AH.)

Theorem (Segal’s equivalence criterion [3]). Two irreducible representations
np and ng are unitarily equivalent if P — Q is a Hilbert-Schmidt operator.

Remark. The converse also holds [3, 42], but will not be needed.

Proof. If PH (or PYH) is finite-dimensional, then so is OH (or Q*H) and the
representations are easily seen to be equivalent to the irreducible represen-
tation on AH (or AH*). So we may assume that dim PH = dim P'H = cc.
The operator T = (P — Q) is compact, so by the spectral theorem
H = @DOHA where T¢ = A¢ for & € H;. Moreover dimH,; < oo for 4 >0
while P = Q on Hy. Now T commutes with P and Q, so that each H) is
invariant under P and Q. Thus H can be written as a direct sum of finite-
dimensional irreducible submodules V; for P and Q, with (P — Q)2 a scalar 4
on each. Since the images of P and Q (and /) should generate End(7;), the
identity (P — Q)* = Al forces dim End(¥;) < 4. Hence dim ¥; = 1 or 2.
Pick an orthonormal basis (e;),._, of P*H with each e; lying in some V;.
We may assume that Qte_; = Qte_» = --- = O'e_, = 0 and that O'e¢; # O
fori > 0. Complete (e;) to an orthonormal ba51s (ei);cz by adding remaining
vectors from the ¥}’s. We can also choose an orthonormal basis (f);5_, of
O+H with f; lying in the same V; as ¢; if i > 0; we shall even pick f so that
(es, fi) > 0in this case. A simple computation shows that if (P — 0)* = 4,/ on
V;, then (e;, fi) = V1 —2;(so 2; =0 when dim 7; = 1). Note that, using these
bases we get |P — Q||2 =Tr(P— Q) =a+b+23 4. so that 3 J; < oo.
The “Dirac sea” model 2 for AHp is the Hilbert space with orthonormal
basis given by all symbols e; Ae;, Ae;; A--- where i} <i <i3 <--- and
ir+1 = iy + 1 for k sufficiently large. If A(e;) denotes exterior multiplication
by €;, then A(e,)A(e]) +A(€j)A(€l) =0 and A(e,)A(ej)* +A(€])*A(€l) = 5111
By linearity and continuity, these extend to operators A(f) (f € H) satis-
fying the complex Clifford algebra relations so give a representation n of
CIiff(H). Let E=e 4 Ae 441 A---. Then the A(f) and A(f)"’s act cycli-
cally on & and (A(f1)...A(fw)E,A(g1) - A(gn)E) = dmn det(Pf, g;). On the
other hand (mp(a(f1)) ...7mp(a(fum))Qp, mp(a(g1))...np(al(gn)) Qpr) = Omn
det(Pf;, g;), where Qp is the vacuum vector in AHp. Thus (n(a)é, &) =
(np(a)Qp, Qp) for a € Cliff(H). Replacing a by a*a and recalling that ¢ and
Qp are cyclic, we see that U(np(a)Qp) = n(a)é defines a unitary from AHp
onto J# such that n(a) = Unp(a)U*. The same “Gelfand-Naimark-Segal”
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argument shows that unitary equivalence of np and np will follow as soon
as we find # € # such that (n(a)n,n) = (np(a)Qp, Qo). (Note that n is
automatically cyclic, since # = AHp is irreducible.)

Let ny =fs Ao ANfor Afo N Afy ANenyi Nenia A---. Clearly if a
lies in the *-algebra generated by the a(e;)’s, then (m(a)ny,ny) =
(mo(a)Qp, Qp) for N sufficiently large. Thus it will suffice to show that
has a limit #, i.e. (1) is a Cauchy sequence. Since ||5y|| = 1, this follows if

Re(ny,ny) — 1 as M <N — oo. But (ny,ny) = H;\LMH(ehfi) = H;\LM+1
V1 —J; and, as > 4; < oo, this tends to 1 if M, N — oo, as required.

Corollary of proof. If np and g are unitarily equivalent and Qg is the image
of the vacuum vector in F o in F ¢, then |(QP,QQ)|2 =111 — w;) where p;
are the eigenvalues of (P — Q)z.

Proof. We have |(Qp, Qp)| = |(&,n)| = lim[(&,ny)| = [T(1 — )"

Any u € U(H) gives rise to a Bogoliubov automorphism of CIiff(H) via
a( f) — a(uf). This automorphism is said to be implemented in 7p (or on
Fp) if mp(a(uf)) = Unp(a( f))U* for some unitary U € U(F p) unique up
to a phase. Since mp(a(uf)) = ng(a(f)) with O = u*Pu, we immediately
deduce:

Corollary (Segal’s quantisation criterion [3, 30,42]). u is implemented in F p if
[u, P] is a Hilbert-Schmidt operator.

We define the restricted unitary group Up(H)={u cU(H): [u, P]
Hilbert — Schmidt}, a topological group under the strong operator topology
combined with the metric d(u,v) = ||[u — v, P]||,. By the corollary, there is a
homomorphism 7 of Up(H) into PU(Zp), called the basic projective
representation.

Lemma. The basic representation is continuous.

Proof. It is enough to show continuity at the identity. Thus if u,——I and
|| [ttn, P]||; — O, we must find a lift U, € U(Fp) of n(u,) such that U,—-I.
Now ||[ttn, P]||y = ||P — Qull, where O, = uPu,. So Tr(P — Q,)* — 0. On the
other hand £(QP, Qp,) 2 = T](1 — ;) where g, are the (non-zero) eigenvalues
of (P— 0,)*. Since Tr(P — 0,)* = 31, and J[(1 — ;) > exp(—2 3 ;) for
>~ u; small, it follows that |(Qp, Qp, )| — 1 as n — oco. If u, is implemented by
U, in F p, then U,Qp and Qy, are equal up to a phase. So |(U,Qp, Qp)| — 1.
Adjusting U, by a phase, we may assume (U,Qp,Qp) > 0 eventually so that
U,Qp — Qp. Now, taking operator norms, ||U,n(a(f))U; — n(a(f))| =
lm(a(u.f — ) < llunf — f|. Tt follows that |U,aU’ —a|| — 0 for any
a € np(Cliff H). Thus U,aQp = (U,aU}) (U, Qp) —aQp as n — co. Since
vectors aQdp are dense in Z p, we get U, =1 , as required.

Note that if [u,P] =0, so that ¥ commutes with P, then u is canoni-
cally implemented in Fock space % p and we may refer to the canonical
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quantisation of u. If on the contrary uPu* =1 — P, then u is canonically
implemented by a conjugate-linear isometry in Fock space, also called the
canonical quantisation of u. Thus the canonical quantisations correspond to
unitaries that are complex-linear or conjugate-linear for the complex
structure defined by P.

4. The fundamental representation

Let G = SU(N) (or U(N)) and define the loop group LG = C*(S', G), the
smooth maps of the circle into G. Let H = L*(S') @ V (¥ = €"V) and let P be
the projection onto the Hardy space H*(S') ® ¥ of functions with vanishing
negative Fourier coefficients (or equivalently boundary values of functions
holomorphic in the unit disc). Now LG acts unitarily by multiplication on H.
In fact if £ € C*(S',End V) and m( f) is the corresponding multiplication
operator, then it is easy to check, using the Fourier coefficients of f, that
112, m( ]Il < IIf'|l,. In particular LG satisfies Segal’s quantisation criterion
for P and we therefore get a projective representation of LU(N) on Z p [30,
42], continuous for the C* topology on LU(N) C C*(S',End V). The ro-
tation group Rot S! acts by automorphisms on LG by (r,f)(0) = £(0 + a).
The same formula defines a unitary action on L*(S') ® ¥ which leaves
H*(S') ® V' invariant. Therefore this action of Rot S' is canonically
quantised and we thus get a projective representation of LGx Rot S! on
Z p which restricts to an ordinary representation on Rot S'.

Let
SUL(1, 1) = {(% 5) : |“|2 _ |ﬁ|2 — il}

and let SU,(1,1)=SU(1,1) and SU_(1,1) denote the elements with
determinant +1 or —1. Thus SU_(1,1) is a coset of SU, (1, 1) with repre-

sentative F = (_1 _0 ), for example. The matrices g € SUL(1,1) act by
fractional linear transformations on S', g(z) = (az + B)/(Bz + %). This leads
to a unitary action on L3(S', V) via (V, - f)(z) = (« — fz) ' f(¢7'(2)). Since
(o — Bz)~" is holomorphic for |z| < 1 and |x| > |B], it follows that ¥, com-
mutes with the Hardy space projection P for g € SU, (1,1). The matrix F
acts on L>(S', V) via (F - f)(z) = z"'f(z') and clearly satisfies FPF = I — P.
It follows that F is canonically implemented in fermionic Fock space &
by a conjugate-linear isometry fixing the vacuum vector. Since
SU_(1,1) = SUL(1, 1)F, the same holds for each g € SU_(1, 1). Thus we get
an orthogonal representation of SUL(1,1) for the underlying real inner
product on %, with SU,(1,1) preserving the complex structure and
SU_(1,1) reversing it. The same is true in Z 5",

Let U, denote the canonically quantised action of the gauge group U(1)
on Z y, corresponding to multiplication by z on H. The Z,-grading on & y is
given by the operator U = U_;.
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Lemma. n(g)U,n(g)" = U, for all g € LSU(N) and z € U(1).

Proof. The group SU(N) is simply connected, so the group LSU(N) is con-
nected (any path can be smoothly contracted to a constant path and SU(N) is
connected). The map U(H) x U(H) — U(H), (u,v) — uvu*v* is continuous
and descends to PU(H) x PU(H). So (u,v) — uvu*v* defines a continuous
map PU(H) x PU(H) — U(H). Since g and z commute on the prequan-
tised space H, n(g) and U, commute in PU(H). Hence n(g)U.n(g) U =
AMg,z) where A(g,z) € T depends continuous on g and z. Writing this equa-
tion as n(g)U.n(g)" = A(g,z)U-, we see that A(g,-) defines a character J, of
U(1). Clearly A4, = g, sO We get a continuous homomorphism of LSU(N)
into U(1), the group of characters of U(1). Since U(1) = Z and LSU(N) is
connected, 4, = 1 for all g. So A(g,z) = 1 for all g,z as required.

Corollary. Each operator n(g) with g € LSU(N) is even (it commutes with
U=U.).

5. The central extension G

We introduce the central extension of LG
]1—-T— ¥YG—LG—1

obtained by pulling back the central extension 1 —T — U(Fy) —
PU(Zy) — 1 under the map n: LG — PU(Z ). In other words it is the
closed subgroup of LG x U(ZF ) given by {(g,u) : n(g) = [u]}: it contains
T =1 x T as a central subgroup and has quotient LG. By definition .#G has
a unique unitary representation © on # p given by n(g,u) = u. This exten-
sion is compatible with the action of SU+(1,1) and Rot S'.

Lemma. If n(y) denotes the canonical quantisation of y € SUL(1, 1)on ferm-
ionic Fock space Fy and ¥G = {(g,u) : n(g) = [u]}, then the operators
(y,m(y)) normalise n(¥G) acting on the centre T as the identity if
y € SUL(1,1) and as complex conjugation if y € SU_(1,1).

Proof. This follows because 7(y)n(g)n(y)”" has the same image as n(g - y~!)
in PU(?V).

6. Positive energy representations

We may consider the decomposition of #p = A(PH)® A(PtH)" into
weight spaces of Rot §' =T, writing #p = @), .7 p(n), where z € T acts
on . p(n) as multiplication by z". Since Rot S! acts with finite multiplicity
and only non-negative weight spaces on PH and (P+H)", it is easy to see that
Z p(n) is finite-dimensional for n > 0 and % p(n) = (0) for n < 0. Moreover
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ZFp(0) = A(V). We define a representation of T on H to have positive energy
if in the decomposition H = (PH (n) we have H(n) = 0 for n < 0 and H(n)
finite-dimensional for n > 0. (Usually we will also insist on the normalisa-
tion H(0) # (0), which can always be achieved through tensoring by a
character of T.) Thus Rot S' acts on % with positive energy.

Proposition. Suppose that T is a subgroup of U(H) and that T acts on H with
positive energy normalising T. Let U, be the action (with t € [0, 2x)).

(a) If H is irreducible as an T x T-module, then it is irreducible as a T'-
module.

(b) If Hy and H; are irreducible T" x T-modules which are isomorphic as T'-
modules, then one is obtained from the other by tensoring with a character of T.

(c) If H is the cyclic T-module generated by a lowest energy vector, it
contains an irreducible T' x T-module generated by some lowest energy vector.

(d) Any positive energy representation is a direct sum of irreducibles.

Proof. (a) Let M =T, the commutant of T, so that M = {T: Ty = gT
for all g € T'}. By Schur’s lemma, M N (U,)" = €I since T and T act irre-
ducibly. Note that U, normalises M, since it normalises I". Let v be a lowest
energy vector in H. v is cyclic for I and T and hence I', so av # 0 for a # 0
in M. If M # €, there is a non-scalar self-adjoint element 7 € M. Define
T,€B(H) by (T,&n) =(n)" [ e ™(UT,Usé n)dt. Then T, e M,
UTU; = ™T,, T} = T_, and Tv = &T,v. By assumption 7 must be a scalar.
Since T ¢ CI, Tv cannot be a multiple of v and therefore 7, # 0 for some
n # 0. Since T, = T_,, we may assume # < 0. But then T,,v # 0 gives a vector
of lower energy than v. So M = C and I acts irreducibly.

(b) Let T : Hy — H, be a unitary intertwiner for I'. Then V;*TU, is also a
unitary intertwiner, so must be of the form A(#)T for A(¢) € T by Schur’s
lemma. Since TU,T* = A(¢)¥;, A(t) must be a character of T.

(c) Let V' be the subspace of lowest energy. Let K be any I'xT-invariant
subspace of H with corresponding projection p € I''. Since H = lin(I'V),
K = pH =1in(I'pV). But pV C V, since p commutes with T. Choosing pV in
V of smallest dimension, we see that K = lin(I'p¥) must be irreducible as a
'« T-module and hence as a I'-module. Thus H contains an irreducible
submodule K generated by any non-zero pv with v € V.

(d) Take the cyclic module generated by a vector of lowest energy. This
contains an irreducible submodule generated by another vector of lowest
energy H; say. Now repeat this process for Hi, to get H,, Hs, etc. The
positive energy assumption shows that H = (—DI—Ii.

Corollary. If n: LGxRot S' — PU(H) is a projective representation which
restricts to an ordinary positive energy representation of Rot S', then H
decomposes as a direct sum (P H; ® K; where the H;'s are representations of
LGx Rot Stirreducible on LG with H;(0) # (0) and the multiplicity spaces are
positive energy representations of Rot S'.
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We apply this result to the positive energy representation % %é of
LGxRot S'. The irreducible summands of Z 3 are called the level ¢ irre-
ducible representations of LG. By definition any positive energy represen-
tation extends to LGx Rot S'. More generally the vacuum representation at
level ¢ extends (canonically) to LGxSUL(1, 1). In fact, since SUL(1, 1) fixes
the vacuum vector and this generates the vacuum representation at level £ as
an LG-module, it follows that the vacuum representation at level ¢ admits a
compatible orthogonal representation of SUy(1,1), unitary on SU,(1,1)
and antiunitary on SU_(1,1). We also need the less obvious fact that
SU(1,1) is implemented by a projective unitary representation in any level ¢
representation; this follows from a global form of the Goddard-Kent-Olive
construction [12].

Lemma (coset construction). Let H = (P H; ® K; and let M = (D B(H;) ® 1.
Let nw:% — PU(H) be a projective unitary representation of the connected
topological group 4 such that n(g)Mn(g)" = M for all g € 4. Then there exist
projective unitary representations n; and o; of 9 on H; and K; such that

n(g) = Omi(g) ® 0i(g).

Proof. % acts by automorphisms on M through conjugation. It therefore
preserves the centre and hence the minimal central projections. Since ¥ is
connected and the action strong operator continuous, it must fix the central
projections. Thus it fixes each block H; ® K;. It also normalises B(H;). If
W; denotes the restriction of n(g) to H; ® K;, then Ad W, restricts an
automorphism o; of B(H;). But, if K is a Hilbert space, any automorphism
o of B(K) is inner: indeed if ¢ is a fixed unit vector in K and P: is the rank
one projection onto C¢, then a(P:) =P, for some unit vector 1 and
(Tf) =o(T)n (T € B(K)) defines a unitary with o= Ad U. Hence
= Ad U, for U; € U(H;). But then (U ® I)W; commutes with B(H;) @ I
and hence lies in / ® B(K;). Hence (U @ [)W; =1 ® V;, so that W; = U; ® V;.
Thus we get the required homomorphism ¥ — [[ PU(H;) x PU(V;), which is
clearly continuous.

Corollary. There is a (unique) projective representation m; of SU(1,1) on H;
satisfying ()m(g)m(3)" = milg-7) for g € £G and y € SU(1, 1).

Proof. If H = f’w, we may write H = @Hi ® K; where the H;’s are the
distinct level ¢ irreducible representations of G and the K,’s are multi-
plicity spaces. Then 7(£G)" = (PB(H;) ® I and the unitary representation
of SU(1,1) normalises thrs algebra By the coset constructron, each
7€ SU(1,1) has a decomposition 7(y) = Pm(y) ® 6:(y), where 7(y) =
7;(7) ® 0;(y) is an ordinary representatlon of SU(l 1) on H; ®K;. But
mi(g-y7) @1 =14(0)(mlg) @ Nt()" = m(y)mi(g)m(y)". Hence m(y)mi(g)
mi(7)" = mi(g-y7"). So, as before, the representation of SU(1,1), now
projective, is compatible with the central extension ZG.
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7. Infinitesimal action of L°g on finite energy vectors

If g = Lie (G), then Lie (LG) = Lg = C>®(S', g). Let L°g be the algebraic Lie
algebra consisting of trigonometric polynomials with values in g. Its com-
plexification is spanned by the functions X, (0) = e~"X with X € g. Rot S
and its Lie algebra act on L°g. The Lie algebra of Rot S! is generated by id
where [d, f](0) = —if"(0) for f € L°¢. Thus d may be identified with the
operator —id/d0. We obtain the Lie algebra relations [X,,Y,] = [X,Y],,,.
and [d,X,] = —nX,. For v € V, let v(n) = a(v,) where v, € L>(S', V') is given
by v,(0) = e~™’v. In particular, if (e;) is an orthonormal basis of 7, then we
have fermions e;(n) for all n. If Q denotes the vacuum vector in %, then it is
easy to see from its description as an exterior algebra that an orthonormal
basis of & is given by

ei(m)ei(n2) - -~ e, (ny)e;, (m1) e, (ma)" . . e (my)"Q

where n; < 0 and m; > 0. Moreover e;(n)Q = 0 for n > 0 and ¢;(n)"Q = 0 for
n < 0. Since Rot S' commutes with the Hardy space projection on L*(S', V),
it is canonically quantised. Let Ry be the corresponding representation on
Fy. Then Ry = €’ where D is self-adjoint. If ry is the action of Rot S! on
L*(S", V) given by (rof)(z) = f(€"z), then rg = & where d = —i 4 (we al-
ways regard functions on S' as functions either of z € T or of 0 € [0, 2x]).
Now Rya(f)R} = a(rof). Hence Ryv(m)R} = e~ ™ v(m), so that Ry acts on
the basis vector e; (n))e;, (n2) - - - e;, (n,)e;, (my) e;, (ma)" - - - e; (my)"Q as mul-
tiplication by ¢™? where M = Y m; — > n;. Since Ry = ¢, it follows that
D acts on this basis vector as multiplication by M, i.e. this vector has energy
M=>"m;—> n. In particular DQ=0 and we can check that
[D,v(n)] = —nv(n). Thus if 1 is a trigonometric power series with values in
V, we have [D,a(f)] = a(df). Note that if T is a linear operator on #7,
commuting with the e;(a)’s and e;(a)™’s, then T = Al for A € C: for, as in
section 3, Q is the unique vector such that ¢;(n)" Q=0 (n > 0), e;(n)Q =0
(n > 0) and Q is cyclic.

Theorem. Let Ej(n) =3, qei(n—me(—m)" =3, e;(m) ei(m+n),
and define X (n) = " a;;E;;(n) for X =" a;;E;; € Lie U(V) C End(V). Then,
as operators on H°, we have

@) [X(m),a(f)] =a(X, - f) if f is a trigonometric polynomial with values
in V; equivalently [X (n),v(m)] = (Xv)(n + m).

(b) [D, X(m)] = —mX (m).

©) X(n),Y(m)]=[X,Y|(n+m)+n(X,Y)dnsmol where (X,Y)=—Tr(XY)
= Tr(XY*) for X,Y € Lie U(V).

Proof. (a) Observe that [e;(a)"e;(b),ex(c)] = —dacdixe;(b) and [e;(b) e;(a)",
ex(c)] = 04.0ike;(b). Moreover if i # j, then e;(a) anticommutes with both
e;(b) and e;(b)". Using these identities, it is easy to check that E;;(n) satisfies
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the commutation relations (a) with respect to the e;(n)’s. Note that
X (n)Q =0 for n > 0 since e;(n)Q =0 for n >0, e;(n)"Q =0 for n < 0 and
(\,formally) X(n)" = —X(—n) for X € Lie U(V).

(b) Since [D,e;(m)] = —me;(m) and [D,e;(m)*] = me;(m)*, it follows that
[D,X(m)] = —mX (m).

(c) From (a) we find that T = [X, (m), Y(n)] — [X, Y](m + n) commutes with
all ¢;(a)’s and hence also all e;(a)"’s by the adjointness property. Hence
[X(m),Y(n)] =X, Y)(m+n) + AX,Y)(m,n)I, where A(X,Y)(m,n) is a sca-
lar, bilinear in X and Y. Now from (b), [X(m), Y (n)] — [X, Y](m + n) lowers
the energy by —m —n, so that A(X,Y)(m,n) =0 unless m+n=0. To
compute the value of 4 when m = —n, we note that we may assume that
m >0, since A(X,Y)(m,n)" = A(Y,X)(—n,—m) by the adjoint relations.
Taking vacuum expectations, we get

200, 1) (—mym) = (X (=m), ¥ (m)]Q,0) = (X(-m)Q,
Y(—m)Q) = —mTr(XY) =m(X,Y).

In fact it X = )" a;E; and Y =) b;;E;;, we have

(X (—m)Q, )=> Z aie;(r) ei(r —m)Q, bye,(s) ey(s — m)Q)

lqu rSs=

fmZa,,b =m(X,Y),

since the terms e;(a)"e;(b)Q with a > 0 and b < 0 are orthonormal.

8. The exponentiation theorem

We wish to show that the Lie algebra action just defined on %, expo-
nentiates to give the fundamental representation of LSU(N)x Rot S!. We
have already discussed the action of Rot S', which is canonically quantised.
So we now must show that if x is an element of L°g and X is the corre-
sponding operator constructed above, then w exp x and exp X have the same
image in PU(Z). To see that this completely determines 7 on LG, we need
the following result on products of exponentials.

Exponential lemma. Every element of LG is a product of exponentials in
Lg = C=(S', g). Products of exponentials in L°g are dense in LG.

Proof. If g€ LG C C(S',My(C)) satisfies ||g—I||, <1, then logg =
log(I — (I —g)) lies in C~(S',g) = Lg. Thus exp Lg contains an open
neighbourhood of 7 in LG. Since LG is connected, exp Lg must generate LG,
as required.

The bilinear formulas for the Lie algebra operators X immediately imply
Sobolev type estimates for the infinitesimal action of L’g on finite energy
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vectors. We define the Sobolev norms by ||&||, = ||(/ + D)*¢|| for s € R,
usually a half-integer. Recall that if 4 is a skew-adjoint operator, the smooth
vectors for 4 are the subspace C*(4) = (2(4") and for any ¢ € C*(4) we
have e'¢ = S0 LA4%E + O(r).

Exponentiation Theorem. Let H = F  be the level one fermionic represen-
tation of LSU(V') and let H® be the subspace of finite energy vectors.

(1) For x € L°g, there is a constant K depending on s and x such that
X - €ll, < Kl Jor & € H, X = ().

(2) For each x € L°g, the corresponding operator X is essentially skew-
adjoint on H® and leaves H® invariant.

(3) Each vector in H is a C* vector for any x € L°g.

(4) For x € L'g, the unitary exp(X) agrees up to a scalar with m(exp(x)).

Proof. (1) It clearly suffices to prove the estimates in the lemma for
X =E;(n) and ¢ of fixed energy, say D¢=puf Then E;n)é=
S g eiln —mhej(=m) e — X,y ei(m) e+ m)é. So [E,mE] < 2(ln]
+ w)||&]|, since at most 2(|n| 4+ u) of the terms in the sums can be non-zero
and each has norm bounded by ||¢||. Hence for s > 0,

1E;(m)Elly < (14 |n| + @) | B (n)El| < 2(1 + |n| + )" (In] + )

< (
< 2(1+ [n)™ (U )€l < 21+ [al) €l

(2) Clearly any X € L°g acts on H°. We need the Glimm-Jaffe-Nelson
commutator theorem see [11, 31] or [42]: if D is the energy operator on H°
and X : H° — H° is formally skew-adjoint with X(D+1)"', (D+1)"'X and
(D +1)""2[x, D)(D + I)~"/? bounded, then the closure of X is skew-adjoint.
The Sobolev estimates show that these conditions hold for D and X, since
[D, X] is actually in L0g.

(3) Since XH®  H® and the C* vectors for X are just NZ(X"), it follows
that the vectors in H° are C* vectors for X.

(4) We prove the commutation relation e¥a( f)e ™ = a(e”f) for f €
L*(S') ® V. We start by noting that

a(Xf)¢ = Xa(f)E—a(f)X¢E

for 1 a trigonometric polynomial with values in V', X € L°g and ¢ € H°. We
fix X and f and denote by C>*(X) the space of C* vectors for X,
i.e. NZ(X"). Now say ¢ € Z(X) and f € L*(S', V). Take ¢, € H', such that
¢, — Eand X&, — X¢&, and f, trigonometric polynomials with values in V'
such that f, — f. Then a(fn)én —a(f)¢ and Xa(f,)¢, = a(an)én +
a(f))X¢&, — a(Xf)E+ a( f)XE. Since X is closed, we deduce that a( )¢ lies
in 2(X) and a(Xf)¢ =Xa(f)E — a(f)XE. Successive applications of this
identity imply that a( /)¢ lies in 2(X") for all n if & lies in C*(X), so that
a(f)C>(X) C C=(X).
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Now take & 7€ C®(X) and consider F(t) = (e Xa(e"'f)eXE n) =
(a(ef)eXE eXy). Since &y lie in C®(X), we have X +9)¢ = X¢qt
sXe''é + O(s?) and ey = ¥y + sXe''n + O(s?). For any f, we have
) f = e f 1 sxe’f + O(s%) in L*(S') @ V. Since |la(g)|| = ||g|, it follows
that a(e*"*f) = a(ef) + sa(xe'f) + O(*) in the operator norm. Hence
we get

F(t+s5) = (a(e"f)e"E, e'n) + sl(a(e" f) X, n)
+ (a(xe"f)e"E, &) + (a(e”f)eE, XeMy)] + O(s?)
= (a(e"f)e™E, e"n) + O(s?).

since [X,a(g)] = a(xg). Thus F(¢) is differentiable with F’(¢) = 0. Hence
F(¢t) is constant and therefore equal to F(0). This proves that
e Xa(e”f)eXE = a(f)¢E for ¢ € H* C C*(X). Hence a(e™f) = e¥a( f)e ™,
as required. Thus e implements the Bogoliubov automorphism corre-
sponding to e".

Corollary. Let H be a level ¢ positive energy representation of LSU(N) and let
HP be the subspace of finite energy vectors.

(1) There is a projective representation of L'gxIR on H° such that
[D,X(n)]=-nX(n), D*=D, X(n) =-X(—n) and [X(m),Y(n)]=
(X, Y](n+m) +mldyno (X,Y).

(2) For each x € L°g, the corresponding operator X is essentially skew-
adjoint on H° and leaves H® invariant.

(3) For x € L°g, the unitary exp(X) agrees up to a scalar with the corre-
sponding group element in LG.

(4) Each vector in H® is a C™ vector for any X.

Proof. We observe that the embedding LSU(N) C LU(NY) gives all repre-
sentations of LSU(N) at level ¢. The continuity properties of the action of
the larger group and its Lie algebra are immediately inherited by LSU(N).
Note that it is clear from the functoriality of the fermionic construction that
the restriction of the fermionic representation of LU (N¥) to LU(N) can be
identified with Z®* where Z is the (level 1) fermionic representation of
LU(N). The other properties follow immediately from the following result,
applied to irreducible summands K of H = #%*.

Lemma. Let X be a skew-adjoint operator on H with core H° such that
X (H) C H°. Let K be a closed subspace such that P(H®) C H°, where P is the
projection onto K. Let K® = K NH°. Then X(K°) C K° iff exp(Xt)K =K
Sor all t. In this case K° is a core for X|.

Proof. Suppose that K is invariant under exp(X?). Then exp(Xz) &=
E4tXE+--- for £ € K" and hence XK C KNH? =K". Conversely, if
X (K% C KO, take ¢ € Z(X) and let P be the orthogonal projection onto K.
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It will suffice to show that P¢ € 2(X) and XP¢ = PX¢, for then X commutes
with P in the sense of the spectral theorem. Since P(H") C H°, we have
H°=H'NKPH"NK*. Since X is skew-adjoint and X (K°) C K", it fol-
lows that X leaves H N K+ invariant. Thus PX = XP on H°. Take ¢, € H°
such that &, — £ and X¢&, — X&. Then XP¢, = PX&, — PXE and PE, — .
Since X is closed, XP¢ = PX¢ as required. Finally since P¢, — P¢ and
XP¢, — XPE, it follows that K° is a core for Xlg-

9. Classification of positive energy representations of level £

Proposition. Let (n, H) be an irreducible positive energy projective represen-
tation of LGx Rot S of level ¢.

(1) The action of L°gx R on H° is algebraically irreducible.

(2) H(0) is irreducible as an SU(N)-module.

(3) If H(0) = V. then fi — fy <.

(4) (Existence) If f1 — fy < ¥, there is a an irreducible positive energy
representation of LG of level { of the above form with H(0) = V; as SU(N)-
modules.

(5) (Uniqueness) If H and H' are irreducible positive energy representations
of level £ of the above form with H(0) = H'(0) as SU (N )-modules, then H and
H' are unitarily equivalent as projective representations of LG x Rot S'.

Proof. (1) Recall that H is irreducible as an LGx T-module iff it is irre-
ducible as an LG-module by the proposition in section 6. Any subspace K of
H° invariant under L°¢gx IR is clearly invariant under Rot S'. It therefore
coincides with the space of finite energy vectors of its closure. By the lemma
in section 8, its closure is invariant under all operators exp(X) for x € L'g.
But exp(L’g) generates a dense subgroup of LG, so the closure must
be invariant under LG and therefore coincide with the whole of H by
irreducibility. Hence K = H° as required.

(2) Let ¥ be an irreducible SU(N)-submodule of H(0). From (1), the
L%¢ x R-module generated by V is the whole of H°. Since D fixes V, it
follows that the L%g-module generated by ¥ is the whole of H°. The com-
mutation rules show that any monomial in the X (n)’s can be written as a
sum of monomials of the form P_PyP,, where P_ is a monomial in the X (n)’s
for n < 0 (energy raising operators), Py is a monomial in the X (0)’s (constant
energy operators) and P, is a monomial in the X (n)’s with n > 0 (energy
lowering operators). Hence H? is spanned by products P_v (v € V). Since the
lowest energy subspace of this L’g-module is ¥, H(0) = V, so that H(0) is
irreducible as a G-module.

(3) Suppose that H(0) = ¥V, and let v € H(0) be a highest weight vector,
so that (E;(0) —E;(0))o=(f;—f;)v and E;(0)v=0 if i< Let E=
ENl(l), F = ElN(fl) and H = [E,F] = ENN(O) *Ell(O) + /4. Thus H* = H,
E*=F,[H,E] =2E and [H,F] = —2F. Moreover Ev = 0 and Hv = Av with
/.= fx — f1 +£. By induction on k, we have [E, F**'] = (k + 1)F¥(H — kI)
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for k>0. Hence (FFly, FFtly) = (FFHly, Fhv) = (EF* 1y, FFo) =
(k +1)(4 — k)(F*v, F*v). For these norms to be non-negative for all k > 0,
/ has to be non-negative, so that f; — fy < ¢ as required.

(4) We have 73/(0) = (AV)®*. By the results of section 6, the LG-
module generated by any irreducible summand ¥} of % (0) gives an irre-
ducible positive energy representation H with H(0) = V;. So certainly any
irreducible summand in AV®* appears as an H (0). From the tensor product
rules with the 2fV’s, these representations are precisely those with
Si—/v<t

(5) Any monomial 4 in operators from L’g is a sum of monomials RDL
with R a monomial in energy raising operators, D a monomial in constant
energy operators and L a monomial in energy lowering operators. As in
section 2, if v,w € H(0) the inner products (4;v, Aow) are uniquely deter-
mined by v, w and the monomials 4;: for 434 is a sum of terms RDL and
(RDLv,w) = (DLv, R*w) with R* an energy lowering operator. Hence, if H' is
another irreducible positive energy representation with H'(0) = H(0) by a
unitary isomorphism v — v/, U(4v) = Av’ defines a unitary map of H° onto
(H’)O intertwining L’g. This induces a unique unitary isomorphism H — H’
which intertwines the one parameter subgroups corresponding to the skew-
adjoint elements in L’g, since H° and H’ 0 are cores for the corresponding
skew-adjoint operators. But these subgroups generate a dense subgroup of
LG, so that U must intertwine the actions of LG, i.e. 7'(g) = Un(g)U* in
PU(H') for g € LG. Thus H and H’ are isomorphic as projective represen-
tations of LG. From section 6, H and H' are therefore unitarily equivalent as
projective representations of LG x Rot S'.

Corollary. The irreducible positive energy representations H of LG of level ¢
are uniquely determined by their lowest energy subspace H(0), an irreducible
G-module. Only finitely many irreducible representations of G occur at level ¢:
their signatures must satisfy the quantisation condition fi — fy < £. The action
of L’g x R on H® is algebraically irreducible.

I1. Local loop groups and their von Neumann algebras

10. von Neumann algebras

Let H be a Hilbert space. The commutant of S C B(H) is defined by
S'={T € B(H) : Tx =xT for all x € S§}. If §* = S, for example if S is a *-
algebra or a subgroup of U(H), then S’ is a unital *-algebra, closed in the
weak or strong operator topology. Such an algebra is called a von Neumann
algebra. von Neumann’s double commutant theorem states that S” coincides
with the von Neumann algebra generated by S, i.e. the weak operator clo-
sure of the unital *-algebra generated by S. Thus a *-subalgebra M C B(H)
is a von Neumann algebra iff M = M”. By the spectral theorem, the spectral
projections (or more generally bounded Borel functions) of any self-adjoint
or unitary operator in M must also lie in M. This implies in particular that M
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is generated both by its projections and its unitaries. Note that, if M = §,
the projections in M correspond to subrepresentations for S, i.e. subspaces
invariant under S.

The centre of a von Neumann algebra M is given by Z(M) =M NM'. A
von Neumann algebra is said to be a factor iff Z(M) = CI. A unitary rep-
resentation of a group or a *-representation of a *-algebra is said to be a
factor representation if the commutant is a factor. If H is a representation
with commutant M, then two subrepresentations H; and H, of H are
unitarily equivalent iff the corresponding projections P;,P, € M are the
initial and final projections of a partial isometry U € M, i.e. U*U = P; and
UU* = P,. P| and P, are then said to be equivalent in the sense of Murray
and von Neumann [26]. We shall only need the following elementary result,
which is an almost immediate consequence of the definitions.

Proposition. If (n,H) is a factor representation of a set S with S* =S and
(n1,H,) and (my, Hy) are subrepresentations, then

(1) there is a unique *-isomorphism 0 of m,(S)" onto my(S)" such that
0(m (x)) = ma(x) for x € S;

(2) the intertwiner space ¥ = Homg(H,,H,) satisfies H, = H,, so in
particular is non-zero,

(3) 0(a)T = Ta for all a € 71 (S)" and T € X';

@) if o C X with ZoH; = Hy, then 0(a) is the unique b € ny(S)" such that
bT = Ta for all T € %

Proof. Let M = n(S)" and M; = m;(S)". Then M'H; is invariant under both
M and M'. Hence the corresponding projection lies in M N M’ = € (since M
is a factor). So M'H; = H. Let p; be the projection onto H;, so that p; € M’.
Clearly M; = Mp;. Moreover, the map 6; : M — M;, a — ap; must be a *-
isomorphism: for ap; = 0 implies aM’H; = (0) and hence a = 0. By definition
0:(n(x)) = mi(x) for x € S. Now set 0 = 0,0,"; 0 is unique because M, is
generated by 7, (S).

Since 4 = Homg(H;, H2) = pxM'p;, we have T0,(x) = 0,(x)T for all
x e M. Hence 0(a)T = Ta for a € M} and T € Homg(H;,H,). Moreover
ZH, = poM'H, = pyH = H,. Conversely suppose that 2y C Homg(H,, Hy)
is a subspace such that ZH, is dense in H, and a € M|, b € B(H,) satisfy
bT =Ta for all Te Zy. Let c=b—0(a). Then cZy = (0) and hence
cH, = (0), so that ¢ = 0. Thus b = 0(a) as required.

11. Abstract modular theory

Let H be a complex Hilbert space, and K C H a closed real subspace with
KnNiK = (0) and K + iK dense in H. Let e and f be the projections onto K
and iK respectively and set r = (e + f)/2, t = (e — f)/2. Then K*, iK* and
iK satisfy the same conditions as K, where L is taken with respect to the real
inner product Re(&, 7).
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Proposition 1. (1) 0 < r <1, t, r are self-adjoint, t is conjugate-linear, r is
linear, and t, I — r, v have zero kernels.

QE=r(I—r), rt=tI—r), (I—r)it=rtr

Q) et =1t —f), fi=1t—e).

(4) If t has polar decomposition t = |t|j = j|t|, then j*> =1, ej = j(I — f)
and fj = j(I - e).

(5) jK = iK* and (j¢,n) € R for &y € K.

(6) Let 8" = (I — r)'r~*. Then jo" = 6"j and 6"K = K.

Proof. (1), (2) and (3) are straightforward. (4) follows from (3), because e
and f commute with 2 = (e — f)?/4, hence with |¢|, and || has zero kernel.
(4) implies (5), since jej = I — f. Finally since jrj = I — r and j is conjugate-
linear, j commutes with 6. So §" commutes with j, r, || = \/7(I — ) and
hence . So 6" commutes with e and f.

Proposition 2 (characterisation of modular operators). (1) (Kubo-Martin-
Schwinger condition) For each & € K, the function f(t) = 6"¢ on R extends
(uniquely) to a continuous bounded function f(z) on —1/2< Imz <0,
holomorphic in —1/2 < Im z < 0. Furthermore f(t —i/2) = jf(¢t) for t € R.

(2) (KM S uniqueness) Suppose that u, is a one-parameter unitary group on
H and j, is a conjugate-linear involution such that u,K = K and jiu; = uj,.
Suppose that there is a dense subspace K| of K such that for each & € K, the
Sfunction g(t) = u,& extends to a bounded continuous function g(z) on the strip
—1/2< Imz<0 into H, holomorphic in —1/2 < Imz <0, such that
f(t—i/2) = jif (t) for t € R. Then u, = 8" and j, = j.

Proof. (1) (cf [33) If ¢ €K, then &= p& = (r+ 1)& = r¥( # 4 (1= r))E.
Thus &=y, where = (rF+ (I —r)}j)E. Set f(z) = (I —r)" =y for
—-1/2< Imz<0.

(2) For ¢ €K, set h(z) = (g(z),g9(z—i/2)). Then h is continuous and
bounded on —1/2 < Im z <0, holomorphic on —1/2 < Imz < 0. By
uniqueness of analytic extension, u,f (z) = f(z + t) since they agree for z real.
Hence h(z + ¢) = h(z), so that & is constant on lines parallel to the real axis
and hence constant everywhere. Since h(—i/4) = |lg(—i/4)||* > 0, it follows
that A(0) >0, ie. (ji& &) > 0. Polarising, we get (ji&,n) € R for all
&,n € K. Since u,; leaves K and iK invariant, it follows that ¥, commutes with
e and f and hence 6”. Now let f(z) be the function corresponding to ¢ and
§". Define k(z) = (g(z), jf (2)) for =3 < Im z < 0. Then k(1) = (u,, j6"¢) is

real for 7 € R and k(t — i/2) = (/]uté 12(3 &) = (ius€,6"¢) is real for ¢ € R.
k is bounded and continuous on —5 § Im z < 0 and holomorphic on
0< Imz< % By Schwartz’s reﬂection principle, k extends to a holo-
morphic function on C satisfying k(z + i) = k(z). This extension is bounded
and therefore constant by Liouville’s theorem. Hence k(7) = k(0) = k(—i/2).
Thus (1,06 "¢, j&) = (£,j&) = k(—i/2) = (ji &, &). By polarisation it follows
that u, = 6" and j = j;, as required.
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12. Modular operators and Takesaki devissage for von Neumann algebras

The main application of the modular theory for a closed real subspace is
when the subspace arises from a von Neumann algebra with a vector cyclic
for the algebra and its commutant. Let M C B(H) be a von Neumann al-
gebra and let Q € H (the “vacuum vector”) satisfy MQ = H = M'Q. The
condition M’Q = H is clearly equivalent to the condition that Q is separating
for M,ie. aQ=0iffa = 0 fora € M. If in addition M and H are Z,-graded,
then the graded commutant M7 equals «M'x~! where the Klein transfor-
mation k is given by multiplication by 1 on the even part of H and by i on
the odd part; in this case we will always require that Q be even. Let
K = M,Q, a closed real subspace of H.

Lemma 1. K + iK is dense in H and K NiK = (0).

Proof. K+iK O MQ = MuQ + iM,Q, so K +iK is dense. Now K+ D iM!, Q,
since for a € My,, b € M],, we have Re(aQ,ibQ) = Re —i (abQ,Q) =0,

because (ab)” = ab implies that (abQ, Q) is real. Hence iK+ D MS’EQ. Thus
K+ +iK+ D M'Q, so K+ +iK™* is dense. So K NiK = (K* 4+ iK*)~ = (0).

Let A" and J be the modular operators on H associated with K = My Q.
The main theorem of Tomita-Takesaki asserts that JMJ =M’ and
A'"MA™" = M. (General proofs can be found in [8] or [33] for example; for
hyperfinite von Neumann algebras an elementary proof is given in [42],
based on [33] and [16].) Once the theorem is known, the map x — Jx*J gives
an isomorphism between M°P (M with multiplication reversed) and M’ and
o:(x) = A"xA™" gives a one-parameter group of automorphisms of M. Our
development, however, does not logically require any form of the main
theorem of Tomita-Takesaki; instead we verify it directly for fermions and
deduce it for subalgebras invariant under the modular group using a crucial
result of Takesaki (““Takesaki devissage™).

Lemma 2. If JMJ C M, then JMJ = M.

Proof (cf [33]). Clearly JQ = Q. If 4,B € M,, then (JBQ, AQ) is real since
AQ, BQ lie in iK+ and J is also the modular conjugation operator for iK=.
Thus (4JBJQ,Q) = (JBQ,AQ) = (4Q,JBQ) = (JBJAQ, Q). By complex
linearity in 4 and conjugate-linearity in B, it follows that (4/BJQ,Q) =
(JBJAQ, Q) for all A,B € M'. Now take a,b € M, x,y € M and set 4 = a and
B =Jy*JbJxJ. Since JxJ,JyJ € M’', B lies in M'. Hence (JbJaxQ,yQ) =
(aJbJxQ,yQ). Since MQ = H, this implies that aJbJ =JbJa. Thus
JM'J C M" =M and so JMJ = M'.

Corollary. If A C B(H) is an Abelian von Neumann algebra and Q a cyclic
vector for A, then A" =1, JaQ =a*Q and JaJ =a* for a € A, and
A=JAaJ =4
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Proof. Since A C A', Q is separating for 4. Thus JaQ = a*Q extends by
continuity to an antiunitary. If a € 4g,, the map f(z) = a satisfies the KMS
conditions for the trivial group and J, so they must be the modular oper-
ators. Since JA4J = A C A', the last assertion follows from the lemma.

Theorem (Takesaki devissage [37]). Let M C B(H) be a von Neumann
algebra, Q € H cyclic for M and M' and A", J the corresponding modular
operators. Suppose that A"MA™™ =M and JMJ =M'. If N C M is a von
Neumann subalgebra such that A'NA™ = N, then

(@) A" and J restrict to the modular automorphism group A’f and conju-
gation operator Jy of N for Q on the closure H, of NQ.

(b) ANA" = N and JNJ, = N'.

(c) If e is the projection onto Hy, then eMe = Ne and N ={x e M :
xe = ex} (the Jones relations [18)).

(d HH=H iff M=N.

(e) The modular group fixes the centre. In fact A"xA™" = x and JxJ =
x* forxeZM)=MnM.

Proof. (a) By KMS uniqueness, A" and J restrict to A} and J; on H; = eH.

(b) It is clear that AdA’f normalises Ne =N; on H,. Now
JiNeJ, = eJNJe C eJMJe = eM'e C eN'e = (eN)'. Thus JiNiJ; C N{. By
Lemma 2, JiN\J; = Nj.

(c) Since M’ ¢ N’ and M’ = JMJ, this implies that M C JN'J. Compress-
ing by e we get eMe C eJN'Je = JeN'eJ = JieN'eJ, = J|(N -e)'J; =N -e.
But trivially Ne C eMe, so that eMe = Ne. Clearly N C {(e)’. Now suppose
that x € M commutes with e. Then xe = ye for some y € N. But then
(x —y)e = 0, so that (x — y)Q = 0. Since Q is separating for M, x = yliesin N.

(d) Immediate from (c).

(e) Immediate from (a) and the corollary to Lemma 2.

13. Araki duality and modular theory for Clifford algebras

We develop the abstract results implicit in the work of Araki on the ca-
nonical commutation and anticommutation relations [1, 2]. This reduces the
computation of the modular operators for Clifford algebras to “one particle
states”, i.e. to the prequantised Hilbert space. We first recall that the as-
signment H — A(H) defines a functor from the additive theory of Hilbert
spaces and contractions to the multiplicative theory of Hilbert spaces and
contractions. A contraction A : Hl — H, between two Hilbert spaces is a
bounded linear map with ||4| < 1. We define A(4) to be 4% on
A*(Hy) C H. Then A(4) gives a bounded linear operator from A(H;) to
A(H,) with |A(4)| < 1. Clearly if ||4||, ||B|| < 1, then A(4B) = A(4)A(B).
Also A(4)" = A(4*), so if 4 is unitary, then so too is A(4). Similarly, if
H) = H, =H, then if 4 is self-adjoint or positive, so too is A(4). In
particular if A = UP is the polar decomposition of 4 with U unitary, then



496 A. Wassermann

A(4) = A(U)A(P) is the polar decomposition of A(4) by uniqueness.
Moreover A(4") = A(4)" if 4 is in addition positive (note that
(A" )‘8" = (A?")”). Similarly every conjugate-linear contraction 7T induces an
operator A(T)(E A& N+ NE) =TENTE A---ANTE. Note  that
A(T) =k 'A(iT), where x is the Klein transformation. If 7 = UP is the
polar decomposition of T with U a conjugate-linear unitary, then
A(T) = A(U)A(P) is the polar decomposition of A(T). If U is a linear or
conjugate-linear unitary, then it is easy to check that A(U)a(¢) A(U)" =
a(U¢) and A(U)c(&)A(U)" = c(UQ).

Let H be a complex Hilbert space and K C H a closed real subspace of H
such that K NiK = (0) and K + iK is dense in H. For & € H let a(¢) denote
exterior multiplication by ¢ and let ¢(&) = a(&) +a(¢)” denote Clifford
multiplication. Thus ¢(&)c(n) + c(n)e(€) = 2Re(E,n). Since the *-algebra
generated by the a(¢)’s acts irreducibly on AH and since

a(&) = (c(&) —ic(i&)) /2, the ¢(&)’ s act irreducibly on AH.

Lemma. If M(K) is the von Neumann algebra generated by the c¢(&)’s (¢ € K),
then Q is cyclic for M(K).

Proof. Let Hy = M(K)Q and assume by induction that all forms of degree
N or less lie in Hy. Let w be an N-form and take f € K. Then
fAow=c(flo—a(f) o, so that f Aw € Hy. Since K + iK is dense in H
and Hj is a complex subspace of AH, it follows that £ A w € H, for all
¢ € H. Hence H, contains all (N + 1)-forms.

Since Q is cyclic for M (K1), which lies in the graded commutant of
M(K), it follows that Q is cyclic and separating for M(K). Let R, T,
A" = (I —R)"R™" and J be the corresponding modular operators for M (K)
and Q.

Theorem. (i) J = A(j) = k'A(ij), A" = A(6"), where j and 6" are the mod-
ular operators for K.

(i) For & € H, A"c(E)A™ = ¢(8"¢) and kJc(E)Jx™" = c(ijé), where K« is
the Klein transformation.

(iii) M(K™*) is the graded commutant of M(K) and M(K) = JM(K)J
(Araki duality).

Remark. For another proof, analogous to that of [24] for bosons and the
canonical commutation relations, see [42].

Proof (cf [2]). Let 6" and j be the modular operators associated with the
closed real subspace K C H. Let S be the conjugate-linear operator on
np(Cliffr (K))Q defined by SaQ = a*Q for a € M = np(Cliffr (K)). This is
well-defined, because Q is separating for M. Thus Sc(&))---c(&,)Q =
c(&,) - c(&)Qfor & € K. If the &’s are orthogonal, it follows that S&; A - - -
N, =E, N+ AN &L Since any finite dimensional subspace of K admits an
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orthonormal basis, this formula holds by linearity for arbitrary
&iy...,¢, € K. Since S is conjugate-linear, it follows that for &, n, € K we
have S(fl i) A A+ in,) = (& —in,) A A (& — i)

Let J = A(j) =k~ 1A(z]) and A" = A(5"). Clearly A"J = A"J and A"
preserves Mg, Q. To check the KMS condition, it suffices to show that for
X € M Q, the function F(¢) = A”x extends to a bounded continuous function
on —4 < Im z <0, holomorphic on the interior, with F(t — i/2) = JSF (¢).
We may assume that x = (& +in) A--- A (&, +in,) w1th &,m; € K. For
each i, let f;(z) be continuous bounded function on —1 < Imz <0, holo-
morphic in the interior, fi(t) = 6" (& + in;) and f(tf i/2) = jo"(& —in,).
Let F(z) = fi(z) A--- A fu(z). Then F(z) is bounded and continuous on
i< Im:z<o, holomorphlc in the interior, and F(f) = A’x. Now

(= i/2) = At = 1/2) N A fult = 1/2) = 0" (& — im) A=< Ao (&0
znn) A(j)SF(¢t) = JSF(t). Thus F(t—i/2) =JSF(t) as required. This
proves (i) and (ii) follows immediately. To prove (iii), note that ij(K) = K+,
so that M(K*)=wxJM(K)Jk~' by this covariance relation. But
M(K'Y) C M(K)? = kM (K)'x~'. Thus JM(K)J C M(K), so the result
follows from Lemma 2 in Section 12.

14. Prequantised geometric modular theory

In this section we compute the prequantised modular operators corre-
sponding to fermions on the circle by two methods: firstly using a KMS
argument due to Jones reminiscent of computations of Bisognano and
Wichmann [4]; and then using the fact that a Hilbert space, endowed with
two projections in general position, can be written as a direct integral of
two-dimensional irreducible components. Let H be the complex Hilbert
space L>(S',V) where V = @". We give H a new complex structure by
defining multiplication by i as i(2P — I), where P is the orthogonal projec-
tion onto Hardy space H?(S', 7). Let I be the upper semicircle and let
K =L*(1,V), a real closed subspace of Hp. The real orthogonal projection
onto K, regarding H as a real inner product space, is given by O, multipli-
cation by y;.

Theorem. (a) K NiK = (0) and K + iK is dense in Hp.

(b) K+ =L2(1¢, V).

(c) j=—i(2P —I) where ngz) =z f(z7") is the flip, and 6" = u,, where
(u:f)(z) = (zsinh nt + cosh t) ™ f(zcosh nz + sinh 7z /z sinh ¢ + cosh 7t).

First proof. (a) It suffices to show that P and Q are in general position. Now
conjugation by r, takes Q onto / — Q and fixes P while conjugation by the
flip Vf(z) =z7'f(z7") takes Q onto I — Q and P onto I — P. Thus it will
suffice to show that PH N QH = (0). Suppose that the negative Fourier
coefficients of f € L?(1,V) all vanish. Then so do those of y « f for any
W € C®(SY). But Yy x f € C=(S', V) is the boundary value of a holomorphic
function. If ¥ is supported near 1, y x f vanishes in a subinterval of /¢ and
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therefore must vanish identically (since ¥ x f can be extended by reflection
across this subinterval). Since { x f and f can be made arbitrarily close in
L*(S', V), we must have /' = 0.

(b) The real orthogonal complement of L?(1,V) in L*(S', V) is clearly
L2(I¢, V).

(c) Let K; C K be the dense subset of QH consisting of functions Op
where p is the restriction of a polynomial in ¢. We must show that the map
f(¢) = u,Op extends to a bounded continuous function f(z) on the closed
strip  —1/2< Imz<0, holomorphic in the open strip with
f(t—i/2) = jf(¢) for t € R. Now f(¢) = Pu,Op + (I — P)u,Op. Because of
the modified complex structure on H = PH & (I — P)H, we have to extend
f1(¢) = Pu,Op to a holomorphic function with values in PH and (I — P)u,QOp
to an antiholomorphic function with values in (/ — P)H. Note that if
0 € [0,n] and —3/4 < Im z < 1/2, the function s.e’ + c, is non-zero, where
s, =sinhnz and ¢, =coshnz. For —3/4< Imz<1/2, let p.(e?) =
(s.e +c.)” 1 plc.e” +5./s.e” + c.). Then Qp. is holomorphic for such z, so
fi1(z) = POp, gives a holomorphic extension of fj to —=3/4 < Im z < 1/2.
Next note that f(¢1)=—(I —P)u,(I—Q)p, since (I—P)p=0. Set
f2(z) = —(I — P)(I — Q)p=. This gives an antiholomorphic extension of f> to
—3/4 < Im z < 1/4, because s:e’ + c: does not vanish for 0 € [—=,0]. Thus
f(z) = fi(z) + f>(z) is a holomorphic function from —3/4 < Imz< 1/2
into H. It equals f'(¢) for r € R. If we show that f(r — i/2) = jf(¢), then f(2)
will be bounded for Im z = 0 or —1/2 and hence, by the maximum modulus
principle, on the strip —1/2< Imz<0. Now jf(¢f)=—-i(2P—1)
Ff () = —iPOFp; + i(I — P)(I — Q)Fp,. Since s+;y = +ic, and ¢,.;y = Lis,,
we have p.in = FiFp,. Hence fi(t—i/2) = —iPQFp, and fi(t —i/2) =
i(I — P)(I — Q)Fp,, so that f(¢t—i/2) = jf(t) as required.

Second proof. Let U : LA(S', V) — L2 (R, V), Uf(x) = (x — i) ' f(x+i/x — i)
be the unitary induced by the Cayley transform. Let V': L*(R, V)
L*(R,V)® L*(R, V) be the unitary defined by Vf = (f;,/_), where § de-
notes the Fourier transform of g and fi(f) = e/f(%e'). Let W = VU :
L2(S", V) — LX(R, V) @ L*(R, V). If e,(0) =e™, it is easy to check that
Wey = (g+,9-) and We_; = (—g_,—g4) where g.(x)= m(i+1)er™/?
(1 _|_e:t2nx)*1

Clearly WQW* is the projection onto the first summand L*(R, V). Now
Un,U* = vay, where (v,f)(x) =e/2f(e'x); and Vo,V* = m(e;), where
es(t) = €' and m(es) is the corresponding multiplication operator (acting
diagonally). Hence Wu,W* = m(ea,). These operators generate a copy of
L=(R) on L*(IR), which by the corollary to Lemma 2 in section 12 equals its
own commutant on L?>(IR). On the other hand P commutes with u, and
End V, so that WPW* lies in the commutant of the m(ey)’s and End V.
Hence WPW* = <Z§Z§ Zzgzi) with a,b,c,d € L*(R). But Pey = ¢y and

Pe_; = 0. Transporting these equations by W, we get equations for a,b,c,d
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which can be solved to yield a(x)=(1+e*)"", b(x)=—c(x)=
ie™(1 4+ )" and d(x) = 2™ (1 + ¥™) .

These formulas show that WOW* and WPW* are in general position, so
(a) follows. (b) is clear, since L2(1, V)" = L2(I, V). To prove (c), note
that e=Q and f = (2P —1)Q(2P — 1), so that r = PQP@PLQPl and
I —r = PQ'P ® P-QP*. Remembering that ' and (I — r)" must be defined
using the complex structure i(2P — 1), we get (I —r)'r " = (I — 4)"47",
where 4 = POP @ P+Q+P+ = QPO ® O+ P+Q*. Hence WAW* = m(a) and

Wo'W* =m((1 —a)"a™™) = m(ezn,) = Wu,W*, so that 6" = u,. Finally ¢ =
(e = f)/2= (2P —I)(QP — PQ). Now W (QP — PO)W* = W(QPO*— O PQ)
W = m(()b) ’"E)b>> so that j= —i(2P —I)F; where WFiW* = (°, ). Now
UFU* = F', where (F'f)(x) = —f(—x), so that WFW* = VF'V* = (°]).
Hence F| = F, as required.

15. Haag-Araki duality and geometric modular theory
for fermions on the circle

Let H = L>(S') ® V with ¥ = €V and let P be the orthogonal projection onto
the Hardy space H2(S') ® V. Let np denote the corresponding irreducible
representation of Cliff(H) on fermionic Fock space % . For any interval
J CS', let M(J) C B(Zy) be the von Neumann algebra generated by the
operators np(a( f)) with f € L*(J, V). Our main result was obtained jointly
with Jones [19, 42]; it follows almost immediately from the previous sections.

Theorem. Let I denote the upper semicircle with complement I = S'\I.

(a) The vacuum vector Q is cyclic and separating for M(I).

(b) (Haag-Araki duality) M(I) is the graded commutant of M(I) and
JM(I)J = M(I)', where J is the modular conjugation with respect to Q.

(c) (Geometric modular group) Let I C S' be the upper semi-circle. The
modular group A" of M(I) with respect to the vacuum vector Q is implemented
by u,, where (u,f)(z) = (zsinh nt + cosh nt) ' f (z cosh it + sinh 7z /z sinh 77 +
coshnit) is the Mébius flow fixing the endpoints of 1. In particular A'mp
(a( £)A™ = mp(aluf)) for f € H.

(d) (Geometric modular conjugation) If x is the Klein transformation, then
the antiunitary kJ is implemenled by F, where Ff (z) =z f(z™") is the flip. In
particular Jrp(a( £))J = x ' np(a(Ff))x for f € H.

Remark. Analogous results hold when 7 is replaced by an arbitrary interval
J. This follows immediately by transport of structure using the canonically
quantised action of SU(1,1).

Proof. If Hp = PH @ P*H (H with multiplication by i given by i(2P — 1)),
then 7 = AHp and m,(a(f)) = a(Pf) + a(P+f)" on AHp for f € H. Hence
np(a(f) +a(f)") = c(Pf) +c(PLf) = c(f) for f € H. Now M(I) coincides
with the von Neumann algebra generated by np(a(f)+a(f)") for
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f € L*(1, V). It therefore may be identified with the von Neumann algebra
generated by the c(f) with f € K = L*(I, V), a closed real subspace of Hp.
From Section 13, the vacuum vector Q is cyclic for M(I) and
IM(I)J = M(I) = k"M (I°)x, since L2(I, V)" = L*(I°, V). From Section 14,
we see that A" is the canonical quantisation of u, and the antiunitary xJ is
the canonical quantisation of F. Finally the relations A”c( f)A™" = c(u,f)
and wJe(f)Jk~" = c(Ff) for f € Hp immediately imply that A"mp(a(f))
A" = mp(a(u,f)) and Jrp(a( f))J = k 'np(a(Ff))k for f € H.

16. Ergodicity of the modular group

Proposition. The action A(ut)®k of R on (AHp)™* is ergodic, i.e. has no fixed
vectors apart from multiples of the vacuum vector Q%F.

Proof. First note that the action u, of IR on L*(T) is unitarily equivalent to
the direct sum of two copies of the left regular representation. In fact the
unitary equivalence between L?>(T) and L?(IR) induced by the Cayley
transform Uf (x) = (x — i)' f(x +i/x — i) carries u, onto the scaling action
vy of R on L*(R), where (vyf)(x) = e/?f(e’x). For f € L*(R) define
fi € L*(R) by fi(t) = e*f(£e') and set W(f) = (fi,f). Thus W is an
unitary between L?(IR) and L?(R) @ L*(IR). This unitary carries the scaling
action of IR onto the direct sum of two copies of the regular representation.

Thus L[*(T) = L*(R) ®L*(R) as a representation of R. Now
H =L*(T,V) is a direct sum of copies of L*>(T). On the other hand
L2(R) = L*(R) (by conjugation), it follows that both H and H are sub-
representations of a direct sum of copies of L>(R). But Hp = PH & (I — P)H
is a subrepresentation of H @ H, so that Hp is unitarily equivalent to a
subrepresentation of L?(IR) ® C" for some 7.

Thus the action of R on (AHp)** = A(Hp @ €) is unitarily equivalent
to a subrepresentation of IR on AH, where H; = L*(R) ® €™ for some
m > 2. It therefore suffices to check that IR has no fixed vectors in )LkHl for
k > 1, since the action of R preserves degree.

Now *H; € H®*. On the other hand if ¢ +— n(¢) is any unitary repre-
sentation of R on H and A(¢) is the left regular representation on L?(IR),
then A® © and A ® [ are unitarily equivalent: the unitary V, defined by
Vf(x) = n(x)f(x) for f€L*(R,H)=L*(R)® H, gives an intertwiner. It
follows that H1®k is unitarily equivalent to a direct sum of copies of the left
regular representation. Hence A*H; is unitarily equivalent to a subrepre-
sentation of a direct sum of copies of the left regular representation. Since
the Fourier transform on L?>(R) transforms A(¢) into multiplication by
e,(x) = €™, no non-zero vectors in L?>(R) are fixed by 1. Hence there are no
non-zero vectors in },kHl fixed by R for £ > 1, as claimed.

Corollary. The modular group acts ergodically on the local algebra
M(I) = np(Cliff(L*(1,V)))", i.e. it fixes only the scalar operators. In partic-
ular M(I) must be a factor [in fact a type 111 factor].
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Proof. Suppose that x € M(I) is fixed by the modular group. Then xQ is
fixed by the modular group, so that xQ = /Q for 4 € C. Since Q is separating
for M(I), this forces x = Al. Since the modular group fixes the centre, M (/)
must be a factor.

17. Consequences of modular theory for local loop groups

Using only Haag-Araki duality for fermions and Takesaki devissage, we
establish several important properties of the von Neumann algebras
generated by local loop groups in positive energy representations. These
include Haag duality in the vacuum representation, local equivalence, the
fact that local algebras are factors and a crucial irreducibility property for
local loop groups. This irreducibility result will be deduced from a von
Neumann density result, itself a consequence of a generalisation of Haag
duality; it can also be deduced from a careful study of the topology on the
loop group induced by its positive energy representations.

Let L;G be the local loop group consisting of loops concentrated in 7,
i.e. loops equal to 1 off 7, and let .#;G be the corresponding subgroup of
ZG. We need to know in what sense these subgroups generate LG.

Covering lemma. If S' = |J|_, Ik, then LG is generated by the subgroups L;,G.

Proof. By the exponential lemma we just have to prove that every expo-
nential exp(X) lies in the group generated by L;,G. Let () C C*(S!) be a
smooth partition of the identity subordinate to (/;). Then X = >y, - X, so
that exp(X) = exp(y¥, - X) - - -exp(y,, - X) with exp(y;, - X) € L;,G.

Let n: LSU(N) — PU(Zy) be the basic representation of LSU(N), so
that n(g)np(a( £))n(g)" = np(a(g- f)) for £ € L*(S',V) and g € LSU(N).
Let m; be an irreducible positive energy representation of level £. Haag-Araki
duality and the fermionic construction of 7; imply that operators in 7;(L;G)
and 7;(L;-G), defined up to a phase, actually commute (“‘locality’):

Proposition (locality). For any positive energy representation m;, we have
mi(g)mi(h)mi(g) mi(h)" =1 for g € L1SU(N) and h € ¥ SU(N).

Proof. As above let M(I) C B(Z ) be the von Neumann algebra generated
by fermions a( f) with £ € L*>(I, V). Since n(g) commutes with M (I¢) and is
even, it must lie in M (/) by Haag-Araki duality. Similarly n(%) lies in M (7).
Since they are both even operators they must therefore commute. Clearly
this result holds also with 7% in place of 7 and passes to any subrepre-
sentation ; of n®.

The embeddmg of LSU ) in LSU(NY) gives a projective representation
IT on & where W = . Now Zj is can naturally be identified with
75" and under this 1dent1ﬁcat10n I = n®" Let M = np(Cliff(L*(1, W)))"
and let N = n%(%Z;SU(N))" = II(Z;SU(N))", so that N C M. The opera-
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tors u, and F lie in SUL(1,1) so are compatible with the central extension
G introduced in section 5. It follows immediately that NV is invariant under
the modular group of M. In order to identify NQ we need a preliminary
result.

Reeh-Schlieder theorem. Let © be an irreducible positive energy projective
representation of LG on Hand let v be a finite energy vector (i.e. an eigenvector
Sor rotations). Then the linear span of n(L;G)v is dense in H.

Proof (cf [32]). It suffices to show that if # € H satisfies (n(g)v,n) =0 for
all g € &G, then n = 0. We start by using the positive energy condition to
show that this identity holds for all g € LG. For z,...,z, € T and
g1y 9n € LG, where J CC I, consider F(zy,...,z,) =(R,n(g1) R,7n(g2)
-+ R, m(gn)v,n). This vanishes if all the z;’s are sufficiently close to 1. Now
freeze zy,...,z,_1. As a function of z,, the positive energy condition implies
that the function F extends to a continuous function on the closed unit disc,
holomorphic in the interior and vanishing on the unit circle near 1. By the
Schwarz reflection principle, F must vanish identically in z,. Now freeze all
values of z; except z,_1. The same argument shows that F vanishes for all
values of z,_;, and so on. After n steps, we see that F vanishes for all values
of z; on the unit circle. Thus (n(g)v,n) = 0 for all g in the group generated by
Z;G and its rotations, i.e. the whole group #G. Therefore, since n is
irreducible, n = 0 as required.

We may now apply Takesaki devissage with the following consequences.

Theorem A (factoriality). N = n%(%;G)", and hence each isomorphic
n(ZL1G)", is a factor.

Proof. By Takesaki devissage, N has ergodic modular group and therefore
must be a factor. If p; is a projection in 7n®(LG) C n%(¥;G)" corre-
sponding to the irreducible positive energy representation H;, then n;,(#;G)"
is isomorphic to n%(Z;G)"p; = N and is therefore also a factor.

Theorem B (local equivalence). For every positive energy representation ; of
level ¢, there is a unique *-isomorphism w; : 7o(%;G)" — n:(%;G)" sending
no(g)to mi(g) for all g € Z,G. If ¥ = Hom g,6(Ho, H;), then ZQ is dense in
H; and n;(a)T = Ta for all T € Zand a € no(L1G)". If X is a subspace of X
with ZoHy dense in H;, then m;(a) is the unique operator b € B(H;) such
bT =Ta for all T € X.

Proof. This is immediate from the proposition in Section 10, since ©y and
m; are subrepresentations of the factor representation n®‘® /. Since
X =21(¥;G) and Q is cyclic for ny(#;G), it follows that
2Q = 7H, = H,.

Remarks. Note that, if p;, p; are projections onto copies of H;, H; in Fy,
explicit intertwiners H; — H; are given by compressed fermi fields pya( f)p;
with f supported in 7¢; these are essentially the smeared vector primary
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fields that we study in Chapter IV. Theorem B is a weaker version of the
much stronger result that the restrictions of 7y and =; to ;G are unitarily
equivalent. This follows because 7%’ restricts to a type III factor represen-
tation of ¥;G (because the modular group is ergodic). Thus any non-zero
subrepresentations are unitarily equivalent. Local equivalence may also be
proved more directly using an argument of Borchers [6] to show that
the local algebras are “properly infinite” instead of type III (see [42] and
[43]).

Theorem C (Haag duality). If g is the vacuum representation at level /, then
10(Z1G)" = no(ZL1<G)'. The corresponding modular operators are geometric.
Analogous results hold when I is replaced by an arbitrary interval.

Remark. Locality leads immediately to the canonical so-called “‘Jones-
Wassermann” inclusion 7,(%;G)" C n;(#;G)" [19, 41]. This inclusion
measures the failure of Haag duality in non-vacuum representations.

Proof. By the Reeh-Schlieder theorem, the vacuum vector is cyclic for
mo(ZL;G)", and hence my(#;G)" (since it contains my(Z;-G)") . Let e be
the projection onto NQ. Then N — Ne, x — xe is an isomorphism. Clearly
Ne may be identified with 7o(Z;G)". Its commutant is JNJe, so mo(ZG)".
The identification of the modular operators is immediate. Now
SU(1,1) =8SU.(1,1) acts on the vacuum representation fixing the vacuum
vector and carries / onto any other interval of the circle. Since the modular
operators lie in SUL(1,1), the results for an arbitrary interval follow by
transport of structure.

Theorem D (generalised Haag duality). Let e be the projection onto the vac-
uum subrepresentation of n®'. Then np(ClLff(L>(I,W)))" N(Ce)" = n®’
(Z:G)". Moreover n%(£;G)" is the subalgebra of the “‘observable algebra™
7 (LG)" commuting with all fields np(a( f)) with f localised in I°.

Proof. The first assertion is just the second of the Jones relations N =
{x € M : ex = xe} and therefore a consequence of Takesaki devissage. To
prove the second, note that

n*(L1G)" C mp(CUER(LA (1, W)))" (7 (LG)" C mp(CHfF(L* (1, W)))"
()(Ce) = n*(£,G)".
Thus we obtain 7%(%;G)" = np(ClLff(L*(I, W)))" N 7®(LG)". But
np(CLff(L>(1,W)))" is equal to the graded commutant of

np(Cliff(L?(1¢, W))). Since all operators in 7%/(LG)" are even, it follows that
np(CLff(L2(1¢, W) N n®“(LG)" = n®(ZL;G)", as required.

Theorem E (von Neumann density). Let I} and I, be touching intervals ob-
tained by removing a point from the proper interval 1. Then if 7 is a positive
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energy representation of LG (not necessarily irreducible), we have
1(ZLLG)" V(LG = n(Z;G)" (“irrelevance of points™).

Proof. By local equivalence, there is an isomorphism 7 between mo(.%;G)"
and 7n(¥;G)" taking my(g) onto n(g) for g€ #;G. Thus = carries
(L, G)" V o(ZLL,G)" onto (L, G)" vV n(ZL,G)". It therefore suffices to
prove the result for the vacuum representation my. Let J; =/f and
Jy=1I5. Now for k=1,2 we have n%(%,G)" = np(Clff(L* (I, W)))’
N(Ce)". So

(% G)' N (L), G)'= mp(CLff (L (I, W))) N mp(CLEF(L? (I, W)))N(Ce)’
= p(Cliff(L* (1, W))) N (Ce)' = 1%L G)".

Here we have used Theorem C and the equality L*(I, W) = L*(I;, W)®
L>(I,W). Taking commutants, we get 7n%(%,G) Vv (Z,G) =
1% ZG)". Compressing by e, this yields mo(Z,G)'V mo(Z,G) = mo
(Z1G)". Using Haag duality in the vacuum representation to identify
these commutants, we get (%, G)"V no(ZLLG)" = m(Z;G)", as
required.

Theorem F (irreducibility). Let A be finite subset of S' and let L'G be the
subgroup of LG consisting of loops trivial to all orders at points of A. Let G
be the corresponding subgroup of £ G. If 7 is a positive energy representation
of LG (not necessarily irreducible), we have n(L*G)" = n(LG)". In particular
the irreducible positive energy representations of LG stay irreducible and
inequivalent when restricted to L'G.

Proof. Cleatly G = £, G- ---- Z; G, if S'"\4 is the disjoint union of the
consecutive intervals 11,. . ., I,. Let J; be the interval obtained by adding the
common endpoint to /; Ul (we set ,.; = I;). By von Neumann density,
(%G V(L G) =n(ZL;,G)". Hence n(£*G)" =\/n(Z£,G)". But
the subgroups £, G generate #G algebraically. Hence n(£1G)" =
n(£G)". Taking commutants, we get n(L?G) = n(LG). By Schur’s
lemma, this implies that the irreducible positive energy representations of
LG stay irreducible and inequivalent when restricted to L4G.

Remark. Direct proofs of Haag duality (Theorem C) have been discovered
since the announcement in [19] that do not use Takesaki devissage from
fermions. Theorems A, B and F can also be proved without using Takesaki
devissage. In fact Jones and I proved in [42] that the topology on G
induced by pulling back the strong operator topology on U(Z% p) makes
#1G dense in ZG. Since any level ¢ representation = is continuous for this
topology, it follows that n(#*G) is dense in n(.#G) in the strong operator
topology. So n(#4G)" = n(£G)" and Theorem F follows. The reader is
warned that several incorrect proofs of these results have appeared in
published articles.
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ITI. The basic ordinary differential equation
18. The basic ODE and the transport problem

Consider the ODE

if Pf . Of
PRl (1)

where f(z) takes values in ¥ = € and P,Q € End V. Suppose that P has
distinct eigenvalues A; with corresponding eigenvectors &;, none of which
differ by positive integers, and Q is a non-zero multiple of a rank one
idempotent in general position with respect to P. Thus Q%> = 6Q, Tr(Q) = ¢
with 6 # 0, so that Q(x) = ¢(x)v for v € V, ¢ € V* with ¢(v) = 0. “General
position” means that v = > 6;&; with J; # 0 for all i and ¢(&;) # 0 for all 7
the eigenvectors can therefore be normalised so that ¢(&)=1. Let
R = Q — P and suppose that R satisfies the same conditions as P with respect
to Q. Let ({;, —u;) be the normalised eigenvectors and eigenvalues of R. Let
filz) = Zéi’nzi’*" be the formal power series solutions of (1) expanded
about 0 with &,=2¢&. The fi(z)’s are defined and converge in

{z:]z) < 1,z¢ [0,1)}. If g(z) = f(z"), then

dg Rg Qg
dz  z +1—z

; (2)

so we can look for formal power series solutions /;(z) = 3 (;,z"~" of (1)
expanded about co with {;y = {;. The %;(z)’s are defined and converge in
{z:|z] > 1,z ¢ [1,00)}. The solutions f;(z) and #;(z) extend analytically to
single-valued holomorphic functions on €C\[0, o).

Problem. Compute the transport coefficients c;; for which fi(z) =3 ¢;jhj(z)
for z € C\[0, 00).

This problem will be solved by finding a rational canonical form for the
matrices P, Q,R which links the ODE with the generalised hypergeometric
equation, first studied by Thomae. It can be seen directly that the projected
solutions (1 — z)¢( fi(z)) can be represented by multiple Euler integrals. This
allows one coefficient of the transport matrix (c;;) to be computed when the
Zi’s and w;’s are real and 0 is negative. The rational canonical form shows
that the transport matrices are holomorphic functions of the 4;’s and p;’s
alone, symmetric in an obvious sense. So the computation of the ¢;;’s follows
by analytic continuation and symmetry from the particular solution:

Theorem. The coefficients of the transport matrix are given by the formula

cij = ein(i;*l‘/) Hk?éi r(ii _ Ak * 1) H/#j r('uj _ [uf) .
J [los T(A = g+ 1) Tl Tpy — )
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For applications it will be convenient to have a slightly generalised version
of this result. Let B be a matrix of the form —a/ + QO (f # 0) where Q is a
rank one idempotent. Let 4 be a matrix such that both 4 and B — 4 are in
general position with respect to O and have distinct eigenvalues not differing
by integers (so distinct). Around 0 the ODE

ar _Ar . Bf

dz  z l —z (3)
has a canonical basis of solutions fi(z) = &z% + &,z + ..., where
A& = A& and ¢(&) = Lif Q(€) = ¢(&)v. Similarly around oo, the ODE has
a canonical basis of solutions /;(z) = {;z! + C,-jlz""l +---  where

(4= B)(; = (i and ¢(;) =1

Corollary. In C\[0,00) we have fi(z) =) c;ihj(z), where

in(7i—11) [Tesi DA = 2+ 1) TTog; Twy — pe)
[Ioy T — pp + o+ 1) Ty (, Jp— o)

Cij=¢e

Proof. By a gauge transformation f(z) — (1 —z)"f(z), the ODE (3) is
changed into the ODE considered before. It is then trivial to check that
the transport relation for that ODE implies the stated transport relation
for (3).

19. Analytic transformation of the ODE (cf [17])

Consider the ODE f'(z) = A(t,2)f (z) where A(t,z) =Y, Ax(t)z""" with
each matrix 4,(¢) € End V' a polynomial (or holomorphic function) in
t € W =C" and A(t,z) is convergent in 0 < |z| < R for all t € C".

Proposition. Let U = {t € C" : Ay(t) has no eigenvalues differing by positive
integers}. For t € U, there is a unique gauge transformation ¢(t,z) € GL(V),
holomorphic on U x {z:|z| <R}, such that g(t,z) 'A(t,2)g(t,z)—
g(t,2) "' 0g(t,2) )0z = Ao (1) /=.

Proof. 1f we write g(t,2) = ), - gn(t)z" with go(t) = I, then the g,()’s are
given by the recurrence relation

ng,(¢t) = n(n —ad A4y(z) ZA 1) gn—m(
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Let B be a closed ball in U. Then sup, ||n(n — ad 4¢(r))""| is bounded by
M < oo on B. So ||g.(¢)|| is bounded on B by the solutions f, of the recur-
rence relation

n
nfn = mefn—ma
m=1

where b, = M sup, g |4, (¢)|| and ), ., b,z" is convergent in |z| < R. But
then f(z) =) ,¢/faz" is the formal power series solution of zf'(z) =

s ™) f(z) with  f(0) =1, ie. f'(z)=0b(z)f(z) where b(z) =
Zng bw+1z™. This has the unique solution f(z) = exp f; b(w)dw so that in
particular f(z) =Y f,z" is convergent in |z| < R. Since ||g,(?)| < fu, it
follows that 3 g,(7)z" converges uniformly on {(#,z) : ¢ € B, |z| < r} for any
r < R. Since ¢ — ¢,(t) is holomorphic in ¢, for fixed z, g(z, ¢) is the uniform
limit on compacta of holomorphic functions in ¢. Since the uniform limit on
compacta of holomorphic functions is holomorphic, it follows that
t — ¢(t,z) is holomorphic on U for fixed z.

To show that g(¢,z) is invertible for fixed ¢, note that d.g = Ag — gAo/z.
Replacing 4 by —4', we find f such that d,f = —f4 + Ayf/z. Hence
0:(fy) = [Ao, fg]/z. The only formal power series solution % of this equation
with 4(0) =1 is h = I. Hence fg = I as required.

Remarks. This argument applies also when 4¢(¢) = 0. Clearly we may apply
the proposition to the basic ODE. The argument with Ay(¢) = 0 near points
z # 0, 1 shows that the gauge transformation g(z) extends to a holomorphic
map C\[I,00) — GL(N,C) such that g(z)'4(2)g(z) — g(z) "¢ (z) = 4o/=
for z ¢ [1,00). The gauge transformation reduces the basic ODE about 0 to
the ODE f”(z) = z~'4¢f (z) which has solutions z%v = exp (4 logz)v defined
in C\[0,00) say. Applying the gauge transformation, it follows that any
formal power series solution of the original ODE is automatically conver-
gent in |z| < | and extends to a single-valued holomorphic function on
C\[0, ).

20. Algebraic transformation of the ODE

Let P be a matrix with distinct eigenvalues /; and corresponding eigenvec-
tors v;. Let O be proportional to a rank one idempotent on V so that
O(x) = ¢p(x)v with ¢ € V*,v € V and ¢(v) = J # 0. We assume that P is in
general position with respect to Q. This means that the eigenvectors ¢&;
satisfy ¢(v;) # 0 and that v = > o;&; with o; # 0 for all i. The next result
gives a rational canonical form for the matrices P, O and R.

Proposition (Rational Canonical Form). If P has distinct eigenvalues and Q is
a non-zero multiple of a rank one idempotent in general position with respect to
P, there is a (non-orthonormal!) basis of V such that
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0 0 0 O 0
0 1
0 0 1
P = ) Q: ’
0 1
a ap ay bl bz bN
0o 1 0 0
0 0 1 0
0 0 0 1 0
—R=P-Q0= . e
0 1
C1 C2 CN

where by = Tr(Q) # 0 and ¢; = a; — b;. Conversely if P and Q are of the above
form and the roots of a(t) = ¥ — 3" a;t'~! (the characteristic polynomial of P)
are distinct, then P and Q are in general position iff b(t) = > bit—" and a(t)
have no common roots iff c(t) = a(t) — b(t) and a(t) have no common roots.
(Here c(t) is the characteristic polynomial of P — Q.)

Remark. This gives a unique canonical form for P,Q,R = Q — P with
equivalence given by conjugation by matrices in GL(N, C): for a(¢) and c(¢)
are the characteristic polynomials of P and P — Q, so that the constants a;, b;
are invariants (since b(¢) = a(t) — ¢(¢)). Moreover the orbit space of the
pairs (P,R) under the action by conjugation of GL(N,C) can naturally be
identified with the space of rational canonical forms.

Proof. Let Q(x) = ¢(x)v, with ¢(v) # 0. Since Q and P are in general posi-
tion, the elements ¢, po P,---, ¢ o PN~ form a basis of V*. In particular
there is a unique solution w of ¢(w) = p(Pw) =--- = H(PV?w) =0,
d(PV~'w) = 1. The set w,Pw,...,P""'w must be linearly independent,
because otherwise PY~!'w would have to be a linear combination of
w, Pw, ..., PN="2w contradicting ¢(PV~'w) = 1. Thus (P/w) is a basis of V.
Clearly P and Q have the stated form with respect to this basis. Furthermore
by = Tr(Q).

We next must check that if P and Q have the stated form, then no
eigenvector u # 0 of P can satisfy Qu =0 and no eigenvector  of P'
can satisfy QW =0. For 1, the condition QW =0 means that
W = (x1,%2,...,xv-1,0) with x; € €. The condition Py = Ay forces
X1 = Axp, X2 = Ax3, ..., xy—1 = 0. Hence x; =0 for all i and y = 0. Now
suppose that Pu= Au and Qu = 0. Then it is easily verified that u is
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proportional to (1,4,4%,...,/8""". Thus Qu = (0,0,...,0,h(1))", so that
Qu+#0 iff b(A)#0. Finally the characteristic polynomial of R is
c(t) = a(t) — b(¢t). Clearly a(z) and b(¢z) have no common roots iff ¢(¢) and
b(¢) have no common roots, so the last assertion follows.

21. Symmetry and analyticity properties of transport matrices

Proposition. The transport matrix c;; from 0 to oo of the basic ODE depends
only on the eigenvalues 4; of P and p; of P — Q. This dependence is holo-
morphic. Moreover the coefficients c;;, indexed by the eigenvalues ; and ;,
have the symmetry property c¢ij(A1, ..., AN 15 ly) = Coizj(Aals- -5 Aon,
Uels - -y loy) fOr a,T € Sy.

Proof. We can conjugate by a matrix in GL(N, C) so that P, Q and R are in
rational canonical form. The transport matrix from 0 to oo is invariantly
defined, so does not change under such a conjugation. Thus the assertions
are invariant under conjugation, so it suffices to prove them when P, Q,R
are in rational canonical form. Setting g(z) = f(z/(z — 1)), where f(z) is a
solution of the basic ODE, we get the ODE

dg _Pg Ry
dz  z + z—1 “)
where R = O — P. Thus we have to compute the transport matrices for (4)
from 0 to 1 where the solutions at 0 are labelled by the eigenvalues 4; of P
and at 1 by the eigenvalues of y; of —R. We shall consider variations of P, 0,
and R within rational canonical form. P and R can be specified by pre-
scribing the eigenvalues (4;) of P and (y;) of —R. This completely determines
the a;’s and ¢;’s and hence the b;’s. The /;’s and p;’s should be distinct and no
two 4;’s or y;’s should differ by a positive integer. We also impose the linear
constraint that ) A; — u; # 0. Thus we obtain an open path-connected
subset Uy of the 2N-dimensional linear space W = {(4, u)} = €>". Applying
the proposition in section 19 with 7= (4, u) €W and A(t,z) =
z'P+ (z—1)"'R, we deduce that the gauge transformations g(z,z), h(t,z)
transforming A(¢,z) into z"'P and (z — 1)_]R respectively depend holo-
morphically on ¢ € U for a fixed z € (0, 1). We already saw in section 20 that
the normalised eigenvectors of P and R are given by

&t) = b(2) 7 (L 2, 2N G0 = bl) ™ (L))"
Thus the normalised solutions at 0 are z%g(t,z)&(f) and the normalised

solutions at 1 are given by (z — 1)"A(t,z){;(t). So the transport matrix c;;(r)
(independent of z) is specified by the equation

ZCU (z—1)"h(t,2){;(2)
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for [z — 1/2| < 1/2. Fix such a value of z (say z = 1/2) and let (i/,(¢)) be the
dual basis to ({;(¢)). Clearly ,(¢) is a rational function of (4, ) so is
holomorphic on U. Moreover

cy(t) = (z = D2 (Y, (0, h(1,2) " g(1,2)&i(1).

This equation shows that ¢;;(z) depends holomorphically on ¢ € Uy and has
the stated symmetry properties.

22. Projected power series solutions

Let 2= 4; be an eigenvalue of P and consider the corresponding (formal)
power series solution fi(z) = 3 ¢&;,z%*" of the basic ODE. Dropping the
index i for clarity, we have

2f'(Q) =Pf+ 0+ +2 +--)f,

with f(z) = 3_ &,z and P&, = A&,. Substituting in the formal power series
and dividing out by z*, we get

S+ 6 =3 PES 02+ )Y 6

n>0 n>0 n>0

Thus for n > 1 we get
(n+/1_P)én:Q(éO++én71)

and hence

0%, =0(m+i—P) Q&+ + & ).

Let O(& + -+ &,) = v, where o, € €. Thus we obtain the recurrence
relation o, — 0,1 = x(4 + n)a,, so that o, = yp(4 + n)o,—1, where the ra-
tional function yp(¢) is defined by O + O(d —P)le = yp(t)Q. Thus, rein-
troducing the index i, we have

Xin = %0 H XP(li + m)a (5)

m=1

where o;0 = ¢(&;). We now must compute yp(f). Bearing in mind that
equation (2) gives the corresponding power series expansions about oo, we

define y,(t) by O+ O(tl — R) ™' Q = 1x(1)Q.

Inversion lemma. y,(1) = yp(—1)"".
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Proof. Let A be an invertible matrix with Q47'Q = (1 — «)Q, where
o # 0. Expanding (4 — Q) ' = (I —47'0)"'47", we find that Q4 — Q)"
0= («' —1)Q. Hence

Q= 0+0(~R)'0=0+0(+P-0)'0=1"0,

if Ot +P) Q= (1-2)0. But Qt+P) '0=—-0(~t—=P) ' 0=(1—1p
(—1))0, so that o = yp(—t) and hence yz(¢t) = o' = yp(—1)"" as required.

Corollary. y,(t) = [[(t — 1;)/ [1(t — 4;) where the y;’s are the eigenvalues of
P—0.

Proof. Xp(t) has the form p(¢)/ [[(¢ — A;), where p(¢) is a monic polynomial
of degree N. Similarly Xz (¢) has the form q(¢)/ [](¢ + ;) where the y,’s are
the eigenvalues of —R =P — Q. Since Xz(t) =Xp(—t)"', we see that
p(t) =11 — w,;) and g(¢) = [[(t + 4:), as required.

Corollary. > 4 — > u; = 9.

Proof. This follows by taking the trace of the identity P+ R = Q.

From (5) and the formula for yp(¢), we have for n > 1

where ;90 = ¢(&)).

23. Euler-Thomae integral representation of projected solutions (cf [38, 47])

We assume here that the eigenvalues A; of P are real with 4; > Ay > -+ > Ay;
that the eigenvalues y; of P — Q are real with p; > pt, > --- > uy; and that
21+ 1> p; >/ for all j. In particular this implies that 6 = Tr(Q) must be
negative. We start by obtaining an integral representation of the projected
solutions (1 —z)¢( fi(z)) around 0. Recalling that the eigenvectors & and (;
of P and P—Q are normalised so that ¢(&)=1=¢((;), where
0(x) = ¢(x)v = ¢(x)n, we have already shown that

m+ A
(1ot = Yowe = S T[T

n>0 n>0 j=1m=

Using the formula (a), = a(a+1)---(a+n—1)=T(a+n)/T(a), we get

PR P _ ,U]+1 ,Uj+l’l+1) ()L,l_)vj+1)
S ¢(f1(z))—n20 Hr S A0 a =2+t 1)
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Using the beta function identity I'(a)T['(b)/T'(a + b) = fol V(1 — 0)""d for
a,b > 0, we obtain

¢(f1(2)) =(1 Z)ZMK/OI/ol “'/01(1 — 2ty ty) A

(6)
e g
[I4 " a -y " ay,
J#1
where
—A+1)
K = J .
e = v ire )

(The inequalities y; > 4; and 4; — w; > —1 guarantee that this summation by
integrals is valid.) Note that this Euler type integral representation is also
valid for z real and negative, since it is analytic in z where defined.
The solutions about oo have a Laurent expansion (for [z| large)

gi(z) = {21 + {1249 '+ ... where {; are the eigenvectors of P—Q
w1th (P —Q){; = w;{;. Hence the prOJected solution ¢(g;(z)) satisfies
$(g;(2)) ~ ({;,n)z" because of the normalisation ¢({;) = 1. In particular if x
is large and negative ¢(g;(x)) ~ |x[*/e™. Let ¢;; be the transport matrix
connecting the solutions at 0 and oo, so that fi(z) = ) ¢1;g,(z). Since Q and
P are in general position, we lose no information by writing the above
equation as ¢( fi(z)) = >_c1;¢(g;(z)). Since , is the largest of the u,’s, we
find that for x large and negative,

G(f1(x)) ~ enlxlre™. (7)

On the other hand by (6) we have for x << 0

o)~ K T [ 7 gt @

J#i

Comparing (7) and (8), we obtain

) H]H ,u/l
cin = '”‘KH/ (=) dy

J#1

— Ko H I — ﬂj)r(ﬂj —7) .
£l (p — )~j>

Substituting in the value of K, we get the fundamental formula:

\—) + DI ( — 1)
en = Hr T =) ®)

J#1
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24. Computation of transport matrices

Theorem. The transport matrix c;; from the solutions at 0 to the solutions at oo
of the basic ODE is given by

hi- 1) [Tesi DA = 2+ 1) TToy Ty — pe) .
[loy T — g + 1) Tl Tpy — )

C,‘j = e’”(

Proof. We obtained this formula in section 23 for ¢y when /4;, u; took on
special values. On the other hand ¢;; and the right hand side are analytic
functions of /;, ;. The special values sweep out an open subset of the real
part of the parameter space Uy, so by analytic continuation we must have
equality for all parameters in Uy. The formula for ¢;; now follows imme-
diately from the symmetry property of the ¢;;’s.

IV. Vector and dual vector primary fields
25. Existence and uniqueness of vector and dual vector primary fields

Let V be an irreducible representation of SU(N). Then ¥~ = C*(S', V) has
an action of LGx Rot S' with LG acting by multiplication and Rot S' by
rotation, rf(0) = f(6 + o). There is corresponding infinitesimal action of
L% R which leaves invariant the finite energy subspace 7 "°. We may write
7" =3"9"(n) where ¥ (n)=z"®V. Set v,=z"v for v€ V. Thus
dv, = —nv, (so that d = —id/d0) and X,v, = (Xv),,,,. Let H; and H; be
irreducible positive energy representations at level (. A map
¢: 7@ H? — H® commuting with the action of Lgx Rot S' is called a
primary field with charge V. For v € V we define ¢(v,n) = ¢(v,) : H® — H/(.’:
these are called the modes of ¢. The intertwining property of ¢ is expressed
in terms of the modes through the commutation relations:

[X(n)v qS(v,m)] = ¢(X “v,m+ I’l), [Da d)(va m)] = _m¢(vv m)

Uniqueness Theorem. If ¢ : 7 @ HY — H is a primary field, then ¢ restricts
to a G-invariant map ¢, of 7°(0) @ H;(0) = V ® H;(0) into H;(0). Moreover ¢
is uniquely determined by ¢, the initial term of ¢.

Proof. ¥°(0) @ H;(0) is fixed by Rot S! and hence so is its image under ¢. It
therefore must lie in H;(0). Since ¢ is G-equivariant (or equivalently
g-equivariant), the restriction of ¢ is G-equivariant. To prove uniqueness,
we must show that if the initial term ¢, vanishes then so too does ¢. It
clearly suffices to show that (¢(£® f),n) =0 for all ¢ € H](.), /e and
n € HY. By assumption this is true for ¢ € H;(0), v € 7°(0) and n € H;(0). By
Rot SL—invariance, this is also true if v € ¥"(n) for n # 0 and hence for any
ve Y.
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Now we assume by induction on n that (¢p(a,a,—1---a;é®v),n) =0
whenever ¢ € H;(0), n € H;(0), v € 7% and a = Xi(my) with my < 0. Then

(¢(an+lan aré® 0)7’7) = - (d)(an cearé ®a,,+11)),1’[)
+ (¢(an eaé® U)va2+177)7

and both terms vanish, the first by induction and the second because
a:’,Hn :XnJrl(anrl)*’/l = _Xn+l(_mn+l)7/ =0.

Finally we prove by induction on n that (¢(E®v),b,---by) =0 for all
EeHY, ve v ne Hy(0)and by = X;(my) with m; < 0. In fact

(€@ V), busiby -+ bin) = (¢(b, @ v+ b, ), by bin),
which vanishes by induction.

Adjoints of primary fields. Let ¢(v,n) : H) — H} be a primary field of charge
V. Thus ¢(v,n) takes H;(m) into H;(m—n) and satisfies
[X(m),p(v,n)] = ¢(X - v,n+m), [D, p(v,n)] = —n¢(v,n). Hence the adjoint
operator ¢(v,n)" carries H;(m) into H;(m+n). Let y(v*,n) = ¢(v,—n)"
where v* € V* is defined using the inner product: v*(w) = (w,v). Thus
¥(v*,n) : Hi(m) — Hy(m — n), so that y(v*,n) takes H; into H}. Taking
adjoints in the above equation, we get [D,y(v*,n)] = —ny(v*,n) and
[X (m),y(v*,n)] = (X - v*,n+m). Thus ¥(v*,z) is a primary field of charge
V* called the adjoint of ¢(v,z). Note that the initial terms of  and ¢ are
related by the simple formula (v*,0) = ¢(v,0)". Moreover for §€HJQ,

n € HY we have (¢(v,n)&,n) = (& (", —n)n).

Fermionic initial terms. Let V =V =C" and W =V ® C’. The irre-
ducible summands of AW = (AV)®" are precisely the permissible lowest
energy spaces at level /. Note that AW can naturally be identified with the
lowest energy subspace of # p = %Z.

Lemma. Each non-zero intertwiner T € Homg (Vg ® Vy, V,) arises by taking
the composition of the exterior multiplication map S : W @ A(W) — A(W)
with projections onto irreducible summands of the three factors, i.e.

T= PgS(PE\ ®Pf)-

Proof. Let er = e?fl*]z ® (el /\ez)ééfzﬁ'k R ® (el Ao A eN71)®ﬁV 1=/v
QI®=/i+/v be the highest weight vector for a copy of ¥ in (AV)*". Let
gi = fi if i # k and g; = f; + 1 so that g is a permissible signature obtained
by adding one box to f. Clearly the corresponding highest weight vector e,
is obtained by exterior multiplication by e¢; in the f; — f; copy of AV in
(AV)®. Let S : W @ A(W) — A(W) be the map w®x — wAx. Let pg be
the projection onto the f; — f; copyof Vin W =V ® €. Then, up to a sign,
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Spn @ 1) : V& (AV)® — (AV)®" is the operation of exterior multiplica-
tion by elements of V' on the f; — f; copy of AV. Let p,, p, be the projections
onto the irreducible modules ¥y, ¥, generated by e, and e, Then
T =pyS(po ®@pr) : V& Vy — V, satisfies T(ex ® ey) = fe,. Hence T is non-
zero. Since S and the three projections are SU(N)-equivariant, it follows that
T is also, as required.

Construction of all vector primary fields. Any SU(N)-intertwiner
$(0) : Vg ® H;(0) — H;(0) is the initial term of a vector primary field. All
vector primary fields arise as compressions of fermions so satisfy

lp(NI < Alfll, for feC(S' V). The map [+ ¢(f) extends
continuously to L*(S',V) and satisfies the global covariance relation

m(9)p(f)mi(g)" = ¢(g- f) for g € #Gx Rot S'.

Proof. By the result on initial terms, it is possible to find an SU(N)-equi-
variant map ¥ — W, v+— 7 and projections p; and p; onto SU(N)-sub-
modules of AW isomorphic to ¥; and V; such that pa(to)p; : V; — V; is the
given initial term. But J; and V; generate LG modules H; and H; with
corresponding projections P and P;. The required primary ﬁeld is
¢,;(v,n) = Pa(v,)P; which clearly has all the stated properties.

Dual vector primary fields. Since the adjoint of a vector primary field is a
dual vector primary field, we immediately deduce the following result.

Theorem. Any SU(N)-intertwiner ¢(0) : V5 ® H;(0) — H;(0) is the initial
term of a dual vector primary field. All vector dual primary fields arise
as compressions of adjoints of fermions so satisfy ||¢(f)|| < A|f|, for
f e (s, Vs). The map f — ¢(f) extends continuously to L* (S, V5)
and satisfies the global covariance relation 7;(g)p(f)mi(g)" = ¢p(g - f) for
g€ £Gx Rot §'.

26. Transport equations for four-point functions and braiding of primary fields

We now establish the braiding properties of primary fields. We divide the
circle up into two complementary open intervals 7, /¢ with I/ the upper
semicircle, /¢ the lower semicircle say. Let f,g be test functions with f
supported in / and ¢ in /¢, so that f € C2°(/) and g € C°(I°). In general the
braiding relations for primary fields will have the following form

(” f) (pbk, v,9) chh¢,h (v = 'g)(b/ll.]/'(”ve*mh 1)

where the braiding matrix (cy;) and the phase corrections ;, also depend on
i, k, h and j. For f € C>(S'\{1}), the expression e,/ is defined (unambigu-
ously) by cutting the circle at 1, so that e, - f(e?) = £ () for 0 € (0,2n).
To prove the braiding relation we introduce the formal power series
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=Y (D )y (0, =m)E,n), Gulz) =Y 2 (b (v, m) by, —m)E, ),

n>0 n>0

where ¢ and 5 range over lowest energy vectors. These power series are called
(reduced) four-point functions and take values in Homg(U ® V ® V}, V;).
Since the modes (l)g(n) and (bIZ(n) are uniformly bounded in norm, they
define holomorphic functions for |z| < 1. We start by showing how the
matrix coefficients of products of primary fields can be recovered from four-
point functions.

Proposition 1. Let Fi(z) = 3_,( Y(u, n)q’)kj( ) )z = ZFZ" conver-
gent inlz| < 1. If f € C=(I), gECOO(IC)andf( 0 = f(e™), then

c

2n ) )
@006 =lims [ Frgle ") ao,

Proof. If f(z) =5 f,2" and ¢(z) = g,z", then

(5 (1) bp (v, 9)E ) =D fug-n(bit (u,m) 1 (v, —n)E, )
n>0
2n

1 0
= er1 E f*g( )Fk(re ) db.

Corollary. Suppose that f € C*(I), g € C(I¢) and suppose further that Fi(z)
extends to a continuous function on S'\{1}. Then

21—

@ n)shwnen =5 [ Frale e @

+

Proof. The assumptions on f and g imply that the support of f % g(e?) is
contained in [J, 27 — J] for some & > 0, so the result follows.

The next result explains how to translate from transport equations for
four point functions to braiding relations for smeared primary fields. It is
the analogue of the Bargmann-Hall-Wightman theorem in axiomatic
quantum field theory [20, 36].

Proposition 2. Suppose that U and V are the vector representation or its dual.
Let

Filz) = Y (i (w,m) by (v, —m)Em)Z", Gil(2) = D (i (v, m) by (u, —n)E,m)2",

where & and ) are lowest energy vectors. If Fi(z), Gy(z™1) extend to continuous
functions on S'\{1} with
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Fi(e”) = chheiﬂkheGh (™),
where y, € R, then for f € C(0,n), g € CX(n,,2n) we have
(D5 (u, 1)y, 9)Em) = > eun(P (v, €, - 9) iy (s ey, - 1)E,M),
where e, (") = e for 0 € (0,2m).
Proof. For 0 € (0,2n) we have F(e") = 3" cipe™’Gy(e™"). Substituting in

the equation of the corollary and changing variables from 0 to 27 — 0, we
obtain

( (u f)d)k] v g 57 chh / - 2i#kh7le—iﬂk/,0’gv*f(ei{))Gk(eiO) de.

It can be checked directly that e_, - (gxf) = e *mte,g* (e—u f) (the
corresponding identity is trivial for point measures supported in (0,7) and
(m,2n) and follows in general by weak continuity); this implies the braiding
relation.

A standard argument with lowering and raising operators allows us to
extend this braiding relation to arbitrary finite energy vectors & and 5 and
hence arbitrary vectors.

Proposition 3. If

(qbzk(u f)¢kj v,9)¢ chh ih (v, Cr )qb}lzjj(u?e—ﬂkh &),

for & n lowest energy vectors, then the relation holds for all vectors &, n.

Proof. By bilinearity and continuity, it will suffice to prove the braiding
relation for finite energy vectors ¢&,x. Suppose that 5 is a lowest energy
vector. We start by proving that the braiding relations holds for &, by
induction on the energy of £. When & has lowest energy, the relation is true
by assumption. Now suppose that the relation holds for &;,#. Let us prove it
for &, n where ¢ = X(—n)¢&,, where n > 0. Then
( %(”,f)(lslg(”,g)f;ﬂ) = ( f,i(u,f)d),g(v,g)X(—n)él,n)
= _( %(u,f)¢]{;(Xl), [ g)é] ) 77) - ( [lli(Xuvefn f)¢]lc/j(va g)'fl ) 77)

= - Z Ckh((b;;, (XU7 e,ukhe—ng)(t)}%(ua e—,ukhf)éla 1/])
h
- Z ck/’l(d)il;l (U7 ellkhg)d)llljj(u? e_,ukhe_nf)él ’ 17)
h
= Z Ckh(¢5z(v7 eﬂkl,g)¢llz§(u7 e—,u/d,f)é’ ’7)
h
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This proves the braiding relation for all ¢ and all lowest energy vectors . A
similar inductive argument shows the braiding relation holds for all ¢ and all 5.

Corollary 1. If f and g are supported in S'\{1} and the support of g is
anticlockwise after the support of f, then

i (u, f)ﬂbk, v, 9) chh(pblh Us €y, g)d’h,(” ey f)-

Proof. This result follows immediately from the proposition, using a partition
of unity and rotating if necessary so that neither the support of f nor g pass 1.

Corollary 2. If f and g are supported in S'\{1} and the support of g is
anticlockwise after the support of f, then

(” f)¢k] v g dehd)zh Us €y, g)d)hj(” €—pu, f)?

where di, = > cpy.

Proof. This follows by applying a rotation of 180° in the proposition and
then repeating the reasoning in the proof of corollary 1.

27. Sugawara’s formula

Let H be a positive energy irreducible representation at level ¢ and let (X;) be
an orthonormal basis of g. Let Ly be the operator defined on H° by

Ly = NM( Zz (@—ZZ)@(—n)Xi(n))-

n>0 i

Then Ly =D+ A/2(N + £) if — >, X:(0)X;(0) acts on H(0) as multiplication
by A.

Remark. Note that the operator C = — Y " X;.X; = Y EjE; — (3 E;)* /N acts
in Vy as the constant

& =[S+ rv =24 n] = (X 5) /¥

In particular, for the adjoint representation on g (fi=1, f,=/3
=-..=fy_1 =0, fy = —1) we have A = 2N.

Proof (cf [30]). Since ), X;(a)X;(b) is independent of the orthonormal
basis (X;), it commutes with G and hence each X(0) for X € g. Thus
S, X (@)X (b) + Xi(a)[X, Xi](b) = 0 for all a,b. If 4 =73,1X,(0)X;(0) +
> n0Xi(—n)X;(n), then using the above relation we get
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X (1),4] = Nex(1 Z Xi(0) + X:(0)[x, X](1))

+ZX7Xi— 1)Xi(n) + Xi(—n)[X, Xi](n + 1)

:NZX(I)—i-%Z[[X,XJ(l),X( )] = Nex(1 22 X, X,

1

since ([X,X;],X;) = 0 by invariance of (-,-). Hence [X(1),4] = (N + £)X (1),
since — ) ;ad (X; :)> = 2N. Now formally X(1)* = —X(—1) and 4* = 4, so
taking adjoints we get [X(—1),4] = —(N + £)X(—1), so that (N +{)D+ 4
commutes with all X(£1)’s. Since [g, g] = g, these generate L g, and hence
(N +£)D+ A = Al for some 4 € C. Evaluating on H(0), we get A = —A/2.

28. The Knizhnik-Zamolodchikov ODE (cf [23])

Let ¢(a,n) :HJQ — HY) and ¢(b,m):H} — H® be primary fields of
charges V5 and V; respectively. Let a,, be the matrix coefficient a,, =
(¢(v2,n)p(vs, m)vs,v1), where V4 = H;(0) and Vi = H;(0). Since Dvg =0
= Dv; and [D, ¢(v2,n)] = —n¢(va,n), [D, p(v3,m)] = —m¢(vs3, m), it follows
immediately that a, ,, = 0 unless n + m = 0. Moreover ¢(a,m)v =0if n > 0,
so that a,, =0 if m > 0. We define four commuting actions of SU(N) on
Hom(V; © V3 ® V4, 1) by mi(9)T = gT, m(g)T = T(g™' @ I @1), n3(9)T =
TI®g'®I)and ny(9)T =TI ®1® g~"'). Thus m(9)ma(g) m3(g)na(9)T =
T if T is G-equivariant.

Now let (X;) be an orthonormal basis of g and define operators Q;; on
W = Hom(;(Vz RV Vy, V]) as — Eni(Xk)nj(Xk). Thus Qij = jS. More-
over, if i,j,k are distinct, then Q;; +Qu +Qu =h on W, where & is a
constant. In fact, if m is the missing index,

0 + Qs+ O = — 3 [ S(m) + 106) + (X)) — X,

- ”«i(Xp)z - nk(Xp)2 ®1
_ _% (S + A+ Ay +

=(An—A—A —Ap)/2,
since g acts trivially on W.

Theorem. The formal power series f(v,z) =, -o(p(v2,n)p(v3, —n)va, v1)2",
taking values in W, satisfies the Knizhnik-Zamolodchikov ODE

af (934 — (A — A3 —Ay)/2 Qo3

W+0% dz z +z— 1)/’(2)
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Proof. This is proved by inserting D in the 4-point function f(z) and
comparing it with the Sugawara formula D =Ly —h. In fact zf'(z) =

2 on>0(@(v2,n)DP(v3, —n)vg, v1)z",  since D, dp(v,m)] = —mp(v,m)  and
Duvy = 0. Now on HY we have D= Loy — h where h = A;/2(N + ), so that

1) =~ fE) =N+ Y [T (@lon MmXim) s, ~m 1)
n>0,4 ~m>0
+ 3 (02, MO O)p(es, ~n)us, 1)

Now [X(I/l), 4)(”; m)] = ¢(X U, n A+ m)’ so that d)(UZv n))(l(m) = )(i(m)d)(l)z, n)
—¢pX;-v2,n+m) and  Xi(m)p(vs,n) = d(v3,n)X;(m) + G(X; - v3,n + m).
Substituting in these expressions, we get

') = —h-f@)+ N+ ((XKiva,n — m)p(Xyvs, —n + m)va, v1)2"

n<0,im>0

— QN +0)" D ((Xi(0) (02, 1) — (Xivz, m)) (¢ (v3, —m)X;(0)

n>0,i

+ ¢(Xivs, —n))vg, v))Z"

_ 1 1
=(N+0) (=AM )2 - 53 i =5 Q3+ Qs + Qua + 24))/ (2)

=(N+0) " Qs —%(Ak — A3 — Ay) + Qs ﬁ)f(z)-

29. Braiding relations between vector and dual vector primary fields

Consider the four-point functions Fi(z) = Zn>0(q’>U( )(j)k/(v n)é, n)z"
and Gy (z ) En>0(¢V( )q’)hj(u n)&,n)z", where the charges U and V are
either €V or its dual. Thus any V; appears with multiplicity one in the tensor
product V' ® V; or U ® V}, and all but possibly one of these summands will
be permissible at level é.

Proposition. (a) fj(z) = z*F;(z) satisfies the KZ ODE

df  Q, Qo
= /() —/0),

(N+0)—=

where Jx = (Ax — Ay — A;)/2(N +0) is the eigenvalue of (N + 0!
corresponding to the summand V, C V ® V.

(b) gi(z) = 2 Gy(z71) satisfies the same ODE, where p,=(A; — A, — Ay)/
2(N 4+ £) is the eigenvalue of (N + 8)71(ij +Q,,) corresponding to the
summand Vy, C U ® V.
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Proof. (a) Since

=Y () = 3 ) () 4 g 3 ()
iy )

(N+0)7'Q, acts as the scalar 2 = (Ay —A, —A;)/2(N+£) on the
subspace V;, C V ® V. Thus the result follows from the previous section.

(b) Similarly v, = A, — A, — A;)/2(N + £) eigenvalue of (N +¢6)7'Q,
corresponding to the summand 7, of U®V,. Let u= (A — A, —Ay—

Aj)/2(N +0). It is easy to verify that A(z) = z““’h Gu(z7") satisfies the same
ODE, since (N + £) " (Q, + Q,;+ Q) = pon Homg(U @V QV;, V). Here
Wy =p—vp= (A —A,—Ay)/2(N+£) is the eigenvalue of (N +07!
(Quj + Q) corresponding to the summand ¥, C U ® V;.

Thus the solutions f;(z) form part of a complete set of solutions about 0 of
the KZ ODE; and the solutions g, (z) form part of a solution set about oo of
the same ODE. They may only form part, because one of the summands V}, or
Vi, and hence eigenvalues A; or f,, might correspond to a representation not
permissible at level /; there can be at most one such summand. Let f;(z) and
gn(z) denote the two complete sets of solutions, regardless of whether the
eigenvalues A; or y, are permissible. They define holomorphic functions in
C\[0,0). Let ¢ be the transport matrix relating the solutions at 0 to the
solutions around oo, so that fi(z) = cimgn(z) for z € C\[0,00). Thus
Fk(z) = chhZ'“"”Gh(Zil), forz e (]:\[0, OO) where W = Wy, — A = (Al + A_,'—
Ay — Ar)/2(N + £). Whenever an Fj, or G, does not correspond to a product of
primary fields (because V; or V}, is not permissible at level ¢), we will find that
the corresponding transport coefficient ¢y, is zero. (This is not accidental. As
explained in [43], there is an algebraic boundary condition which picks out the
solutions that arise as four-point functions.) All the examples we will consider
will be those for which the theory of the previous chapter is applicable.

Theorem A (generalised hypergeometric braiding). Let F € L>(1,V) and
G € L*(J, V*)where I and J are intervals in S'\{1}with J anticlockwise after I.
Then

qS\ ( )(l)fq vahquh e.”fh )¢hq(e B )
with vy, # 0, 1f h > g and pg, = (20 — Ay — Ay) [2(N + ).

Proof. The KZ ODE reads
df  Qg,/(2) N Q/(2)

dz z z—1

(N +6)—

)

where f(z) takes values in W = Homg(Vg® Vg ®V,, V). Now the
eigenvalue of Q. corresponding to the trivial representation is
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(0—Ag —Ag)/2=N""—N and has multiplicity one, while that corre-
sponding to the adjoint representation is (Aaq — Ag — Ag)/2 =N~" with
multiplicity at most N — 1. Thus Q5 = N-!' = NQ, if Q is the rank one
projection in W corresponding to the trivial representation. So

NQ_ 1
N+/¢ NN +1¢)°

~(N+0)7'0 5=

Thus o = 1/N(N +¢) and f = N/(N + ¢) (in the notation of section 18).

We next check that 4 = (N + ﬂ)leﬁf and Q are in general position. In
fact if we identify W with Endg(V; ® V), then the inner product becomes
Tr(xy*). The identity operator [ is the generator of the range of Q with Q(x)
proportional to Tr(x). The eigenvectors of 4 are just given by the orthogonal
projections e, onto the irreducible summands ¥, of V, ® V5. Since
Tr(ey) > 0, it follows that 4 and Q are in general position.

The eigenvalues of 4 are given by Ar = (Ay — A5 — Ay)/2(N + £), so that
|2p — 251 = |Ar — Ay |/2(N + £). This has the form |g; — g; — i + j|/(N + £)
for i £, if f and f; are obtained by removing boxes from the ith
and jth rows of g. Since g; + N — i is strictly increasing and ¢, — gy < ¥,
the maximum possible difference is |gy —gi — N+ 1]|/(N+ ) =
1-(N+0)7"<1. Hence 0< |2p —2nl <1 if  f#fi. Similarly
ty = (Ag — A — Ag)/2(N + £) and the difference |w, — p, | has the form
lgi —g; — i+ j|/(N + ¢) for i # j, if h and h; are obtained by adding boxes
to the ith and jth rows of g. Hence 0 < |y, — | < 1if h # hy.

Caveat. The indexing sets for the f;” and #;’s are distinct, even though they
have the same cardinality. This is easy to see if one draws f as a Young
diagram. The f;’s correspond to corners pointing north-west while the /4;’s
correspond to corners pointing south-east.

The anomaly g is given by the stated formula by our preamble, so it
only remains to check that permitted terms cg are non-zero and forbidden
terms zero. In fact the numerator is always non-zero because I'(x) # 0 for all
x ¢ —IN. Thus the only way ¢z, can vanish is if one of the arguments of T" in
the denominator [, I'(4 — gy + o+ 1) [, ; T(; — 4 — @) is a non-posi-
tive integer. Now pw, = (Ay— A, —Ag)/2(N+{) and Jy = (Ar — Ag
—A,)/2(N + £). Suppose that % is obtained by adding a box to the ith row of
g and f is obtained by removing a box from the jth row of g. Then
dr—tp=N+0"(gj—gi+1+i—j—N"). Thus

A=y +oa=N+0""g —g+1+i—)).

This has modulus less than 1 unless i = 1, j = N and ¢g; — gy = ¢, when it
gives —1. It is then easy to see that if f or 4 is non-permissible, the corre-
sponding coefficient vanishes and otherwise it is non-zero.

The next example of braiding could have been done using the classical
theory of the hypergeometric function [17, 47]; however, since the equation
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is in matrix form and some knowledge of Young’s orthogonal form is re-
quired to translate this matrix equation into the hypergeometric equation, it
is much simpler to use the matrix and eigenvalue techniques.

Theorem B (hypergeometric braiding). Let F € L*(1,V) and G € L*(J,V)
where I and J are intervals in S'\{1} with J anticlockwise after I. Then
(:b}ll:(‘;(F)qS(%“(G) = Z:uggl (]5}5‘;] (eotygl G)(l’)Ef(e,%gl F) With :uggl 7é 0) Up h > g7
g1 > [ and ogg, = (Ap+ Ay — Ay — Ay, ) /2(N + £).

Proof. In this case W = Homg(Vg ® Vo ® V7, V) has dimension 2. The
eigenvalues of (N + é)flﬁm correspond to the summands V. and
Vi We have Ay = (A —2A0)/2(N+ €)= (N —1)/N(N + ¢) and Ag =
(AH —2A0)/2(N +¢) = (—N —1)/N(N +¢). If Q is the projection corre-
sponding to " and O —al = —(N +0)"'Q,, then f=2/N(N +¢) and
o= (N-1)/N(N+¥).

We have Z, = (&, —A; —Ap)/2(N+0) and u, = (A, — A, — Ap)/
2(N+0). Thus |dg—Ag | = |y — py,| = [Ag = Ag |[/2(IN +0) = |fi —i—
fi+Jjl/ (N+¢),if g and g, are obtained by adding boxes to f in the ith and
Jth rows. As above, it follows that |1, — 4y, | = \,uq — | < 1.

We next check that the operators 4 = (N +¢)” Qs and Q are in general
position. The operator Q. is a linear combination of the identity operator
id and o, where ¢(7T) = T(S ® I) and S is the flip on V5 ® V5. The operators
T; in W which diagonalise Qp, are obtained by composing intertwiners
Vo ® Vy — V,, and Vg ® V,, — V. These intertwiners are specified by their
action on vectors e; ® v where (e;) is a basis of V7 and v is a highest weight
vector. If g; and g, are obtained by adding boxes to f in rows i and j with
i, ], it is easy to see that 7>(e; ® e; ® vy) is a non-zero highest weight vector in
Vi while o(T2)(e; ® e; @ vy) = Ta(e; ® ¢; @ vr) = 0. So T is not an eigen-
vector of ¢. This proves that 4 and Q are in general position.

The anomaly o, is as stated by our preamble, so it only remains to
check that permitted terms c,,, are non-zero and forbidden terms zero. As
above, a term can vanish iff one of the arguments in the denominator
(4 — py + o+ 1) (py — 2y — ) is a non-positive integer (where ¢
denotes the other diagram to g between f and h). Now 4, —p, =
(Ay+ Ay — Ay —Ay)/2(N +¢). Hence 1y, —p, =1/N(N+£), so that
dg—pg+o+1=1+(N+0"" and p,—4ij—o=—(N+¢". This
shows that, if g is permissible, none of the arguments is a non-positive
integer and hence that ¢y #0. On the other hand 24, —p, =
(fi—i—fi+J)/(N+£)+1/N(N +¢), if g is obtained by adding a box to
the ith row of f. Thus 4y —p,+a+1=14+(fi—i—fi+j+1)/(N+0),
which can never be a non-positive integer, while

py =ty —a=(fi—i—fi+j—1)/(N+0).
This has modulus less than 1 unless i =N, j =1 and f; — fy = ¥, when it
gives —1. This is the critical case where g is permissible (it is obtained by
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adding a box to the last row of f) while ¢’ is inadmissible (it is obtained by
adding a box to the first row of f). In this case therefore ¢,y = 0 while in all
other cases the coefficient is non-zero.

Theorem C (Abelian braiding). Let F € L*(1,V) and G € L*(I°,V*). Let
g # g1 be signatures, permivcible at level ¢, obtained by adding one box to f.

Then $L(F)$R (G) = edl(e,G)pf (e—yF) with & #0 and = (A, +
Ag = Ar = Ap)/2.

Proof. The corresponding ODE takes values in the one-dimensional space
Homg (Vo ® Vg ® Vj,, V) so ¢ must be non-zero and p is as stated by our
preamble.

Theorem D (Abelian braiding). Suppose that g is the unique signature such
that h > g > f, so that h is obtained either by adding two boxes in the same
row of f (symmetric case +) or in the same column (antisymmetric case —).
LetF € L*(I,V) and G € L*(J, V) where I and J are intervals in S'\{1} with J
anticlockwise after 1. Then there are non-zero constants o, # 0_ depending
only on the case such that

Dy ()7 (G) = 6.7 (e,G) e (e—oF)

with 64 #0 and o= (Ay+ Ay —2A,)/2. In fact 6. =e™= where
vs = (N — 1)/N(N +0).

Proof. We use the same reasoning as in the proof of Theorem C. The ODE
is now a scalar equation f’ = (A,z '+ vi(z — 1)"")f. The v, and v_ are the
eigenvalues of (N + 6)71953 corresponding to the summands V5 and
V5 respectively. So vy = (£N — 1)/N(N + ¢). The normalised solution near
0 of the ODE is z%(1 —z)" while near oo it is z™+(1 —z~!)"*. Taking
z = —x, with x real and positive, it follows immediately that the transport
coefficient is e™=.

Summary of braiding properties. If we__define a[ = qﬁDf(e_aF ) where
a=(A; — Ay —Aq)/2(N + ¢) and afg ¢D(ea *), then the adjoint relation
between these two primary fields implies that (a gf) = ag Incorporating the
anomalies e, into the smeared primary fields in this way, the braiding
properties established above for vector and dual vector primary fields may
be stated in the following form.

Theorem. Let (a;;), (bij) denote vector primary fields smeared in intervals I
and J in SI\{1} with J anticlockwise after I.

(@) agrby,r = > vabjyang, with vy # 0, if h > g,g1 > f.

(b) ayrbyn = - Rpibogaas with 1y 0 if h < fi < g.

(©) agrby s = by ang, with & # 0
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(d) angbyr = 6+bpgayr where 6 # 6_ are non-zero, with + if h is obtained
from [ by adding two boxes in the same row and — if they are in the same
column.

Note that (c) and (d) may be regarded as degenerate versions of (a) and
(b) respectively so may be combined. Rotating through 180° as before, or
taking adjoints and simply rewriting the above equations, we obtain our
final result. (For simplicity we have suppressed the resulting phase changes
in the coefficients.)

Corollary. Let (a;;), (bij) denote vector primary fields smeared in intervals I
and J in S'™\{1} with J anticlockwise after I.

(@) byrag, r =D viay,big, with vy # 0, if h > g, g1 > is permissible.

(b) bgf(lﬂ, = Zuﬁagflbf,h with Ky, #0ifh< fi<g.

(¢) byrag,y = eay bug, with & # 0.

(d) bpgagr = 0, angbyr with 6. # 6_ non-zero.

V. Connes fusion of positive energy representations

30. Definition and elementary properties of Connes fusion
for positive energy representations

In [42] and [43] we gave a fairly extensive treatment of Connes’ tensor
product operation on bimodules over von Neumann algebras. It was then
applied to define a fusion operation on positive energy representations of
ZG. Here we give a simplified direct treatment of fusion with more em-
phasis on loop groups than von Neumann algebras. Let X and Y be positive
energy representations of LG at level ¢. To define their fusion, we consider
intertwiners (or fields) x € # = Homg,.¢(Ho,X), ¥y € ¥ = Homg,g(Hp, Y)
instead of the vectors (or states) ¢ = xQ and n = yQ they create from the
vacuum. We define an inner product on the algebraic tensor product Z ® %
by the four-point formula (x; @ y1,x2 @ y2) = (x5 Q, Q).

Lemma. The four-point formula defines an ( pre-) inner product on ' @ %. The
Hilbert space completion H =X K Y naturally admits a continuous unitary
representation T of *'G = £1G - %G of level /.

Proof. If z=% 5@y e ®%, then (z,z)=> (x/xy»Q,Q). Now
xij=xix; lies in M = ng(ZrG) =ny(¥;G)". The operator X = (x;)
€ M,(M) is non-negative, so has the form X =A4*4 for some 4 = (a;))
€ M,(M). Similarly, if y; =yfy; € M', then Y = (y;) € M,(M’') can be
written Y = B*B for some B = (b;;) € M, (M"). Hence

2
(2.2) = 3 (@ayblbyQ0) = > H§ a,,,-bq,-QH > 0.
)2} i

Y2 RN}
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We next check that #;G - %G acts continuously on Z ® %, preserving the
inner product. The action of g - honx ® yis given by (g - 7)(x ® y) = gx ® hy.
It clearly preserves the inner product, so the group action passes to the
Hilbert space completion. Note that since we have defined things on the
level of central extensions, we have to check that { € T = ¥,;GN %G acts
by the correct scalar. This is immediate. Finally we must show that the
matrix coefficients for vectors in & ® # are continuous on .#;G - £ G. But

(gx1 ® hy,x2 @ y2) = (X59x1, 1 Q, Q) = (x1 31 Q, 9" x2Q).

Since the maps ¥;G— X, g— ¢g'xxQ and ¥, G— Y, h+— hyQ are
continuous, the matrix coefficient above is continuous.

Lemma. There are canonical unitary isomorphisms Hy X X =2 X = X X H,.

Proof. If Y = Hy, the unitary X X Hy — X is given by x ® y — xyQ and the
unitary Hy X X — X is given by y ® x — xyQ.

Lemma. If J is another interval of the circle and the above construction is
accomplished using the local loop groups ;G and ¥ ;G to give a Hilbert
space K with a level ¢ unitary representation o of ¥;G- %G, then if
¢ € SU(1,1) carries I onto J, there is a natural unitary Uy : H — K that

Up(n(9)) Uy = a(go ¢ ).

Proof. Take ¢ € SU(1,1) such that ¢(I) =J. If x € Z; = Homg,.¢(Hy, X)
and y € %; = Homg,q(Hp, Y). Choose once and for all unitary represen-
tatives 7nyx(¢) and my(¢) (there is no choice for m(¢)). Define
x' = ny(¢)xmo(¢p)* and Yy = ny(¢)ymo(¢)”. The assignments x — x/, y — )/
give isomorphisms 2Z; — %y, %; — %, which preserve the inner
products since m(¢)Q = Q. Since 7y (¢)my(g)mx(¢)* = nx(g9-¢~') and
m(P)my(9)my () =ny(g- ') for ¢ € SU(1,1) and g € #G, the map
Uy :x®y+— x' ®) extends to a unitary between X X ;¥ and X X ;Y such
that Uym(9)Uj = my(g - ¢ ") for g € #,G- LG.

Hilbert space continuity lemma. The natural map ¥ @ % — X R Y extends
canonically to continuous maps X @ % - X R Y and ¥ @ Y — X R Y. In fact

2 * 2 2 * 2
122 x @l < {1 22X | 2 QI and || o @ yill™ < 1 22w 1 52 b€l

Proof (cf [25]). If z=3 5@y e€Z %, then Y ((xix;)yiyQ Q)=
S yiny(xix;)yQ,Q), since S; = xix; lies in no(LrG) = no(LG)". Let
n;=yQand n = (n,...,n,) € Hy. Then

| X xen > Il

Here we used the fact that S = x*x where x is the column vector with entries
x;; this gives ||S]| = ||x*x|| = [jxx*|| = || > x:x}||. Similarly we can prove that

2 2
122x @ yill™ < 122wy [ 22 (€™

2
= (ay(S)n.n) < S|l = || Y- xex;
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Corollary (associativity of fusion). There is a natural unitary isomorphism
XR(YRZ) - (XRY)RZ

Proof. The assignment (x ® y) ® z — x ® (y ® z) makes sense by the lemma
and clearly implements the unitary equivalence of bimodules.

31. Connes fusion with the vector representation

In the previous chapter we proved that if (a;;), (b;;) are vector primary fields
smeared in intervals / and J in S'\{1} with J anticlockwise after I, then:

(@) byray, ; = > vnay,bug, With v, # 0 if h > g, gy is permissible.

(b) bgfafh = Zuflagf]bﬂh with Uy, 20ifh< f1 <g.

We use these braiding relations to establish the main technical result
required in the computation of H & H. This answers the following natural
question. The operator ajjyamo on Hy commutes with #G, so lies in
m(#;G)". Thus, by local equivalence, we have the right to ask what its
image is under the natural isomorphism 7, : no(%;G)" — n/(Z;G)".

Theorem (transport formula). 77 (af0am0) = ) A4a, cagr with g > 0.

Remark. 1t is possible, using induction or the braiding computations in [43],
to obtain the precise values of the coefficients. Since the precise numerical
values are not important for us, we have preferred a proof which makes it
manifest why the right hand side must have the stated form with strictly
positive coefficients A,.

Proof. (1) We proceed by induction on |[f|=>f;. Suppose that
nr(apamo) = > Agayragr and mp(biobmo) = - A bq/bgj with 4, > 0. Po-
larising the second identity, we get nf(b*DObDO) > 2gby by, In particular
if x € £,G, we may take b}, = 7 (x)b;m;(x)” and thus obtain

my(bomo (¥)bmomo(x)") = Aghl, my(x)byrms(x)".
Since 7/ (m(x)") = mp(x)", we may cancel 7/(x) on both sides to get
(b (x)bmo) = Zi by mg(x
(2) Take x € Z;G. By the braiding relations and (1), we have

ay,mg (Do (¥)bro)ags = 7y (bgmo (X)bro)ag agr

3 BRI

g1 hk

If x; € £,G, let Y = (y;) be the operator-valued matrix with entries
Vij = @y (bEomo (67 'x;)bro)ags. Then Y is positive, so that Y (y;&;, &) > 0
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for ¢; € Hy. Substituting the expression on the left hand side above, this
gives

Z Z g, (b;f”gl (x;l) (Z thkaf,glahk) e (xi)biyrEj, &) > 0.

L g

On the other hand, von Neumann density implies that
1(L,;G- £;G)" = n(Z£G)" for any positive energy representation at level /.
This implies that vectors of the form # = (1), where n; = m;(x)bys & with
¢ e Hy and x € Z,G, span a dense subset of (PH;. But from the above
equation we have ) Ag, iy (@nihly, @ng,n,,) > 0, and this inequality holds for
all choices of ;. In particular, taking all but one n,, equal to zero, we get
Agvaty, > 0. Thus in the expression by ra; agr = > 1 Vallk@yy, @ncbir, We
have v,u,, > 0.
(3) Now for x € Z,G, we have

b;f”g] (a*moamo)nyl (xX)bg,r = b;]fn.fh (x)bg, Z /lga;fa.qf
= Z )bgvh,ukb;]fazglnh (x)ahkbkf.

If x; € Z,G, let Z = (z;) be the operator-valued matrix with entries z; =
b; g, (@fpapo) g, (X7 'x;)by . Then Z is positive, so that if & € Hy,
> (2, &) > 0. Let n= () where n, =3 mi(x;)biré;. As above, von
Neumann density implies the vectors 5 are dense in (PH;. Moreover we
have

Z j‘gvh:uk (ahkrlk’ Ahg Ny, ) = (n!/l (GEOQDO)% y Mg, )

Since this is true for all #;’s, all the terms with & # g; must give a zero
contribution and

(TC.LII (aEOaDO)ngl ) ”Ig,) = Z )‘!Ivh:ugl (ah!/l Mg, Qhgi Mg, )

But we already saw Fhat Vilty, > 0 and hence my, (afjgamo) = > Anhy, ang,»
with A, > 0, as required.

Corollary. If Hy is any irreducible positive energy representation of level ¢,
then as positive energy bimodules we have

HD X Hf == @HII’

where g runs over all permissible Young diagrams that can be obtained by
adding a box to f. Moreover the action of 4G - <L -G on Hg W Hy extends
uniquely to an action of G x Rot S'.
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Proof. Let ¥y C Homg,.c(Ho,H) be the linear span of intertwiners
x = ng(h)ago, where h € £;G and a is a vector primary field supported in /.
Since xQ = (n(h)aqomo(h)")mo(h)Q, it follows from the Reeh-Schlieder
theorem that 2(Q is dense in ZyHy. But then the von Neumann density
argument (for example) implies that % 8Q is dense in Hp. If
x= an(h@)a%)o € X, set xyp = an(h(f))ag}. Let y € Homg,q(Ho, Hy).
By the transport formula '

(YR Q) = (Vi (YR Q) = Y A (g v Q) = Y ZgllagryQ.
9 g

This formula shows that x,, is independent of the expression for x. More
importantly, by polarising we get an isometry U of the closure of 2y ® % in
Hn K Hy into PH,, sending x @y to @X;/zngyﬂ. By the Hilbert space
continuity lemma, %y ® % is dense in Hy X H,. Since each of the maps x,s
can be non-zero, Schur’s lemma implies that U is surjective and hence a
unitary. The action of #*!G extends uniquely to #G by Schur’s lemma.
The extension to Rot S' is uniquely determined by the fact that Rot S! has
to fix the lowest energy subspaces of each irreducible summand of Hy X Hp.

32. Connes fusion with exterior powers of the vector representation

We now extend the methods of the previous section to the exterior powers
¥V = V.. We shall simply write [k] for the corresponding signature, i.e. k
rows with one box in each. For a € L*(1, V), we shall write ¢yr(a) for
(b{']‘:)'((e,%/a), where oy = (A — Ay — Ap)/2(N +¢) is the phase anomaly
introduced in Section 29. For any path P of length &, fy < f1 < --- < f; with
f; permissible, we define ap = ¢, (ar)--- ¢y s (ar) for a; € L*(,V). In
particular we let P be the path 0 < [1] < [2] < --- < [£].

Theorem. If a;, b; are test functions in L*(I1, V), then

np(bpan) = ( > iP(g)bP) < > iP(g)aP)7

9>k \P:f—g P:f—g

where P ranges over all paths fo=f <fi <---<fir=g¢g with each f;
permissible and where for fixed g either A(g) = 0 or p(g) # 0 for all P.

Proof. (1) The linear span of vectors ®ﬁ>ﬂ,1>m>/‘,>f¢_/m4(ak) r i fis
(ak—1) -~ ds (@) with a; € L*(I;, V) (where I; CI) and & € Hy is dense in
i firses fimg e

Proof. We prove the result by induction on k. For £ = 1, let H denote the
closure of this subspace so that A is invariant under =!G and hence £G.
By Schur’s lemma H must coincide with (P > fH_ 1, as required. By induction
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the linear span of vectors @ﬂ - f]>f¢ﬂ i 2 (ag—1) - ¢>f1f(a1)§ with
a; € L*(1,V) and ¢ € Hy is dense in @k 1>spisrHpi - The proof is com-

pleted by noting that if g is fixed and 4y, ..., h, < g (not necessarily distinct)
then the vectors B¢, (a)¢; with a 6L2(1 V) and &; € Hy, span a dense
subspace of H, @ C". Again the closure of the subspace is £ G invariant and
the result follows by Schur’s lemma, because the &;’s vary independently.

(2) We have

nr(bparn) =Y > teolg)bpag,

g>f P.O:f—yg

where g ranges over all permissible signatures that can be obtained by adding k
boxes to f and P, Q range over all permissible paths ¢g= f; >
Sie1 > > fi > f and w(g) = (upp(g)) is a non-negative matrix.

Proof. We assume the result by induction on |f| = Y f;. By polarisation, it is
enough to prove the result with b; = a; for all j. If & > f, let x;r = ¢,0(c)
with ¢ € L*(I°,V) and y=ap. Then for f' > f fixed, xppms(y*y) =
np (V' y)xps. Substituting for 7y (y*y) and using the braiding relations with
vector primary fields and their duals, xy,n/(y*y) can be rewritten as

xppmr(v'y) Z Z Z Hp Q aPanfu‘v

g fi>f PO

where ¢’ ranges over signatures obtained by adding k& boxes to f’, P
ranges over paths f'<h <---<h,=¢ and Q ranges over paths
fi<h <. <h=g. By (), the vectors (B, xssH, span a dense
subset of @f Hy,. Since xpmp(y*y) = np(y*y)xpp, it follows that

np(y*y) = fisr 2-p.o Mpold )apag. Since mp(y*y) lies in B(Hy), only
terms with f1 f appear in the above expression so that

(') ZZMPQ g')apag,
7

where P and QO range over paths from f’ to ¢g’. Now suppose
z=y| + -+ yn with y; having the same form as y. Then

= Z Z MP,Q(Q’) Z a;,iaQw
g PO ij

But (nf/(z 2)¢, &) > 0 for & € Hy and the linear span of vectors (P, ap¢ is
dense in @ H,. Fixing ¢', it follows that > up 4(g')(Ep, Ep) > 0 for all
choices of fp n H Taking all the &p’s proportional to a fixed vector in Hy,
we deduce that ,u( ") must be a non-negative matrix.

(3) If g >k [ is permissible, then u(g) has rank at most one; otherwise
1(g) = 0. If u(g) # 0, then upo(g) = 2p(9)2o(g) with ip(g) # 0 for all P.
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Proof. We have

np(b'a) =Y > wpolg)bray,

g>if P.O:f —g

where a = ap and b = bp. We choose a; to be concentrated in disjoint
intervals /; with J; preceding /;11 going anticlockwise. Fix i and let &', aj, be
the intertwiners resulting from swapping a; and a;,1. Then ¢’ = 6_a where
o #0 while either aj, = agag + fpag, and ay =ypag + dpag,, with
%0, Bgs Vg, 00 # 0, or ap = d1ag. Here if Qis the path f < fi <--- < fy = g,
then Q is the other possible path f < f] <--- < fy =g with f] = f; for
j # . In the second case, J, occurs if f;;| is obtained by adding two boxes
to the same row of f;_; while d_ occurs if they are added to the same
column.

' Now we still have mp(b*d') =3 o > p.r, po(9)bpap. If O and Oy are
distinct, it follows that 6-upy = agpipg + Yoltpg, and O pipg = Polipg +
00, Upg, for all P. In the case where O = O, we get 0 ipg = S+ pipy. Now for
a vector (Zg), consider the equations d_Ag = aglp + yplg, and d_Ag, =
Bolo + 09l,; Or 0_74g = d1/g. These are satisfied when 79 = ppy. We claim
that, if g > f, these equations have up to a scalar multiple at most one non-
zero solution, with all entries non-zero, and otherwise only the zero solution.
This shows that u(g) has rank at most one with the stated form if g > f and
u(g) = 0 otherwise.

We shall say that two paths are adjacent if one is obtained from the other
by changing just one signature. We shall say that two paths Q and O, are
connected if there is a chain of adjacent paths from Q to Q;. We will show
below that any other path Q) from f to g is connected to Q. This shows on
the one hand that if a path Q is obtained by successively adding two boxes to
the same row, we have d_Ag = 61 /¢, so that 4y = 0 since ;. # J_; while on
the other hand if O and Q; are adjacent, 4o, is uniquely determined by Ao
and is non-zero if Ao is.

We complete the proof by showing by induction on & that any two paths
f=Hh<fi<---<fi=gand f=f1<fl<---<fl=g are connected.
The result is trivial for £ = 1. Suppose the result is known for £ — 1. Given
twopaths f =fy < fi<---<fi=gand [ = fj < f]| <--- < f{ =g, either
fi=f or i #f]. If fi =f =h, the result follows because the paths
h=fi<---<fi=gand h=f] <--- < f/ =g must be connected by the
induction hypothesis. If fi # f{, there is a unique signature f; with

Y > fi,f{- We can then find a path f) < fi <--- < f{' =g. The paths
O:f<fi<fi<---<fil=g and Q| f<fil<fi<---<fl=g are
adjacent. By induction Q is connected to Q' and O, is connected to Q).
Hence Q is connected to Q;, as required.
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Corollary. Hyy R Hy = D),/ ;200 < Do Hy

Proof. If h € ¥;G, then we have

ny(bpmw (hap) = > ( > ipbp> 7y ( ( > ipdp)

g>if NPif—g P:f—g

Now the intertwiners x = 7y (h)ap, span a subspace %o of Hom g, (Ho, Hy).
As Dbefore the trdnsport formula shows that the assignment
XRy— @ > 2p(g)my(h)apyQ extends to a linear isometry T of 2 @ ¥
into @A( 10 oHg- T 1ntertw1nes #*1G, so by Schur’s lemma extends to an
isometry “of the closure of %o ® % in Hy X Hy onto C—B;U 2oty On the
other hand, by the argument used in the corollary in the previous section,
Z0Q is dense in Hy. Therefore, by the Hilbert space continuity lemma, the
image of 2 ® % is dense in Hy) X Hy. Hence Hy) X Hy = @/l(g);éOHg’ as
required.

33. The fusion ring

Our aim now is to show that if A; and H; are irreducible positive energy
representations, then 4; X H; = @NZ}H/( where the fusion coefficients Ni’} are
finite and to be determined.

Lemma (closure under fusion). (1) Each irreducible positive energy represen-
tation H; appears in some H§ ",
(2) The H;’s are closed under Connes fusion.

Proof. (1) Since H/ X Hn = (—DHq, it follows easily by induction that each
H, is contained in H " for some m.

(2) Since Hy C HX " for some m and H, C Hg " for some n, we have
HfXH, C H®< . By induction Hgk is a dlrect sum of irreducible pos-
itive energy blmodules By Schur’s lemma any subrepresentation of I’-IJZ m+n)
must be a direct sum of irreducible positive energy bimodules. In pdl‘thuldl‘
this applies to H; X H, as required.

Corollary. If X and Y are positive energy representations, the action of
LG - %G on X RY extends uniquely to an action of G x Rot S'.

Proof. The action extends uniquely to G by Schur’s lemma. The extension
to Rot S' is uniquely determined by the fact that Rot S has to fix the lowest
energy subspaces of each irreducible summand of X X Y.

Braiding lemma. The map B: 2 ®@% — Y XX, B(x®y)=R:R:(y)R:
® R (x)R%] extends to a unitary of X K Y onto Y W X intertwining the actions
of £G.
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Proof. Note that the B is well-defined, for rotation through = interchanges
&G and Z;G. Hence R xR: lies in Homy,g(Hy,X) and R yR: lies in
Homg, ¢(Ho,Y). So R,yR: @ RyxR: lies in % ® Z. Since R,Q = Q, the map
B preserves the inner product. Interchanging the roles of X and Y, we get an
inverse of B which also preserves the inner product. Hence B extends by
continuity to a unitary of X X Y onto Y X X. Finally, we check that B has
the correct intertwining property. Let g € ¥;G and h € £ ;cG. Then

Blgx @ hy) = R R, (10)R, © Ra(gr)RS) = Rif(h© 72) g 0 ) (Ro3R  RoR)
=R (hory)(gory)R R:[RzyR;, @ RoxR;] = ghR[RxyR; @ RyxR}]

= ghB(x @ ),
as required.

Corollary 1. X X Y is isomorphic to Y K X as an ¥ G-module.

Let # be the representation ring of formal sums > mH; (m; € Z) with
multiplication extending fusion. £ is called the fusion ring (at level £).

Corollary 2. The fusion ring R is a commutative ring with an identity.

Proof. # is commutative by the braiding lemma and closed under multi-
plication by the previous lemmas. Multiplication is associative because
fusion is.

34. The general fusion rules (Verlinde formulas)

In order to determine the general coefficients Nk in the fusion rules
H X H; = (—DN H),, we first have to determine the structure of the fusion
ring. Before domg so, we will need some elementary facts on the affine Weyl
group. The integer lattice A = Z" acts by translation on R". The symmetric
group Sy acts on RY by permuting the coordinates and normalises A,
so we get an action of the semidirect product A x Sy. The subgroup
Ao ={(N+0)(m;): > m; =0} C A is invariant under Sy, so we can con-
sider the semidirect product W = Ayx Sy. The sign of a permutation defines
a homomorphism det of Sy, and hence W, into {£1}.

Lemma. (a) {(x;) : |x; —x;| <N + ¢} forms a fundamental domain for the
action of Ay on RY.

(b) D={(x;)):x1>--->xy,x1 —xy <N+{} forms a fundamental
domain for the action of Agx Sy on RV,

(c) A point is in the orbit of the interior of D consists of points iff its
stabiliser is trivial. For every other point x there is an transposition ¢ € Sy
such that o(x) — x lies in Ay.
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Proof. (a) Take (x;) € RY. Write x; = a; +m; with 0 <a; <N 4/ and

€ (N+{¢)Z. Without loss of generality, we may assume that
a; <---<ay. Now (m;) can be written as the sum of a term
b)y=N+OM,M,.... MM —1,M—1,...,M —1) and an element (¢;)
of Ag. Thus x = a + b + ¢ with ¢ € Ay. It is easy to see that y = a + b sat-
isfies |y; — yj| < N+ £. (b) follows immediately from (a) since the domain
there is invariant under Sy. Finally, since int(D)= {(x;):x; >-- >
Xy, x; —xy < N+ £}, it is easy to see that any point in int(D) has trivial
stabiliser. If x € D, then either x; =x;;; for some i, in which case
o = (i,i+1) fixes x; or x; —xy =N + ¢, in which case ¢ = (1,N) satisfies
a(x) —x= (=N —=14£,0,...,0,N +¢). Thus (c) follows for points in D and
therefore in general, since D is a fundamental domain.

Corollary. Let § = (N — 1,N —2,...,1,0). Then m € Z" has trivial stabiliser
in W=~AoxSy iff m=a(f+9) for a unique o € W and signature
f1>fr > fy with f1 — fxy < ¥; m has non-trivial stabiliser iff there is a
transposition ¢ € Sy such that o(m) —m lies in Ay.

Proof. In the first case m = a(x) for ¢ € W and x € RY with x; > ... > xy
and x; —xy < N + £. Since the x;’s must be integers, we can write x = f + 0
with f1 >--->fy. Then fi—fy=x1—xy—(N—-1)<{+1, so that
Si—/v <L

Recall that the character of V; is given by Weyl’s character formula

%r(2) = det z/ +5 )/det(z; ) Let S be the space of permitted (normalised)
51gnatures at level 4, ie. S={h:h > >hy,h —hy <l hy =0}. We
now define a ring & as follows. For /1 € S, let D(h) € SU(N) be the diagonal
matrix with D(h),, = exp(2ni(hy + N —k —H)/(N + £)) where H = (3" hy+
N —k)/N and set 7 = {D(h) : h € S}. We denote the set of functions on
by €7. Let 0: R(SU(N)) — €7 be the map of restriction of characters,
ie. 9([V]) = xyly. By definition € is a ring *-homomorphism. Set

= O(R(S ( ))) and let 0, = 0(V;).

Proposition. (1) X;(r45)-s
m e Ay.

(2) The 05’s with [ permissible form a Z-basis of & .

(3) ker(0) is the ideal in R(SU(N)) generated by Vy with fi — fy = £+ 1.

@ IfVeV,= @ 2 Vhy then 070, = ZN det(ay,)0p where h ranges
over those signatures in the classical rule for whlch there is a o € AgX Sy
(necessarily unique) such that W' = o,(h + 8) — 6 is permissible.

(5) If f,h are permissible, then |{g1: g1 permissible, f < g1 <y h}| =
{g2 : g2 permissible, f <i g2 < h}|.

= det(0)Xr|, for o € Sy

| for

Proof. The statements in (1) follow immediately from the form of the D(h)’s.
The Vj’s generate R(SU( )) and, if f1 — fy = £+ 1, it is easy to see that
1p(t)=0forallte 7:for fi+N—-1—-fy=N+/{ and hence the numer-
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ator in y,(¢) must vanish. The 0;’s with f permissible are therefore closed
under multiplication by 0y,’s. Since the 0’s generate ., the Z-linear span
of the 0,’s with f* permissible must equal . The characters y dlstlngulsh
the points of 7~ and yg = 1. Hence ¢ is a unital subalgebra of c” sep—
arating points. So given x,y € 7, we can find f € ¢ such that f(x) =
and f(y) = 0. Multiplying these together for all y # x, it follows that yc
contains J, and hence coincides with €”. So the 0,’s must be linearly in-
dependent over C, so a fortiori over Z. This proves (2). Let I C R(SU(N)) be
the ideal generated by the [V]’s with g; — gy = £+ 1. Since R(SU(N)) is
generated by the Vj’s and we have the tensor product rule
Vy @ Vg = C—Dg V;, it follows that R(SU(N))/I is spanned by the image of
the [V;]’s as a Z- module But / C ker(0) and the 0([V;])’s are linearly inde-
pendent over Z. Hence the images of the [V;]’s give a Z-basis of R(SU(N))/I
and therefore I = ker(0), so (3) follows. The assertion in (4) follows from (1)
by applying 6 and using the corollary to the lemma above. In fact, if 7+ 0
has non-trivial stabiliser, we can find a transposition ¢ € Sy such that
o(h+0) —h—0 lies in Ag. Hence X,(¢) = —X, o(h )~ 5(t) = =X, (¢), so that
1 () = X;5(¢) = 0 for all £ € 7. When the stabiliser is trivial, we clearly have
0, = det(6,)0yy. Finally (5) follows by comparing coefficients of 0, in

Ofo[k]olj = ngf Zh>g| O = ngf Zh>kg2 On

Theorem. (1) Hy) X Hy = @g>k rHy, where the sum is over permissible g.

(2) The Z-linear map ch: # — & defined by ch(Hy) = x|, is a ring
isomorphism.

(3) The characters of # are given by [Hy] — ch(Hy, h) = y(z) forz € 7.

(4) The fusion coefficients N’;’s can be computed using the multiplication
rules for the basis ch(Hy) of & .

(5) Each representation Hy has a unique conjugate representation Hy such
that Hy ® Hy contains Hy. In fact Hy = Hy, where f] = —fy_i+1, and Hy
appears exactly once in Hy ® Hy. The map Hy — Hy makes R into an inv-
olutive ring and ch becomes a *-isomorphism.

Proof. (1) We know that H; ) Hyy < 6—) sHy with equahty when k = 1.
We prove by induction on |f] = Zf, that Hf X Hy = @, /Hy - 1t suffices
to show that if this holds for f then it holds for all g with g > f. Tensoring
by Hp and using part (5) of the preceding proposition, we get

@ HRHy=P @ H =P @ H.

9>f gi>if h>g g>f h>kg

Since Hy X Hpy < (—Dbkth, we must have equality for all g, completing the
induction.

(2) Let ch be the Z-linear isomorphism ch : # — % extending ch(H;) = Hf
Then by (1), ch(Hy X Hy) = 0jy0y. This implies that ch restricts to a ring
homomorphism on the subring of # generated by the H’s. On the other
hand the 0’s generate ., so the image of this subring is the whole of %,
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Since ch is injective, the ring generated by the Hy;’s must be the whole of #
and ch is thus a ring homomorphism, as required.
(3) and (4) follow immediately from the isomorphism ch and the fact that
Sc = c’.
(5) We put an inner product on ¢ = %¢ by taking 0, as an orthonormal
basis, so that (07,6,) = 7. We claim that (6,0,,0,) = (0,,0,0,) for all 0;.
Note that 0, = 0, where f] = —fy_;;1. Let 07 be the adjoint of multipli-
cation by 0. The multiplication rules for 0y imply that Ofk] = O for
k=1,...,N. Thus the homomorphism 0, — 0," is the identity on a set of
generators of % and therefore on the whole of %, so the claim follows.
In particular (0,0,,00) = (0,,07) = (0,,0,) = 3,0 Translating to %, we
retrieve all the assertions in (5).

The following results are immediate consequences of the theorem and
preceding proposition.

Corollary 1 (Verlinde formulas [40, 21]. If the “classical” tensor product rules
Sfor SU(N) are given by V; @ V, = @N}'th, then the “quantum’” fusion rules
for LSU(N) at level ¢ are given by

Hf X Hg = @N}lg det(ah)Hh«,

where h ranges over those signatures in the classical rule for which there is a
on € Aox Sy (necessarily unique) such that i’ = o,(h+ ) — d is permissible.

Corollary 2 (Segal-Goodman-Wenzl rule [35, 14]). The map V; — Hy extends
to a *-homomorphism of R(SU(N)) (the representation ring of SU(N)) onto
the fusion ring R. The kernel of this homomorphism is the ideal generated by
the (non-permissible) representations Vy with fi — fy = £+ 1.
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