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§1 Definitions and Results

1.1 Definitions

All manifolds in this paper will be compact, oriented, and smooth unless otherwise stated. Our
general convention will be to denote closed manifolds with with the letter M and manifolds with
boundary with the letters W or X. If W is a manifold with boundary, then W will denote the
noncompact manifold W ~ dW. When not specified, the word manifold will mean manifold with
boundary.

A homotopy n-sphere is a closed manifold with the homotopy type of S™. If M is an oriented
manifold, let —M denote the manifold obtained by reversing the orientation on M. Two closed,
oriented manifolds M{* and MJ are said to be h-cobordant if there exists a compact oriented
manifold X”*! with boundary M; [1(=Mz) such that M; and —M; are each deformation retracts
of X. Such a manifold X is called an h-cobordism between M; and M;. Note that if M is simply
connected, and X is a manifold with boundary M; [[(—M;) that has M; as a deformation retract,
then Hy(X, —My) = H"1=5(X; M) = 0 for all k, which implies that — M, is also a deformation
retract of X. Thus for My, My € ©,, with n > 2, a cobordism X between M; and My with M, as
a deformation retract is already an h-cobordism. Let ©,, be the group of h-cobordism classes of
oriented homotopy n-spheres under the connect sum operation. The identity element is S™, and
for all ¥ € 0, ¥#(-X) is h-cobordant to S™ [KM].

For n > 5, the h-cobordism theorem [M2] implies that two simply connected n-manifolds
are h-cobordant if and only if they are diffeomorphic. Furthermore, it has been shown that for
n > 5, every homotopy n-sphere is in fact homeomorphic to S™ [Sm], thus we can think of ©,, as
the group of '™ differential structures on the topological space S™ up to orientation preserving
diffeomorphism. In the context of this paper, however, is it possible to think of ©, simply as an

h-cobordism group.

Lemma 1.1.1 A closed, simply connected manifold M is h-cobordant to S™ if and only if M bounds

a contractible manifold.

Proof: Let X"*! be an h-cobordism between M and S™. By gluing D"*! to X along S"*! C 90X,
we obtain a manifold W with boundary M. Because S™ is a deformation retract of X, D"*t! is a
deformation retract of W, and therefore W is contractible.

Conversely, suppose that M = 0W with W contractible, and let X be the manifold obtained
by removing a disk from W. Since W is contractible, S™ will be a deformation retract of X. Then

since M is simply connected, X is an h-cobordism. a

A manifold W will be called parallelizable if its tangent bundle Ty is trivial. The following

lemma will show that the notion of parallelizability descends to h-cobordism classes:

Lemma 1.1.2 Suppose that two manifolds My and My are h-cobordant, and that My bounds a
parallelizable manifold Wy. Then My bounds a parallelizable manifold Ws.



Proof: Let X be an h-cobordism between M; and M, and let W5 be the result of gluing X to
Wy along M;. Since X is an h-cobordism, W; retracts onto Wi. It follows that the obstructions
to trivializing Ty, vanish, hence W5 is parallelizable. Then My = d(—W3) bounds a parallelizable

manifold. O

The boundary connect sum of two (n 4 1)-manifolds Wy and W, with nonvacuous boundaries
is the (n + 1) manifold with boundary dW;#0W; obtained by smoothing the result of gluing an
n-disk in dW; to an n-disk in W5. Let bF,4; C ©, be the subset of homotopy n-spheres that
bound parallelizable manifolds (well defined by Lemma 1.1.2). If I/Vln+1 and W2”+1 are paralleliz-
able manifolds with boundaries ¥y, 39 € bF,4+1, then the boundary connect sum Wy#W, is also
parallelizable, therefore bF, 1 is a subgroup. The purpose of this paper will be to compute the
groups bP, 11 for all n > 5 (Chapter 3), and to give explicit constructions of their elements (Chap-
ter 6). The construction that we use, due originally to Brieskorn [Bk], will give us two different
perspectives from which we can gain a geometric understanding for these manifolds. They will be
constructed first as algebraic varieties, and then interpreted in a knot theoretic context as cyclic

branched covers of the standard sphere.

1.2 Results

In the course of this paper we will give multiple interpretations of the groups bF,4+1. In Chapter
2 we will show that bF, 41 is the kernel of a homomorphism from ©,, to a quotient of the stable
n-stem 72 = 7,1 (S*) for k > n4 1. The groups 72 are known to be finite for all n > 0, therefore
we will conclude that ©,, is a finite extension of bF, 1. In Chapter 3 we will use surgery to show
that bF, 44 is itself finite, therefore so is ©,,. The following table gives Kervaire and Milnor’s com-
putation of the orders of ©, and bF, 41 for 5 <n < 18:

n |56 7[8|ofto| 11 |12]13|14] 15 |[16]17]18
0, [1]1|28]2|8]6|992| 1|3 /|2]16256]2]16]16
bPogq| [1]1]28 |1 2] 1992111 [8128[1]2]1

In Chapter 4 we review the tools necessary to give a knot theoretic interpretation to Brieskorn’s
construction, which we describe in Chapter 5. Brieskorn considers polynomials of the form f(z) =
280 +...4 22, which have an isolated singularity at the origin of C**1. If we intersect the zero set
of f with a sphere S2"t! C C**! centered at the origin, we get a manifold 3 which is called the
link of this singularity. We will study the topology of this link by realizing it as the cyclic branched
cover of S?"~! along another link, and show that in many situations ¥ will be a homotopy sphere.
In Chapter 6, we show that the homotopy spheres that arise as links of Brieskorn singularities are
exactly those that bound parallelizable manifolds. A byproduct of the knot theoretic approach will
be a fourth interpretation of bF,;: we will show that an exotic sphere of dimension n bounds a

parallelizable manifold if and only if it embeds into the standard sphere S™+2.



§2 Vector Bundles

2.1 Homotopy Properties of Classical Groups

We begin this section by proving three lemmas about the homotopy properties of the groups SOy,
which we will use in our subsequent calculations. The results that we derive are mostly elementary,
but Lemma 2.1.4 will rely on the not so elementary fact that the tangent bundle to S* is nontrivial
for k # 1,3, or 7 (Theorem 2.1.9). At the end of the section we show that this theorem is a
consequence of Bott Periodicity. It is an interesting side note that Theorem 2.1.9 can be derived
independently from either real or complex periodicity.

Our main object of study will be the long exact sequence of the fibration SOp—=SOg41 — S
* a3 Sk )*
(S0kp1) B8 7 (S%) 25 1y (SOK) B8 11 (SOks1) = mpa (SF) = 0.

Lemma 2.1.1 Lety € rk(Sk) be the homotopy class of the identity map S* — S*. The boundary
map Oy takes vy to [Tsr] € mr_1(SOy), the obstruction to trivializing the tangent bundle to S*.

Proof: Fix a point e € S*, and let 7 : (DF, S*7!) — (S* e) be the standard projection. It is
possible to lift v to some 7 : (D* S*=1) — (SO41, SOk) in 71(SOkt1, SOk) =2 m(S*), where
7(q) is a transformation of S* taking 7(q) to e. Away from a neighborhood of e, we can trivialize
Tgx by mapping Tsk|, to Tsx|. via the linear map (7~ 'p). for all p. This is poorly defined at e,

1

because 77 'e is not a single point, but rather an entire S*. The obstruction [Tsx] to extending this

trivialization over e is exactly ¥|gi—1 = Jx (7). ]

Lemma 2.1.2 Let [{] € m;(SOk41) be the obstruction to trivializing an oriented (k + 1)-plane
bundle & over S**1. Then (pi)« takes [€] to the Euler class e(€) € mx(S¥).

Proof: This is a direct consequence of the definition of the Euler class as the obstruction to sec-

tioning &, which lies in 7 (SOp41/SOx) = 71 (SF). o

Corollary 2.1.3 The map (pr_1)« 0 O : mp(SF) — m_1(S*™1) is given by multiplication by the
Euler number x(S*), which is equal to 2 if k is even, and 0 if k is odd.

Note that (s)« is surjective, and that for N > k41, the fibration SOy—SOn 41 — SV induces
an isomorphism 71 (SON) = 7x—1(SON+1). Thus (sg)« : T—1(SOk) — 7k—1(SO) can be thought
of as a stabilization map, with kernel L. Since 74(S*) is generated by v, Ly is generated by g (7).
If k is even, then Corollary 2.1.3 tells us that (pg—1)« o () has infinite order, therefore di(y) has
infinite order and L; = Z.

Lemma 2.1.4 Suppose that k is odd. Then Ly =0 if k = 1,3, or 7, and Zs otherwise.



Proof: Since k is odd, (pg)s maps [Tgr+1] to e(Tgrs1) = 2v € 74(S*), therefore 9x(2v) = 0 by
exactness. Since Ly is generated by 0i(7), its order is at most 2. We showed in Lemma 2.1.1 that
Jx(y) = 0 if and only if T is trivial, therefore Ly = 0 if and only if £ = 1,3, or 7. O

Let 1, £ be vector bundles on S™. If there exists r, s € Z* such that n@¢" is isomorphic to E@¢®,
then 1 and & are said to be stably equivalent. Bott Periodicity gives a classification of oriented real
and complex vector bundles over S™ up to stable equivalence.

One way to do this is to note that an oriented real vector bundle £ of rank k£ over S™ is defined
by its characteristic map f : S®~! — SO, which can also be identified as a representative of
the homotopy class [£] € 7,-1(SOy) of the obstruction to trivializing . To classify oriented real
vector bundles of rank & over S” is to classify characteristic maps up to homotopy, i.e. to compute
the group m,—1(SO0%). To classify oriented real vector bundles of any rank over S™ up to stable
equivalence is to compute the stable homotopy group 7,_1(SO) = 7,_1(SOy) for any k > n + 1.
Similarly, to classify complex vector bundles of any rank over S™ up to stable equivalence is to
compute m,_1(U) = m,—1(Ux) for any k > n/2. Thus we may give our first statement of Bott
Periodicity:

Theorem 2.1.5 (Bott Periodicity) Forn > 2,

0 ifn=3,56,0r7 modS8;
Tno1(SO) =< Z ifn=0 or4 mod 8; and 1w, (U) =
Zy ifn=1o0r2 modsS8;

0 ¢ n is odd;

Z if n is even.

This is the form in which Bott originally stated the theorem [Bo]. For our applications, however,
we will use a slightly stronger formulation. The statement that my,_1(U) = Z is equivalent to the
statement that the reduced K group R’(SQ”) is infinite cyclic. We want to go further and specify

a generator for this group. First, note that

K(S™) = K(S*,pt) 2 K((S%,p1) x ... x (S%,p,) 2 K(5) @ ...® K(5?).

The stronger version of Bott Periodicity asserts that the generator &, of K(S?") can be identified
with the tensor product &1 ®...®&; of n copies of the generator of K(SZ), where &; is the difference
between the canonical line bundle on CP' = S§? and the rank 2 trivial bundle on S?. The real
picture is less simple, but works in a similar manner: the generator of the real reduced K group
KO(S™+8) can be expressed as the tensor product of the generators of KO(S™) and KO(S®). We

now derive some consequences, first of complex periodicity and then of real periodicity.

Lemma 2.1.6 Let 5 be a vector bundle of rank r > 4m on a closed manifold M*™. Let f be a
trivialization of n away from a disk, and let o € T4y, —1(SO) = Z the obstruction to extending f over
the disk. Then the top Pontrjagin class p,, (1) € Tam—1(U/Uzm-1) 2 Z is equal to +a,,-(2m—-1)!-a,

where a,, =1 or 2.



Proof: Consider the inclusion 7 : SO, — U,, and let 7, be the induced map on m4,_1. By Bott
Periodicity mam—1(SO0,) = Tam—1(U,) = Z, therefore i, is given by multiplication by some integer
@,,. To see that f+a,, = 1 or 2, consider the inclusion j : U, — SO3,. given by forgetting the
complex structure. The composition jo i takes a matrix A to A @ A, therefore (j o i), is given by
multiplication by 2. It follows that i, is given by multiplication by +1 or +2. Bott [Bo] shows that
a, = 1if m is even, and 2 if m is odd.

Consider the relative K group K (M, M D), where D is an open disk neighborhood of p. We
can identify this group with IE'(S‘””) by excision, therefore the complex virtual bundle n ® C — €”
of rank 0 can be identified with ¢ - &, for some ¢ € Z. Explicitly, ¢ is equal to the obstruction
[n® C] = ix[n] = am - « to trivializing n ® C. Then p,,(n) = teom(n @ C) = tan, - - cam(&am),
thus we have reduced Lemma 2.1.6 to the statement that ¢y, (§2n) = (2m — 1),

We will in fact prove the slightly more general statement that cx (&) = (—1)*(k — 1)! for any
k € Z*, even or odd. Since we are on the sphere S?*, the total Chern class c(&) is equal to
1+ cx(&). By the Splitting Principle, & splits into a direct sum of complex line bundles L4, ..., Ly
over a space whose cohomology ring contains H*(S?*) as a subring. Then the Chern polynomial
t* 4 ¢ (&) factors as (£ + ) ... (t — ag), where a; = ¢;(L;) for all 7. Note that when we evaluate
at t = —ay, we get of = (—=1)¥cp (&) for all i.

Consider the Chern character

> . (LK
ch(§) = Y e :Z%Z‘J‘f -y (; _1)1)!@(&) ¢ HY (5" Q).

Evaluating on the fundamental homology class uy, of S%*, we get

(-1*
(k- 1)

(en(Er), ur) = (eh(r), u) = (ch(@761), 01 ) = (ch(&r), m)* = (er (&), un) =1,
therefore ¢ (€;) = (—1)*(k — 1)!. This completes the proof of Lemma 2.1.6. o

We will now use Bott Periodicity for oriented real vector bundles to show that the tangent
bundle to S* is nontrivial for k # 1,3,7. We begin with a pair of lemmas about Steifel-Whitney

classes.

Lemma 2.1.7 Let £ be an SO,, bundle over S™ and n an SO, bundle over S™, where n is a
power of 2. Then the SO,,, bundle £ @ n over S™ x S™ has total Steifel-Whitney class w(§ @ n) =

(1 + wn(n))m + wn ()"

Proof: By the Splitting Principle, we can pass to a space where we have P:(t) = t" + w,,,(§) =
(t+ay)...(t+ ay) and Py (t) =t" +w,(n) = (t+61)...(t+ B8,). Then

w€on) =[J0+ai+8) = P01+ 0) = [T((O+ @)™ + wa(m).

2, %



Since n is a power of 2, this reduces to

[T +a? +wa(m) =TT (0 +wa) +a?) = (14 wa(0)™ +wa(§)",

k3 k3

because for every ¢, a7 is a root of the polynomial t™ — w,, (§)”". a

Lemma 2.1.8 Let £ and n be as above. If m > 2 is a power of 2, or if w(§) = w(n) = 1, then
w(§®n) =1.

Proof: We will use the expression for w({ x 1) derived in Lemma 2.1.7. If w(§) = w(n) = 1, then
it is immediate that w({ ® ) = 1. Now suppose that m > 2 is a power of 2, with no assumptions
about w(&) or w(n). Then w(€ ® 1) = 14 w,,(£) + w,(n)". Recall that (& — €)@ (n — ™) is
an element of KO(S™*"), therefore only w4, (¢ © 1) can be nontrivial. Since m > 2, mn is not
equal to m + n, therefore w({ @ ) = 1. O

Theorem 2.1.9 The tangent bundle to S* is nontrivial for k #1,3,7.

Proof: Suppose that vy, ..., v; is a set of orthonormal sections of Tgx. The the map S* — SOy
taking z to the frame (z,v;(z),...,vr(z)) defines a rank k + 1 vector bundle & on S*¥+1. By the
definition of the Euler class of a bundle as the index of a generic section, we see that e(£) = 1,
therefore wi+1(§) = 1. Thus we can reduce Theorem 2.1.9 to the claim that the top Steifel-Whitney
class of every SOp4; bundle on S**! vanishes for & # 1,3, 7. We will proceed by a 16-fold induction
on k.

Consider an SOy bundle 4 on the sphere SV with 9 < N < 16. By Bott Periodicity, the class
v—eV e I(:O(SN) can be expressed as the tensor product of virtual bundles & — ¢%¢ on $® and
n—€e*7on S, with ¢ =1,2,4, or 8. (If N is not congruent mod 8 to a power of 2, then Bott Peri-
odicity says that v is stably trivial.) Since the stabilization map (sg)« : 741 (SOk) = mt—1(50) is
surjective, we may take £ and 7 such that rk& = 8 and rkn = ¢. Then we can conclude by Lemma
2.1.8 that w(vy) = w(y — €¥) = 1. The same holds if 17 < N < 24, because any rank 0 virtual
bundle on SV can be expressed as the tensor product of virtual bundles on S'¢ and S?. Then using
the second statement of Lemma 2.1.8, we can conclude that any bundle 5 of rank N 4 16 on SV+16
has w(F) = 1. This provides an inductive proof of Theorem 2.1.9. O

Remark 2.1.10 It is also possible to prove Theorem 2.1.9 using Lemma 2.1.6, which is derived

from complex periodicity. For an outline of this proof, see [BM].

2.2 Stable Bundle Theory

In this section we will exploit the machinery that was developed and stated in Section 2.1. A

vector bundle £ over a manifold W is called stably trivial if there exists r > 0 such that £ @ €" is



trivial. A manifold W will be called stably parallelizable if its tangent bundle Ty is stably trivial.
As an application of Bott Periodicity, along with a difficult theorem of Adams that we will not
prove, we will show that homotopy spheres are stably parallelizable. We will not need this result
in our computations, but it provides a second interpretation of the groups bF,4+1 in terms of the

Pontrjagin-Thom construction and the classical J-homomorphism 7,,_1(SO) — ;.

Lemma 2.2.1 Let W be a manifold of dimension n, and let & be a vector bundle on W of rank
k > n. Then £ is trivial if and only if £ & €' is trivial. If OW is nonvacuous, then the same result
holds for all & of rank k > n.

Proof: Let f : W — BSO} classify £, and consider the fibration S* < BSOp — BSOp4.
Then & @ €' is trivial if and only if 7 o f null-homotopic, which implies that f is homotopic to a
map into the fiber S*. Since n < k (or n = k and W is nonvacuous), any map of W into S* is

null-homotopic, therefore £ itself is trivial. O

Corollary 2.2.2 If W is a manifold with nonvacuous boundary, then W is stably parallelizable if
and only if it is parallelizable. In particular, if ¥ € ©,, bounds a stably parallelizable manifold, then
¥ €ebPy.-

As a demonstration of the usefulness of the notion of stable parallelizability, we give the following

Lemma, which we will apply in Sections 3.2 and 3.4.

Lemma 2.2.3 The intersection form on a (2m — 1)-connected stably parallelizable manifold W4™

18 even.

Proof: By the Hurewicz theorem, every A € Hy,, (W) is represented by a spherical immersion
f: S — W, which we may assume has only transverse double points. Let v be the normal
bundle on S?™ induced by f. Then a parallel copy of A = [f] intersects A once for every zero of a
generic section of v, plus twice near each double point of f. We therefore have A- A = e(r) mod 2.
By Lemma 2.1.2, e(v) = (p2m)«[v], where [v] € 72, (SO2.,—1) is the obstruction to trivializing v.
But v is stably trivial by stable triviality of Tk and Ty, therefore [v] € Ker(szm)« = Im(02s).
Then by Lemma 2.1.1, [v] is a multiple of [T's2m], and e(v) is a multiple of e(Tg2m) = x(S*™) = 2.
Thus A-A =0 mod 2. a

Let W be a submanifold of SV with tangent bundle Ty and normal bundle v. Since the
tangent bundle to SV can be trivialized away from a point, its restriction Ty @ v to W is trivial.
It follows that Ty is stably trivial if and only if v is stably trivial. Then Lemma 2.2.1 tells us that
any embedding of a stably parallelizable manifold W into $***! induces a trivial normal bundle.
This result generalizes to the statement that in large enough codimension, the normal bundle is

independent of embedding:



Proposition 2.2.4 Let W" be any manifold, not necessarily stably parallelizable. Then for any
N > 2n+ 1, any two embeddings f,g : W—SN induce isomorphic normal bundles.

Proof: Let h : Wx[0,1] — SV be a homotopy between f and g, and let H : W x[0,1] — SN x[0,1]
take (z,1) to (h(z,t),t). Since N > 2n+1, H can be homotoped to an immersion H without mov-
ing the boundary [W2]. Then the normal bundle to W x [0,1]in SV x [0,1] is an isotopy between
the normal bundle to f and the normal bundle to g. m

Suppose that we are given a closed submanifold M" C S”t% along with a trivialization o
of the normal bundle to M. We can think of this trivialization as a function f, from a closed
tubular neighborhood X of M in S™* to the unit disk D*, such that the boundary of the tubular
neighborhood is mapped to the boundary of the disk. Let g, : X — S* be the composition
of f, with the map D* — S* that contracts the boundary of the disk to a point. Finally, let
Gy : S"t% — S* be the extension of g, obtained by sending the entire complement of X to a single
point - the image of the boundary of D¥. The association (M, a) — [G,] € Tppx(S¥) is called the
Pontrjagin-Thom construction [M3]. It descends to a homomorphism from the framed cobordism
group Ql;f’k to T,4%(S*), and in the stable range k > n -+ 1 the Pontrjagin-Thom construction gives
an isomorphism between the stable groups Qff and 72 [Po].

Consider a trivial embedding S"~! = dD" C S"**~1. Let v be a trivialization of the normal
bundle to D™ (all choices of trivialization are homotopic), and let ¢ be the normal frame S~}
given by the restriction of v to $”~!, along with the outward normal vector to S»~! C D”™. For any
a € m,-1(SOk), we can define a new trivialization o, of the normal bundle to S™=1 by twisting
o. Explicitly, this means that we put o,], = a(p) - o], for all p € S"~'. Composing with the
Pontrjagin-Thom construction, we get a homomorphism .J,, : m,_1(SOL) — m,_1(S™T*~1), which
in the stable range k£ > n maps m,_1(SO) to 7} _,.

Consider an element o € 7,_1(50). Because the Pontrjagin-Thom construction is an isomor-
phism in the stable range, .J, (o) = 0 if and only if the framed manifold (S"~!, ¢,) is null-cobordant.

This observation can be restated as follows:

Lemma 2.2.5 J,(a) = 0 if and only if there exists a closed manifold M™ and a trivialization f of
the (stable) normal bundle to M away from a point p such that o is the obstruction to extending f

over p.

Theorem 2.2.6 (Kervaire-Milnor) Homotopy spheres are stably parallelizable.

Proof: The only obstruction to trivializing the stable tangent bundle to a homotopy sphere 3 € O,
is a class v,,(X) € H*(3; 7,-1(50)) = m,_1(SO). We now break the proof up into cases corre-

sponding to the residue class of » mod 8.

Case 1: n = 3,5,6, or 7 mod 8. Tp-1(SO) =0=v,(X) =0.



Case 2: n =1or 2mod 8. Here we rely on Adams’ analysis of the kernel of the J-homomorphism
in the stable range [Ad]:

Theorem 2.2.7 (Adams) 1) Ifn =1 or 2 mod 8, then J, is injective in the stable range.
2) If n=0 or 4 mod 8, then we have n = 4m, and Tm(Jy,,) has order j,, = denominator(£z) in

the stable range, where B,, is the m** Bernoulli number.

Remark 2.2.8 Note that .J, could not possibly be injective for n = 0 or 4 mod 8, because
Tp—1(SO) is infinite and 77 is always finite. If n = 3,5,6, or 7 mod 8, then 7,(SO) = 0 and

J, is trivial in the stable range.

By Lemma 2.2.5, J,(0v,(X)) = 0, in which case Theorem 2.2.7 tells us that v,,(X) = 0.

Case 3: n = 0 or 4 mod 8. Let n = 4m, and apply Lemma 2.1.6 to the manifold ¥ with
its stable tangent bundle. This lemma says that p,,[¥] = +a,, - (2m — 1)! - v,(X), but the Hirze-
bruch Signature Formula tells us that p,,[X] is proportional to o(X) = 0, therefore v, (X) = 0. This
completes the proof of Theorem 2.2.6. a

Theorem 2.2.6 gives us a new interpretation of the groups bF, 1. Using the Pontrjagin-Thom
construction, a homotopy sphere X" and a trivialization 7 of its stable normal bundle determine
an element G, of the stable n-stem 75. For any different trivialization 7/, (X, 7') will be framed
cobordant to (X, 7)#(S™, o) for some trivialization o of the stable normal bundle to S”, thus G
and G differ by an element of Im(.J). If ¥; is h-cobordant to ¥3 and 7 is a stable normal frame
of ¥, then 7 extends over the h-cobordism to a stable normal frame of ¥y that determines the
same element of 5. We can therefore define a homomorphism ©,, — =3 /Im(.J) that takes ¥ to
the image of element of 77 determined by any stable normal framing of 3. A homotopy sphere X
is in the kernel of this map if and only if it bounds a manifold W with a trivial (stable) normal
bundle. We have shown that this is equivalent to bounding a stably parallelizable manifold, and
by Corollary 2.2.2 every stably parallelizable manifold with nonvacuous boundary is parallelizable,
hence the kernel is precisely bF,4;. Furthermore ©,/bFP, ; is isomorphic to the image of this
homomorphism, which is a subgroup of the finite group #;/Im(.J). Hence we can conclude that

for all n, ©,, is a finite extension of bF, 41.



§3 Computation of the Groups bP,

3.1 Surgery

In this section we will develop the techniques of surgery required for our study of exotic spheres,
closely following Kervaire and Milnor’s exposition in [KM]. Let M™ be a possibly noncompact
manifold without boundary, with n = p4+ ¢ + 1. Let f : S? x Di*! — M be a differentiable
embedding, and let X be the space M x [0, 1]Uy DP*! x D+ where f is thought of as identifying
SP x DIT1 C DPFL x DIF! with its image in M =2 M x {0} C M x[0,1]. X can be smoothed into a
manifold with boundary, where 90X = M [[ M’ for some closed manifold M’. We call M’ = x(M, f)
the result of surgery! on M along f, and we call X the surgery cobordism between M and M'. If N

can be obtained from M by a finite sequence of surgeries, we say that M and N are x-equivalent.

Proposition 3.1.1 y-equivalence is an equivalence relation.

Proof: Let M' = x(M, f), f : SP x D1 < M. There is a copy of DPT! x S7 sitting inside
M', coming from the part of the boundary of DP*1 x D9F! that is not glued to M x {0}. Define
287 x DPTL — M’ by identifying S? x DPT! with DP*1 x §7 C M’'. Then y(M', f) = M. O

The definitions of surgery and y-equivalence can be easily extended to manifolds with boundary.
Let W™ be a manifold with boundary, n = p4+¢+1, and let f: S? x D! — W be a differentiable
embedding. Then W' = x(W, f) is defined by taking X(VOV, f) and gluing back the boundary. Then
y-equivalence is an equivalence relation on the set of manifolds with boundary. The motivation
for defining the technique of surgery is that it can be used to kill homotopy groups of manifolds
without altering the cobordism class (for closed manifolds) or the boundary (for manifolds with

boundary).

Proposition 3.1.2 (Milnor) Let f : S? x D' — W take a generator of m,(SP x DT to
B € m(W), and let W' = x(W, f). Then m;(W') = m;(W) for all i < Min(p, q), and if p < q, then
(W) 2 7n,(W)/B for some subgroup B containing /3.

Proof: Let X = W x [0,1]u DP*! x D7+l X has W U (DP*! x {0}) as a deformation retract,
hence m;(W) — m;(X) is an isomorphism for i < p, and a surjection for ¢ = p. Furthermore,
B € ker(m,W — m,X).

Similarly, X has W' U (D?*! x {0}) as a deformation retract, and m;(W') — m;(X) is an iso-
morphism for ¢ < g. This completes the proof. O

Let W be a (p — 1)-connected stably parallelizable manifold of dimension n > 2p, and let
B € m,(W) given. In order to surger W along #, we must be able to represent # by an embedding
f:8Px DIt Ww. By the Hurewicz theorem (3 is spherical, and because 2p < n, § is represented
by an embedded sphere. The normal bundle to a sphere is stably trivial, and by Lemma 2.2.1,

! Also called spherical modification [KM].
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g+ 1 > p implies that the normal bundle is in fact trivial. Therefore 3 is always represented by an
embedding f: SP x DIt — Ww.

This is not quite enough to establish that our procedure for killing homotopy groups is effective.
We must know that we can always surger in such a way as to preserve stable parallelizability,
otherwise we may be able to apply Proposition 3.1.2 only once. It is in fact possible to preserve
stable parallelizability, which we will demonstrate by proving an even stronger result. We will show
that given any homotopy class A € 7,(W) and any stable trivialization 7 of the tangent bundle to
W, we can choose f: SP x D71 W representing A in such a way so that surgery along f does
not destroy 7. We will make this precise with the notion of framed surgery.

Let (W™, 7) be a manifold along with a trivialization of the stable normal tangent Ty & ¢!, and
let f:S5Px D? — M be an embedding with n = p+ ¢+ 1. Suppose that there exists a trivialization
o of the normal bundle to the surgery cobordism X between W and W' = X(Vi/, f), such that o
restricts to 7 on W. The trivialization o also restricts to a trivialization U|W, of Ty ® €', which
extends (up to homotopy) to a trivialization u of Ty @®e'. We say that the framed manifold (W, i)
is framed y-equivalent to (W, 7).

Consider a framed manifold (W™, 7) and an embedding f : S x D! — ﬁ/, n=p+qg+ 1.
The it obstruction to trivializing the tangent bundle of the surgery cobordism X lies in the group
HAY X, W x[0,1];7(SOp41)) = HF(DPH x DI S x DI 7,(SO,44)). This group is trivial
unless i = p, in which case it is isomorphic to m,(SOn41). Let v(f) € m,(SOny1) be the pth
obstruction to trivializing this bundle. Now consider a differentiable map o : S* — SO,41, and
define f, : SPx D7t — W by fo(u,v) = f(u,a(u)-v). Since f, is obtained from f by precomposing
with an automorphism of D?*!, f and f, represent the same homotopy class. Thus we would like

to show that we can always choose a € m,(SO,41) such that v(f,) = 0.

Proposition 3.1.3 The new obstruction v(f,) is equal to y(f) + s«(a), where s, : m,(SO441) —
Tp(SOpy1) is induced by the inclusion s : SO;41550,41.

Proof: We follow the argument in [KM]. Let ¢"*! = eP*1 x e?*! be the standard trivialization
of the tangent bundle to DPT! x DI*! and let 7 : DP*! x D91 — X be the natural inclusion.
Then at every point z € f(S? x {0}) C W C X, 7 induces a trivialization i.(t"*!)|, of the tangent
space TX|, = TW @ €'|,.. The obstruction y(f) is the homotopy class of the map g : S? — SO, 41
obtained by comparing 7|, to i.(¢t"*1)|, at each point z € f(S? x {0}). Passing from f to f, has
the effect of replacing 7 : DPt! x D?*! — X with a new embedding i, : DP*1 x D9t1 — X and we

have

lan (") e = (€ T)]e X (fa)L(e7F)]s
= i(e"™)|p x a(z) - fule™™)],

= ("], - 5.0 afz).

The proposition follows. O
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When p < ¢, both groups are stable and s, is an isomorphism. When p = ¢, s, is surjective
by the exact sequence in Section 2.1, thus given any f : SP x DIl with p < q, there exists
a € mp(SOy41) such that surgery along f, can be framed. In particular, this implies that if W
is stably parallelizable and A € 7,(W) is represented by an embedding f : S? x D! — W with
p < ¢, then we can always choose f in such a way so that W’ = x(W, f) is stably parallelizable.

This gives us the following theorem:

Theorem 3.1.4 A stably parallelizable manifold of dimension n > 2k is y-equivalent to a stably

parallelizable, (k — 1)-connected manifold.

We will now investigate the possibility of killing the middle homology group of an even-
dimensional manifold by (nonframed) surgery. A vector basis {a, ..., a,, f1,..., 5.} is said to be
weakly symplectic with respect to a given symmetric or skew-symmetric bilinear form if o; - o; = 0

and o, - 8; = 6;; for all 7, j. A weakly symplectic basis is called symplectic if 3; - 3; = 0 for all ¢, j.

Theorem 3.1.5 Suppose that W is a (k — 1)-connected manifold of dimension n = 2k > 6, and
that Hp (W) has a weakly symplectic basis {a1,...,a., B1,..., 0.} with respect to the intersection
form. Suppose further that each o is represented by an embedded sphere with trivial normal bundle.

Then W is x-equivalent to a contractible manifold.

Remark 3.1.6 A little diagram chasing shows that the stabilization map 71 (SOx) — 7 (SO) is
surjective for & # 1,3,7 [LL2]. Then if & # 1,3,7 and W is stably parallelizable, we will in fact

obtain a framed y-equivalence.

Proof: We will proceed by induction on r. Let f:S* x DF W represent ay. Let W/ = x(W, f),
Wo =W ~ f(S* x lo)k"'l), and let f':S%=1 x D*¥1 5 W’ be the map along which we can surger

to reverse the surgery along f, described explicitly in Lemma 3.1.1. Consider the exact sequence
Hypyr (W, Wo) — H(Wo) — Hy(W) 225 Hy (W, Wo) —2 Hy_y (Wo) — 0.
By excision,

H, (W, W) = H,.(S* x D* 8% x §%1)
= H.(S* x (D*, s 1)
= H.(SY® H.(DF, S 1),

therefore Hy(W, Wy) = Z and Hyy1 (W, Wo) = 0. The Z of Hy (W, Wy) is dual to Hy(S* x D*) =
Hy, (f(Sk X Dk)) by the intersection pairing, therefore Hy (W, W) is generated by an element z
that has intersection number 1 with the image of aq = f(S* x {0}) in Hj, (f(S* x D*)). Then for
A€ Hy(W), 7.(A) = (\,ay) z. Tt follows that Hy_q(Wy) = coker(j.) = 0, and Hy(Wy) = Ker(j.)

is isomorphic to (a1, ..., a0, B2, ..., Br).
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We now need to study the analagous exact sequence involving W’. Since we have shown that
Hy_1(Wo) =0, we get 4
0— Hyp (W) 25 Hp (W W).

By excision,

H, (W' Wy) = H,(S*! x DF! gkl gk
— H*(Sk—l % (Dk+1,Sk))
— H*(Sk—l) ® H*(Dk“,Sk),

hence Hii1(W'Wy) = Z and H, (W', Wy) = Hp—1 (W', Wy) = 0. By exactness, Hip_1(W’') = 0 as
well. This, along with Theorem 3.1.2, tells us that W’ is (k — 1)-connected. All that remains is to
compute Hi(W’). We have

Hipr (W', Wo) 2 Hy(Wo) — Hy(W') — 0.

A generator of the infinite cyclic group Hyyq (W', Wo) = Hpyq(DF1, S*) is represented the
map f'|(z1xpr+1 for some zg € Sk=1 therefore d(1) € Hy(Wy) is represented by the map
F'lizorxaps+1 = flskx (e}, @ parallel copy of a;. As a map to W, f|sky ..} is homotopic to the
map f|gky o} Tepresenting oy, hence Hi(W') = coker(9) is isomorphic to (ag,...,a., B2, ..., 5).

In order to complete the induction on r we must know that ag, ..., . € Hp(W’') are still repre-
sented by embedded spheres with trivial normal bundles, and that the basis {ag, ..., o, B2,..., 5.}
for Hy(W') is symplectic. This will be immediate if the embeddings that represented our original
ag,...,a, € Hp(W) all landed in Wy, which is contained in W’. An equivalent condition is that
for each i > 1, the embedded sphere representing a; € Hi (W) must be disjoint from the embedded
sphere representing «;.

This is where the hypothesis £ > 3 becomes important. Because aq - a; = 0 for all ¢, it will be
possible to pull ay apart from the other o;’s by a technique of Whitney [W1]. We will give a quick
description of this procedure here:

Let M*, N* be submanifolds of W with algebraic intersection zero. Suppose further that M
and N intersect transversely at finitely many points py,q1, ..., ps, ¢s, with positive sign at each p;
and negative sign at each ¢;. We will argue by induction on s that M and N can be pulled apart.
Let o be a path in M from py to ¢, and let 7 be a path in N from ¢; to py, such that ¢ and 7 both
miss all of the other double points. Since W is simply connected, the loop o7 is null-homotopic
in W. Since dim W = 2k > 4, o7 bounds an embedded disk D? ¢ W. Then Whitney shows that
we can pull a neighborhood of o in M through a neighborhood of D? in W, thus eliminating the
double points p; and ¢;. With s applications of this technique, M and N can be deformed into
disjoint submanifolds. (Note that this procedure is completely analogous to Whitney’s proof of
Theorem 3.3.1, which we will use in Section 3.3.)

By this argument we may assume that for all ¢+ > 1, «a; is represented by a sphere with trivial

normal bundle embedded in Wy. This completes the inductive proof of Theorem 3.1.5. a

13



The problem of killing the two middle homotopy groups of an odd dimensional manifold will
be studied in Section 3.2.

3.2 The Groups bPsriq

In this section we use surgery to show that b Py = 0 for all k£ > 1, following Kervaire and Milnor’s

exposition in [KM]. Note that by Lemma 1.1.1, this result is a consequence of the following

Theorem 3.2.1 If W21 s parallelizable and bounded by a homotopy sphere, then W is x-

equivalent to a contractible manifold.

Proof: By Theorem 3.1.4, we may assume that W is (k — 1)-connected. Then by Poincare duality
and the Hurewicz theorem, it is enough to show that we can kill Hy(W). By the Hurewicz theorem
and generic transversality, every element of Hy(WW) can be represented by an embedded sphere,
and by Lemma 2.2.1 these embeddings will induce trivial normal bundles on S*. Hence every
A € Hi(W) can be represented by a map f : Sk x DR 5 1.

As in Section 3.1, let W' = (W, f), Wo = W~ f(S* x D¥1). Let A € Hy(W) be the element
represented by f|5kx{0} : Sk VOV, and let X' € Hi(W') be the element represented by the surgery
along f':S% x DF! 5 W’ that reverses f.

Consider the exact sequence of the pair (W, Wy). By excision,

H (W, Wy) = H,(S* x DF1 S x 8%y = H,(S* x (D", 8% = H,(S%) ® H,(DF, §%),

therefore Hy (W, Wy) = 0 and Hyy1 (W, Wy) = Z. Because our set-up is symmetric in the dimensions
of the surgeries along f and f’, we also have Hy (W', Wy) = 0 and Hy1 (W', Wy) = Z. This gives
us exact sequences

Hisr (W) =2 Z = Hy(Wo) —= Hy(W) — 0 (1)

and
Hyr (W) 25 2 25 Hy(Wo) — Hy(W') — 0, 2)

where ‘X takes & € Hy11(W) to o - A, and -\ takes o’ € Hyqq (W) to o - X.

The infinite cyclic group Hyy1 (W, Wo) = Hyqq (DF, S%) is generated by the map Tlgzoyxprt1
for some zg € S* (compare to the proof of Theorem 3.1.5). The image '(1) of this generator is
represented by the map fl{zo}ank-}-l, which we can think of as a meridian of f. By symmetry, £(1) is
represented by f'|(,1xapr+1 = flskx{zo}, @ parallel copy of A. We will denote £(1) and &'(1) simply
by € and &', respectively. In a similar abuse of notation, define A = ioe : Hy (W', Wy) — Hp(W),
and X = i oe : Hy(W,Wy) — Hp(W’'). We justify this abuse by noting that A(1) = i(e) = A,
because inside W the map f|5kx{x0} representing € can be homotoped to f|5kx{0} by simply pulling

zo toward the origin (compare again to the proof of Theorem 3.1.5). By an identical argument,

i"(e') = X
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Lemma 3.2.2 Hy(W)/A= H,(W')/X.

Proof: By the exact sequences (1) and (2), both are congruent to Hy(Wy)/ (g,€’). o

Call @ € Hp(W) primitive if there exists § € Hypy1 (W) such that a-5 = 1. If A is primitive, then
‘A is surjective, therefore ¢’ = 0. Then X =4'(¢’) = 0, and by Lemma 3.2.2, Hp(W') =2 Hi,(W)/A.
When W is a homotopy sphere, Hy11 (0W) = Hi,(0W) = 0 and Hyyq (W) = Hpy1 (W, 0W). Then
by Poincare duality, the free part of Hy (W) is generated by primitive elements. We can thus reduce
Theorem 3.2.1 to the case where Hy(W) is torsion. We will proceed by induction on the size of
Hi(W).

At this point we will need some more tools. In the following discussion we will deal with
homology manifolds, throwing away any smooth structure (this will be important because our
manifold W is bounded by a homology sphere, but not a priori a smooth sphere). Let F' be any
field, and let M?"~! be a closed homology manifold. We define the semi-characteristic e*(M; F) as

follows:
r—1

e"(M; F) EZrkHi(M;F) mod 2.

=0

Lemma 3.2.3 (Kervaire-Milnor) For any compact homology manifold X?", the rank of the in-
tersection pairing on H,(X; F) is congruent mod 2 to e*(0X; F) + e(X), where e(X) is the Fuler

characteristic of X.

Proof: Consider the exact sequence
Ho(X) 5 H(X,0X) = ... — Ho(X,0X) =0

with coefficients in F. Replacing H,(X) with H,(X)/ker(h), exactness tells us that

rk(h) = rz_irkHi((?X)—}—i:rkHi(X,(?X)—l-rz_irkHi(X)
;i(i ijO =0
= Z rk H;(0X) + Z rk H;(X) by Poincare duality
= ;?8)(; F)+ e(X;:Ornod 2.
Since the rank of & is exactly the rank of the intersection pairing on H,(X; F), we are done. O

We will now restrict our attention to proving Theorem 3.2.1 for the case k even.

Lemma 3.2.4 Let W2 *! be (k — 1)-connected. If k is even, then surgery along f : S¥ x D¥ — W
necessarily changes the k™ Betti number of W .

Proof: Let M?5*! be the closed homology manifold obtained from W by coning over the boundary
OW, which is a homology sphere. Similarly, let M’ be the homology manifold obtained by coning
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over the boundary of W', and let X2¥*2 be the compact homological manifold M x [0,1]U D**! x
DF+1 that arises as the surgery cobordism between M and M’. Then X has the homotopy type of
the cell complex M U e*¥+1 | therefore e(X) = e(M) + (—1)*¥*1. Since the dimension of M is odd,
e(M) =0, and e(X) =1 mod 2. Since k is even, the intersection pairing on Hyy;(X) is skew-
symmetric, and therefore of even rank. Then by Lemma 3.2.3, e*(M [[M';Q)+ 1 = 0 mod 2,
therefore tk Hy(W; Q) = e*(M; Q)+ 1 # e*(M";Q) + 1 = rk H(W';Q) mod 2. o

Recall Lemma 3.2.2, in which we showed that Hp(W)/X = Hy(W')/X. If Hp(W) is torsion,
then Lemma 3.2.4 tells us that Hy(WW’') is not, therefore A’ must have infinite order. Consider the
exact sequence

0= Z 25 Hy(W') — Hi(W')/X = 0.

Since X' has infinite order in Hyi(W’), the torsion in Hy(W') must inject into the torsion in
H,(W')/X = H,(W)/A. Tt follows that the torsion subgroup of Hy(W’') is strictly smaller than
Hy(W). The free part of Hy(W) will be generated by a primitive element (in fact it will be gener-
ated by '), and can therefore be killed by a second surgery. We thus obtain a (k — 1)-connected
manifold W that is x-equivalent to W, with Hy(W") of strictly smaller order than Hy(W). This

completes the inductive proof of Theorem 3.2.1 when £ is even.

Note that by Lemma 3.1.3, the preceding argument could be carried out using framed surgeries
at every step. In the case where k is odd we will once again used framed surgeries, and thus
prove that every parallelizable manifold of dimension (2k 4 1) that bounds a homotopy sphere is
framed x-equivalent to a contractible manifold. In this argument, however, we will do more than
just rely on Lemma 3.1.3, which tells us that any element A € Hy(W) can be killed by a framed
surgery. We will instead exploit the fact that the result W’ of the surgery depends on the choice
of trivialization of the normal bundle to an embedded sphere representing A. By choosing our
trivializations carefully, we will show that it is possible to kill the torsion part of Hy (W), and hence
all of Hy(W). We will proceed by induction on the order of Hy(W).

Given amap a : S* — SOy, 1, define f, : S®x DF W by the formula falu,v) = f(u, a(u)v)
as in Section 3.1. We showed that a can always be chosen so that surgery along f can be framed
(Proposition 3.1.3). We are free to redefine f in such a way that f itself has this property, in which
case the surgery along f, can be framed if and only if & € ker(s* : 7k (SOky1) — ﬂ'k(SO)).

We need to determine which of the objects that we have defined really depend on a. Wy =
W N fo(S*% x D) clearly does not depend on a. It follows that the homomorphism i : Hy(Wo) —
Hj, (W) does not depend on «, and therefore neither does €', the generator of ker(z). On the other
hand, W! = x(W, f,) does depend on «, as does the parallel ¢, € Hy(Wy), which is represented
by falskxqwey- Explicitly, we have e, = ¢ + j(a)e’, where j : mx(SOp41) — 71(S*) = Z is induced
by the standard action of SOg4q on Sk,
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Consider again the exact sequence (1). Since Hy(W) is torsion, Hy41 (W) = 0, thus we have a
short exact sequence
0— Z — Hp(Wo) — Hp(W) =0,

in which ¢ € Hy(W)y) is mapped to A € Hy(W). Let [ > 1 be the order of A\. The [-¢ is in the
kernel of 7, therefore there exists I’ € Z such that [ -+ 1"-¢’ = 0. Since €’ has infinite order, [’ is

unique. Combining this equation with our expression for ¢,, we get
[-ea+ (I'=1-j(a))e =0. (3)

Let 4!, : H,(Wy) — Hy(W/) be the map induced by inclusion, let X, = i (¢’) (recall that ¢’ does

a

not depend on «), and let I/, = |I' = [ - j(a)].

Lemma 3.2.5 The order of X, is equal to I, (where order 0 is taken to mean infinite order).

Proof: By applying ¢/, to both sides of Equation (3), we see that the order of X/, divides //,. On
the other hand, suppose that r - X, = 0. Then i, (r - ) = 0, therefore there exists s such that
re’ + s, = 0. Applying i to both sides, we see that s = k - [ for some k € Z. Then since &' has
infinite order, r = k - I!,. Thus [/, is the order of \/,. ]

Lemma 3.2.5 tells us that the torsion part of Hj(W/) is smaller than Hy (W) if and only if
0 <!, <. We would like to be able to choose a such that this condition is satisfied.

Lemma 3.2.6 For any integer t, there exists o € ker(s,) such that j(a) = 2t.

Proof: The kernel of s, is equal to the image of  : mpy1(S**t!) — 7, (SOgky1), hence we would
like to know that j o @ : mpyq (S**+1) — 7 (S*) is given by multiplication by 2. This is precisely the
statement of Corollary 2.1.3. a

By this lemma, a can be chosen so that 0 < A, < [ unless [’ is an odd multiple of [. If I’ is
an odd multiple of [, then @ can be chosen so that A/, = [, but this is the best that we can do.
Replacing f with f,, we reduce to the case where [’ = [. Now we once again need some more
machinery.

Consider the exact sequence
?] Tx
e Hepn(WQ/Z) — Hip (W3 Z) — Hip(W;Q)— ...,

where the map 0 is defined by lifting 2 € Hyp (W;Q/Z) to 2 € Ciy1(W;Q) and taking its
boundary, which lies in Hip(W;Z). If #' is a different lift of z, then ' = Z + y for some y €
Cr41(W; Z), and therefore the boundaries of & and 7 are homologous.

Let torsion elements oo € H,(W) and 8 € H,(W) be given, with p+ ¢ = 2n. Since « is torsion,
ix(a) = 0, therefore there exists some z € H,11(W;Q/Z) such that dz = «. Define the linking
number L(a, 3) = -8 € Q/Z. Note that if 2’ is a different lift of o, then z-g—2'-5 = (z—2")-5 = 0,
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because z — 2’ € H,41(W;Q) and § is torsion. Linking numbers express the torsion version of

Poincare duality, and therefore define a unimodular form on H,(W) [ST].

Lemma 3.2.7 +I'/l = L(X, \) mod 1.

Proof: Choose some zg € S*, and put ¢ = flizorxpr+1 € Cr1(W;Z) with boundary &’. Since
l-e+1-¢"is homologous to 0 in Wy, it bounds a chain d € Cyq1(Wo;Z). Then c= (d—-1'-¢')/l €
Cr+1(W;Q/Z) has boundary e, which is homologous in W to A.

A = f(S* x {0}) intersects ¢’ transversely at (zq,0), and nowhere else. Since d is contained in

Wo, A misses d completely. Then L(A\,A\)=c- A= —(l'/l)c- Xx=1l"/L. o

Recall that we have reduced to the case where I’ = [, therefore we can assume that L(A,\) =0

for all A € H,(W;Z).

Lemma 3.2.8 If H,(W;Z) is torsion and L(A\,X\) =0 for all X\ € Hy,(W;Z), then H,(W;Z) is a

direct sum of cyclic groups of order 2.

Proof: Note that in general L(n,&) = (—1)P9T1L(&, n), therefore for n,& € Hp(W), L(n,&) =
L&, ). Then Lin+&,m+&) = L(n,n)+ L(§,&) +2- L(n,§), therefore our hypothesis implies that
L(2n,&) = 2- L(n,&) = 0 for all ,§ € Hi(W). Since the linking pairing is unimodular, we can
conclude that that 27 =0 for all n € Hi(W). ]

To summarize what we have proven so far in the case k odd, if W25+ is parallelizable and W

is a homotopy sphere, then W is framed x-equivalent to a (k — 1)-connected manifold with

H(W;Z) = P Za.
=1
We will now prove a lemma along the lines of Lemma 3.2.4, which we used for the case k even.

Lemma 3.2.9 rk H,(W'; Zs) # rk Hy (W3 Zy).

Proof: This proof is almost identical to the proof of Lemma 3.2.4, with Z, coefficients substituted
for Q coeflicients. In the proof of Lemma 3.2.4, we used the fact that k& was even to conclude that
the intersection form on Hyyq (X2 Q) was skew-symmetric, where X was the surgery cobordism
between the closed homological manifolds M and M’ corresponding to W and W’. In our present
context, k odd implies that the intersection form on Hyy;(X;Z) is even (Lemma 2.2.3), therefore
the intersection form on Hyyq1(X;Zs) is skew-symmetric. The rest of the argument is identical to
that of Lemma 3.2.4. a

Now let us take another look at the effect of surgery on Hi(W;Z). By Lemma 3.2.2, H,(W'; Z) /N
is isomorphic to Hy(W;Z)/X 2 (s — 1)Z;. We have assumed that A" and A are both of order 2,
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therefore

Hy(WHZ) = (s — 2)Zy & G,

where G = Zo@® Z4 or Z4. The former case would contradict Lemma 3.2.9, therefore G = Z4. Then
Hp(W') has the same order as Hy(W), but we now have an element which is not of order 2. It
follows from Lemma 3.2.8 that there exists p € Hy(W') such that L(p, ) # 0, which implies by
Lemma 3.2.7 that H (') can be reduced in size by a further surgery. We thus have an inductive
proof of Theorem 3.2.1 for k odd, and that we in fact used only framed surgeries. a

3.3 The Groups bFPy, 42

This section will roughly follow the exposition of Levine [L2]. Let W?* be a parallelizable manifold
bounded by a homotopy sphere, with £ = 2m 4+ 1. By Theorem 3.1.2, W can be surgered into
a manifold that is (k — 1)-connected. The intersection form on Hy(W) is isomorphic to that of
the closed homology manifold obtained by coning over the boundary of W, therefore by Poincare
duality it is unimodular. Alternatively, one could look at the homology sequence of the pair
(W,0W), and note that Hy(0W) = Hyx_1(0W) = 0 implies that the inclusion W — (W,0W)
induces an isomorphism on Hy. Since k is odd, the intersection form on Hy(W) is skew-symmetric,
and therefore admits a symplectic basis. By the Hurewicz theorem, every A € Hy (W) is spherical.
It follows from Proposition 3.1.5 that to kill the middle homotopy group Hy(W), we need only
represent the {a;} by embedded spheres with trivial normal bundles.

To investigate when this is possible, we will need to use some theorems of Whitney on em-
beddings and immersions of S* into manifolds of dimension 2k. Let V?* be any even dimensional
manifold. Given an immersion f : S¥ — V?* with only transverse double points, we define the
self-intersection number Iy of f to be the number of double points with multiplicity. If & is even,
which is the case that we will consider in this proof, we will count the double points with sign
according to the orientations of S* and V, and Iy will be an integer. If £ is odd, the only case that

we will consider, I is defined to be an element of Z,.

Theorem 3.3.1 (Whitney) Let f : S¥ — V% be an immersion with self-intersection number
zero. If V' is simply connected and k > 3, then f is reqularly homotopic to an embedding.

Proof: This is proven using Whitney’s double point removal technique, which is sketched in the
proof of Theorem 3.1.5. For a detailed proof, see [W1] and [M1].

Corollary 3.3.2 If V¥ is simply connected and k > 3, then every \ € 7x(V) can be represented
by an embedded sphere.

Proof: Represent A by an immersed sphere, and let r be the self-intersection number of the immer-

sion. By connect summing with |r| null-homotopically immersed spheres, each with self-intersection
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number —r/|r|, we obtain an immersed sphere with self-intersection number zero that still repre-
sents A. Then apply Theorem 3.3.1. a

Theorem 3.3.3 (Whitney) If two embeddings f,g : S* — V2 are homotopic, then they are

concordant as immersions.

Proof: Let h: S* x [0,1] — V2% be a homotopy between f and g. Whitney shows in [W2] that
the map H : S¥x[0,1] — V2 x [0, 1] taking (z,1) to (h(z,),t) can be smoothed into an immersion.

We now return to the problem of killing Hy(WW). By Corollary 3.3.2 all of the a; € Hy(W)
are represented by embedded spheres, hence we only have to worry about triviality of their normal
bundles. Given an immersion f : S* — W, let v(f) be the induced normal bundle on S*. Since W
is parallelizable, v(f) & Tsx = f*Tw is trivial. Then v(f) is stably trivial, therefore the obstruction
[v(f)] to trivializing v(f) can be thought of as lying in Ly = Ker((s)x : m5—1(SOx) = m_1(SO)).
In Section 2.1 we showed that Ly = 0if £k =1,3, or 7, and Ly = Z; for k odd, k # 1,3,7 (Lemma
2.1.4). Thus if £ = 3 or 7, the obstruction to trivializing the normal bundle to an embedded
Sk C W necessarily vanishes, and as a consequence every parallelizable manifold of dimension 6
or 14 that is bounded by a homotopy sphere in y-equivalent to a contractible manifold. Then by
Theorem 1.1.1, 6Fs = bP4 = 0.

Assume now that k # 1,3,7. Given an immersion f: S* — W, let ®(f) = [v(f)] € Ly, = Zo. If
two immersions f, ¢ : S¥ — W are concordant, then the concordance gives an isotopy between the
normal bundles v(f) and v(g), therefore ®(f) = ®(g). Theorem 3.3.3 tells us that if f and ¢ are
embeddings representing the same homotopy class, then they are concordant. Thus for A € Hy(W),
we may define ®(A\) = &(f), where f is any spherical immersion representing A.

Identifying Hy(W;Zy) with Hy(W;Z) ® Zo, define &3 = d®@1id : Hy(W;Zy) — Zy. If Vis a
finite dimensional vector space over Z, and B is a unimodular, skew-symmetric bilinear form on
V', then a Zsy-valued quadratic form on V associated to B is a map ¢ : V — Zs such that for all
z,yeV,qlz+y) =q(z)+ qy) + B(z,y). The Arf invariant Arf(q) is defined to be the quantity
> q(z;)q(y:), where {z;,y;}; is any symplectic basis for V with respect to B [MH].

Proposition 3.3.4 The map ®y : Hy(W;Z3) — Zg is a Zy-valued quadratic form associated to

the intersection pairing.

Proof: If f,g: S* — W are transverse embeddings representing a and 3 respectively, then a4 3
is represented by the immersed sphere obtained by connecting Im(f) to Im(g) with a small tube.
Let f#g¢ : S* — W denote this immersion. The self-intersection number Tryp, of f#g is equal to

the intersection a - 3. Then if a - = 0, we have

(o + ) = ©(f#g) = ©(f) + (g9) = (o) + 2(B) + - B.

On the other hand, suppose that o -3 = 1, and let A : S¥ — W be a null-homotopic immersion

20



with self-intersection number 1 such that Im(h) misses Im(f#¢g). Then Irgoun = Irp, + I, =0,

therefore

(o + B) = ®(fH#g#h) = @(f) + (g) + ®(h) = ®(a) + P(B) + @(h).

Thus we need to show that ®(h) = 1.

We argue as in Levine [L2]: The obstruction ®(h) does not depend at all on the global structure
of W, thus it is enough to check this equality for a null-homotopic immersion A : S* — S§% x Sk
with self-intersection number 1. Let a,b : S* — §* x S* be the standard embeddings that represent
the two generators of Hy(S* x S*), and let d : S* — S* x S* be the diagonal map representing
the homology class [a] 4 [b]. We have [a] - [b] = 1, therefore ®(d) = ®(a) + ®(b) + ®(h) as above.
The obstructions ®(a) and ®(b) are both evidently zero, therefore ®(h) = ®(d) = [v(d)] = [Tgx].
Recall that we are considering this obstruction as an element of Ly, not of m;_1(SOy). Since Tgx
is nontrivial (Theorem 2.1.9), we must have ®(h) = [Tgx] = 1. ]

Since ®; is a quadratic form, we can define its Arf invariant ¢(W), which we will call the

2

Kervaire invariant of W. Note that ¢ is additive with respect to boundary connect summation.

Theorem 3.3.5 If ¢(W) =0, then W is x-equivalent to a contractible manifold.

Proof: Suppose that ¢(W) = 0, i.e. that there exists a symplectic basis {aq, ..., a,, f1,..., 3.} for

Hy(W; Zs) such that Zq)z(ai)q)Q(ﬁi) = Arf(®3) = 0. For a given ¢, if ®3(a;)P2(8;) =0, then let

=1

a; if y(ay) =0
al = ! (o) ' and gl =
0B; otherwise, «; otherwise,

B; if ®3(a;) =0,

so that ®3(at) = 0. Since Z@Q(Ofi)@g(ﬁi) = 0, we have ®5(a;)®y(5;) # 0 for an even number of
i=1
values 7. Given a pair of such values we may assume without loss of generality that they are i = 1

and 2 = 2. Then put
of = o+ 81 = b,

04/2:@2—51 ﬁézal-

By this procedure we construct a new symplectic basis {of,...,al,31,..., 0.} for H,(W;Z) such
that ®(a}) = 0 for all 2. Then by Theorem 3.1.5, W is x-equivalent to a contractible manifold. O

Lemma 3.3.6 Let ¥; = 0W,; be homotopy spheres for i = 1,2. If ¢(Wy) = c¢(W3), then ¥y is
h-cobordant to X5.

2This invariant has also been named after Arf [Kf] and Robertello [Hz].
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Proof: The Kervaire invariant c¢(Wy#(—W3)) is equal to ¢(W;) — ¢(W3) = 0, therefore Theorem
3.3.5 tells us that (Wi#(—W3)) can be surgered into a contractible manifold. Then X;#(—3) =
O(W1#(—=W>)) is h-cobordant to S*4™+1. O

In Chapter 6, we will construct a parallelizable manifold W?2* bounded by a homotopy sphere
such that ¢(W) = 1. Then by Lemma 3.3.6, we can define a surjection by : Zy — bPy taking ¢ to
the boundary of a parallelizable manifold with Kervaire invariant . The manifold b (1) is called
the Kervaire sphere, and it is the only potentially exotic element of 6FP,;. There still remains the
question of whether or not the Kervaire sphere is h-cobordant to the standard sphere. Browder
[Br] showed that bax(1) is exotic whenever k # 2" — 1. It is known, however, that bsg(1) and bgz(1)
are both diffeomorphic to standard spheres (see [MT] and [BJM]). Thus for k odd,

Zy ifk#27—1;
0 if k=3,7,15, or 31;

bPyy =

and is unknown in the remaining dimensions.

3.4 The Groups 0Py,

We will classify the elements of bFPy,, by the signatures of the manifolds that they bound. As
in Section 3.3, if ¥4"~! = gW*™ is a homotopy sphere, then the intersection form on W can
be identified with the intersection form the closed homology manifold obtained by coning over

Y = 0W. It follows that the form is unimodular, and that (W) is invariant under y-equivalence.

Proposition 3.4.1 Let W be a stably parallelizable manifold of dimension 4m with ¥ = 0W a
homotopy sphere. Then W can be surgered into a contractible manifold if and only if o(W) = 0.

Proof: One direction follows immediately from y-invariance of signature. Now suppose that
o(W) = 0. Any even, unimodular quadratic form with signature 0 admits a symplectic basis
{ay,...,0.,01,...,0-} [MH]. By the Hurewicz theorem and Whitney’s embedding theorem (Corol-
lary 3.3.2), all of the «; are represented by embedded spheres. It remains to show that the {a;}
have trivial normal bundles.

Let fo : S?™<W represent A € Hy,, (W), and let v denote its normal bundle. Since W is stably

parallelizable, v is stably trivial, thus v @ ¢! is trivial by Lemma 2.2.1.

Lemma 3.4.2 The bundle v is trivial if and only if the intersection number X - X is equal to zero.

Proof: Since v is stably trivial, the obstruction [v] to trivialization lies in the kernel of the stabi-
lization map sx : mp—1(SOk) — m4—1(SO). Then [v] = ¢ [Tsx] for some integer ¢ (Lemma 2.1.1),
and therefore A - A = e(v) = ¢ - x(S*) = 2¢ (Lemma 2.1.2). Then A -\ = 0 if and only if ¢ = 0,
which is true if and only if [v] = 0. O
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Since «a; - a; = 0 for all 7, the normal bundles to each of the «; are trivial. Thus by Theorem

3.1.5, W can be surgered into a contractible manifold. |

Corollary 3.4.3 Let Wy and Wy be parallelizable manifolds that are bounded by homotopy spheres
Y1 and X3, and suppose that o(Wy1) = o(Ws). Then ¥y is h-cobordant to 3.

Proof: Let W be the boundary connect sum of Wy and —W5,. By the Novikov Addition Theorem,
o(W) = o(W;y) — a(W;) = 0. Then by Proposition 3.4.1 W can be surgered into a contractible
manifold, and by Lemma 1.1.1 ¥1#£(—33) is h-cobordant to S*™~1. O

Let N be the subgroup of Z consisting of signatures of 4m-dimensional parallelizable manifolds
that are bounded by homotopy spheres. Corollary 3.4.3 tells us that b Py, is a quotient of N, under
the map taking an integer o(W) € N to OW € bPy,,. We now need to determine which integers
arise as signatures of parallelizable manifolds that are bounded by S*"~1!
N map to the identity in bPy,,. We will follow the exposition of [MK].

A closed manifold M will is called almost parallelizable if its tangent bundle can be trivialized

, i.e. which elements of

away from a point. If W is a parallelizable manifold with boundary S*"~!, then we can attach
a disk to W to obtain a closed almost parallelizable €' manifold M with the same signature as
W. Conversely, we can puncture a closed almost parallelizable manifold to obtain a parallelizable
manifold with boundary S4”~!. Thus we will study the signatures of closed almost parallelizable
manifolds of dimension 4m.

Recall the stable J-homomorphism Ju,, : T4m—1(50) — ﬂ';lm_l, with 7,, equal to the order of
Im(J4p ). ldentifying m4,,—1(SO) with Z, o € Ker(Jay,) if and only if o = k- j,,, for some k € Z. It
follows from Lemma 2.2.5 that « is the obstruction to trivializing the stable normal bundle of an
almost parallelizable 4m-manifold if and only if &« = & - j,,, for some k € Z.

Let M*™ be almost parallelizable. Then all Pontrjagin classes p;(Tys) for i < m vanish, and
the Hirzebruch Signature Formula [MS] simplifies to

o (M) = 22" (22"~ 1) B,y po[M)/(2m)!,

where B,, is the m'" Bernoulli number. By Lemma 2.1.6, p,,[M] = +a,,(2m — 1)!a, where
« is the obstruction to trivializing the stable normal bundle on M. By Theorem 2.2.7, j,, =

denominator(£2). We can thus conclude the following

Corollary 3.4.4 There exists an almost parallelizable manifold with signature n if and only if n
is a multiple of o,, = 2¥"+1(22"~1 — 1) . a,, - numerator(2=). Thus bPy,, 2 N/(0,,Z).

It remains only to compute V.

Proposition 3.4.5 N C 87Z.
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Proof: Consider an arbitrary unimodular symmetric bilinear form on a free Z-module X. Let Xy
be the mod 2 reduction of X, and for each z € X, let Z be its image in X(3). Then & : X(5) — Z9
taking z to z -z is a linear functional on a Z, vector space, and is thus given by inner product with
some u € X(g). Let u and u’ be lifts of # to X, so that u-z =2 -2 mod 2 for all z € X, and the
same holds for u'. u and u’ are called characteristic elements for the induced quadratic form Q.

We must have 4’ = v + 2z for some z € X. Then

u v = (u+27)- (u+22)
= u-ut4du-x+4z -z
= w-u+t+4(z-z+2k)+4z -2
= uw-u+8(z-z+k),

therefore u - u is well-defined mod 8.

Every odd, indefinite, unimodular form decomposes as &7 (1) &?(—1) [MH]. The signature p—q
of this form is congruent to u-u mod 8, because we can take u to be the sum of the basis elements.
Our form @ may not be odd and indefinite, but the form Q & (1) & (—1) on the module X & Z? is.
Then by additivity of signature, u - u is always congruent mod 8 to ¢(Q)). By Lemma 2.2.3, we can
choose 0 for a characteristic element of the intersection form. Then ¢(W)=0-0=0 mod 8, and
N C 87Z. O

Remark 3.4.6 In Chapter 6 we will show by construction that N = 8% for m > 2, and therefore
bPy,, is cyclic of order o,,/8. Note that these values agree with the table in Section 1.2.
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84 Techniques in Knot Theory

The classical theory of knots and links began with the study of 1-dimensional submanifolds of S3.
Many of the constructions, however, generalize to codimension 2 submanifolds of S™ for any n > 3.
This will prove to be extremely helpful in our pursuit of geometric intuition for exotic spheres: we
will build exotic spheres using constructions that arise as generalizations of natural constructions

involving knotted circles in S3.

4.1 Seifert Manifolds

Consider a knot K™ C S™*2, by which we mean any closed, oriented submanifold of $"*2.

Theorem 4.1.1 Suppose that the normal bundle to K is trivial, and n > 0. Then there exists an
oriented manifold Wnt1 C S™*2 with OW = K.

Proof: Let N(K) be a tubular neighborhood of K in S"*2. Choose an identification N(K) = K x
D? and let p: 9N (K) — S* be the corresponding projection. Note that up to homotopy, our choice
of identification is tantamount to a choice of homotopy class in [K,S!]. Let X = S"+? \ Z{)J(K),
and let v € H*(X,dX;71(S1)) be the obstruction to extending p over X.

H*(X,0X;m(SY)) = H,(X;m(S") by Lefschetz duality
= H'(N(K);m(S") by Alexander duality
= H'(K;m(S')) because N(K) = K x D?
= [K,S'] because S' = K(Z,1).

If we change our choice of identification of N(K) with K x D? by an element o € [K, S!], then the
obstruction to extending p will change by a. It follows that such an identification can be chosen to
make v vanish.

Let ¢ : S"2 — D? be defined on X by extending p, and on N(K) by projection onto D?. We
can choose ¢ to be smooth, and by Sard’s theorem ¢ and <,o|¢_1(51) have a mutual regular value
z € S'=09D? Let R be the closed radius of D? connecting z to the origin, and let W = ¢~ }(R).
Then W"*t! is a smooth submanifold of $"t? with boundary K, with orientation induced by the
orientations of $”*2 and S! = §D?2. |

W is called a Seifert manifold for K. If n4+1 = 2k, we will define a bilinear pairing § on Hy (W)
called the Seifert form. In order to do this, we define the linking number of two disjoint cycles a,
b € Z,(S?**1). The pairing that we define here will be analogous to what we called the linking
pairing in Section 3.2, though there will be some important differences. The pairing that we define
here will be defined on cycles instead of on homology classes, and it will take values in Z instead
of Q/Z.

Let a, b € Z,(S**!) be disjoint. Choose A, B € Cjy1(D?*2) such that A = a, B = b,
and A and B intersect transversely at finitely many points. Put [k(a,b) = A - B, the number of
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intersections counted with multiplicity. Given a different choice A’ € Cry1(D?*+2) with 0A’ = a,
A — A’ is a cycle, therefore we will have (A — A’) - B = 0. It follows that lk(a,b) is independent of

choice of A, and similarly independent of choice of B.

Remark 4.1.2 A more standard definition is to take B € Cjiq(S?*!) with 9B = b, and put
lk(a,b) = a - B, which looks a lot more like the definition given in Section 3.2. These definitions

are in fact equivalent [Ro].

It is immediate that [k is bilinear, and that (k(a,b) = (—=1)¥+11k(b,a). We will now use linking
numbers to define the Seifert form on Hy(W). Since W is oriented, we can choose a small positive
normal field v to W inside of S2**1. Given a pair of cycles z,y € Z (W), let y* denote the element
of Z;(8™*? \ W) obtained by pushing y along v, and let y. denote the element of Z;(S"+? \ W)
obtained by pushing y along —v. Put 8(z,y) = lk(z,y*) = lk(z.,y).>

Lemma 4.1.3 If z; is homologous to z3 and y; is homologous to yz, then 6(z1,11) = 0(x2,y2),
thus 8 descends to a bilinear pairing Hp,(W) x Hy, (W) — Z.

Proof: By bilinearity of linking numbers, it suffices to show that if either x or y is null-homologous,
then #(z,y) = 0. Suppose that z bounds a (k 4 1)-chain A C W. We can choose a (k 4 1)-chain
B with y* = 0B = BN S+ Then 0(z,y) = lk(z,y*) = A- B =0, because A C ¥+ < y. If y
bounds a (k + 1)-chain B C W, we can push B into S"*% \ W along v, and conclude by a similar
argument that (z,y) = 0. ]

Proposition 4.1.4 0(z,y) + (=1)*0(y,z) = (=1)*z - y, where x -y is the intersection of x and y
on W.

Proof:

0(z,y) + (1) 0(y,2) = [k(z,y") + (=1)"k(ys, 2)
le(z,y™) — lk(z, y.)
= lk(z,y" — y.).

Choose A € Ciy1(D?*+%) with 2 = 9A = AN S**1 and let B be a band in S**! connect-
ing y* and ., oriented so that B = y* — y.. Explicitly, B is the union over all ¢ € [-1,1]
of the push-out of y along the normal field tv. Then a careful sign computation reveals that
lk(z,y* —y) = A-B=(-1)*z-y. ]

Finally, we would like to relate the Seifert pairing to another function that we have defined on

the middle homology group of a manifold with boundary.

®There is a discrepancy in the literature about whether to put 8(z,y) equal to lk(z,y*) or lk(z* y). Here we
choose the convention that will make the signs in our applications the least messy.
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Proposition 4.1.5 Suppose that k is odd, k # 1,3,7, and that W is (k — 1)-connected. Let
Oy : Hy(W;Zy) x H,(W;Z3) — Zgy be the mod 2 reduction of the Seifert pairing. Then for any
€ Hy(W;Zsy), 02(z,z) = Oa(x).

Proof: Let Z be a lift of  to Hi(W;Z), represented by an embedding f : SkW. Extend f
to a proper embedding F : D¥t1<3D?+2 and note that F can be thought of as an element of
Crt1(D¥+2). As before, let v be a positive normal field to W C S?*t! and let w € 7 (Vip11) =
7% (S*) = Z be the obstruction to extending v to a nonvanishing normal field on D**! =Im(F) C
D*+2_ Let © be a generic extension of v to D*!, possibly vanishing at finitely many points. Then
w is equal to the number of zeros of ¢ counted with multiplicity, which is equal to +lk(z,z*) =
+60(z,z). Thus w reduces mod 2 to 0(z, z).

Consider the exact sequence
75 (SOR) 25 T(SOkt1) 2 75 (S®) L 741 (SOR)

induced by the fibration SOy<+SOry1 — S*. By exactness, d(w) = 0 if and only if w € im(p,).
This is the case if and only if there exists a trivialization ¢ of the normal bundle to f, in which case
w is the image of the obstruction to extending the frame (v, o) over D¥*!. Thus d(w) = [v(f)], the
obstruction to trivializing the normal bundle to f. Then by definition of ®, w reduces mod 2 to

@2(.%) O

Remark 4.1.6 Taken together, Propositions 4.1.4 and 4.1.5 provide an alternate proof of the fact
that ®; is a quadratic form (Proposition 3.3.4) in the special case where W is embedded in a sphere

of one greater dimension.

4.2 Cyclic Branched Covers

Consider a knot K™ C S™*? with trivial normal bundle, and let N(K) be a tubular neighborhood
of K. We showed in Section 4.1 that there exists a map ¢ : S"*? — D? with zero set K that
restricts to a projection on N(K).

Consider the map A, : D* — D? taking z to —z?%, where D? is being identified with the
closed unit disk in C, and let A, : M, (S™t% K) — S™*2 be the pull-back of A, along . We call
M, (S™*%, K) the a-fold cyclic branched cover of S™*% along K. Applications of this definition in
Section 5.1 will reveal why we prefer to define A,(z) = —2 instead of z*. Note that over K, A, is a
diffeomorphism, and away from f\;l(K), A, is an a-fold covering with automorphism group Z,. This
property, along with the triviality of the normal bundle to /N\a_l(K) in M,(S™*2? K), characterizes
M,(S™*% K) up to orientation, and may in fact be used as a definition. Thus M, (S™*? K) does
not depend essentially on choice of ¢.

Consider the map ¢ : D"*3 — D? obtained by taking the cone over ¢. We have »~1(0) = CK,
and we would like to perturb @ a little bit so that the inverse image of 0 is smooth. There exists

p € D? near the origin such that W = ¥=!(p) is a smooth manifold with boundary W C S™+?
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a parallel copy of K. We can think of W as a Seifert manifold for K pushed into D"*3 so that
it is properly embedded. Let W be the result of composing ¥ with a diffecomorphism of D? that
fixes S' = 9D? and takes 0 to p, so that W = W=1(0). Let A, : N, (D" W) — D"3 be the
pull-back of X\, along W. We call N,(D"™3 W) the a-fold cyclic branched cover of D"*3 along
W. Its construction is completely analogous to that of M,(S™*? K), and similarly N,(D"*3 W)
depends only on W, not on choice of ¢ or V.

Remark 4.2.1 We have defined M, (S"*% K) and N,(D""? W) in such a way that M,(S"*? K)
is isomorphic to the boundary of N,(D™*3 W). Since

N (D" W) = {(z,2) € D" x D* | ¥(z) + 2* = 0}

comes with a natural embedding in D"*® = D"*3 x D% we get a corresponding embedding of
M, (S"2 K) = 0N, (D" W) in §"t4 = gD™+5.
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65 Brieskorn’s Construction

5.1 Preliminaries

Consider a polynomial map f: C**! — C of the form
()= 50 ot

where (ag,...,a,) € Z"t! and a; > 2 for all i. Let V = V(ag,...,a,) = f71(0), and X =
Y(ag, - -, a,) = VNS where $27+ is the sphere of radius 1 about the origin in C**1. We call
f a Brieskorn polynomial, V' the corresponding Brieskorn variety, and X the link associated to f
or V.

Let ¢ : C"' NV — S! take z to f(2)/|f(2)], and let ¢ be the restriction of ¢ to S?"*! \ ¥,
We use the symbol ¢ for a reason: one consequence of the theorem that follows is that outside
of a tubular neighborhood of 3, ¢ shares the properties of the map ¢ constructed in the proof of

Theorem 4.1.1.

Theorem 5.1.1 (Milnor’s Fibration Theorem) The maps ¢ and ¢ are both smooth bundle
projections. Furthermore, ¢ restricts to a trivialization of the boundary of a tubular neighborhood

of X.

Remark 5.1.2 Milnor proves this theorem in greater generality [M4], allowing f to be any analytic
function. We will give an argument modeled on Kauffman’s [Kf] that is specific to the case of

weighted homogeneous polynomials (see Remark 5.1.3), which include Brieskorn polynomials.

Proof: We first show that f : C**! <\ V — C* is a fibration. In order to locally trivialize
this projection, we define the following actions of RT and R on C**!': For p € RT, € R, let

1 0

p*z= (p“o 20y - - .,p#zn), and let 6 x z = (e“o 20, - - .,e;_fzzn) Note that f(p* z) = p- f(2)
and f(@x2) = € - f(2). For the sake of later applications we have defined the actions * and %
separately, but in this situation they should be thought of as a single action of C* on C**!. Indeed,
pol: f~(a) = f7'(pe?a) is a smooth family of isomorphisms that locally trivializes f|cn+1y -

Remark 5.1.3 A weighted homogeneous polynomial of type (ag, ..., a,) is precisely a polynomial
such that p o8 maps f~'(a) to f~'(pe'’a) for all .

We obtain the map ¢ by composing f|cn+1y with the standard projection of C* onto St,
hence ¢ is a smooth bundle projection. Let X be the noncompact manifold f~*(S}), where & is any
positive real number and S} is the circle of radius delta centered at the origin in C. We will use the
action * to define a map I' : C"*1 {0} — S?"*! as follows: for z € C"*1 <\ {0}, put ['(2) = p, * 2,

where p, is the unique element of R* that sends z to S27+1.

Lemma 5.1.4 The restriction of I to X is a diffeomorphism from X to S?"t!1 \ X.
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Proof: Given p € St (X, let p = m, and put z=p*2 € X. Then ['(2) = p~Lxpxp=p,
therefore I is surjective. To see that I'| x is injective, note that if p,xw = p.*z, then f(w) = /’j—;f(z).
Since w, z € X, this implies that p,, = p,, therefore w = z. O

Since ¢ is a smooth bundle projection and I'|x is a diffeomorphism, ¢ = ¢ o F|)_(1 is a smooth
bundle projection. To see that ¢ restricts to a trivialization of the boundary of a tubular neigh-
borhood of ¥, consider the neighborhood N = {z € ST f(2)] < 5}, where § € RT is chosen
sufficiently small. For any €*? € S, o= (e?)NN = f~1(5e') is a single parallel copy of ¥ = f~1(0).
It follows that the restriction of ¢ to any given slice of N is a diffeomorphism, and therefore that

@ trivializes ON. O

Let F be the fiber ¢=1(1) C S+1\ X, and let F’ be its closure inside of $2"*!. The orientations
of §27*1 and S' induce an orientation on I, hence F is a compact, oriented manifold with boundary
Y. Since I is an orientable, codimension 1 submanifold of $?"*!, its normal bundle is trivial, and
it follows from Section 2.2 that F is parallelizable. For § € R, let Vs = f~1(§). By restricting the
diffeomorphism of Lemma 5.1.4, we obtain a diffeomorphism I' : V5 — ¢~!(1) = F. In particular,
F 2 Vj, the variety defined by the equation z;° 4+ ...z¢» — 1 = 0. If we choose ¢ small enough,
then W5 = V5 N D?"*t! = [ will be a smooth Seifert manifold for a parallel copy of X, properly
embedded in D?7+2,

Because it will be difficult to keep track of all of the different manifolds that in some sense
represent the fiber of ¢, we review what we have so far: the fiber is by definition F, which is
diffeomorphic to Vs for any § > 0, and in particular to V;. This manifold is the interior of a
manifold F = W;, which has boundary 3. All of the manifolds F, Vs, Vi, F', and Wjs are homotopy
equivalent. These algebraic descriptions of the link and the fiber are complemented by the following

knot theoretic interpretation of 3 and Wj as cyclic branched covers:

Proposition 5.1.5 Let ¥ = ¥(ag, ..., an, k). Let W = W; be as defined above, and let Wy, be the
corresponding manifold for Xj,. Then Xy, = My (S* 1 %), and Wy, =& Ny (D?" 2 W).

Proof: The first statement follows from the second by taking the boundary of each side. To see

the second, note that
W, = {(m,y) € D2 x D% | f(z) +yF = 5} = {(m,y) € D2 x D?| fl)-6= /\k(y)}.

The map f — & can be deformed into a smooth map W : D*"*2 — D? such that ¥|g2ns1 = ¢ and
W¥(0,...,0) = =4, inducing an isotopy between Wy and {(z,y) € D*"*t2 x D? | W(z) = \e(y)} =
N (D2 W). O

This proposition gives an interpretation of the link associated to a Brieskorn variety as the

result of a tower of cyclic branched covers of spheres. To trace the tower back to the classical case

of knots and links in S, observe that X(ag, a1) is embedded in S? as the torus link of type (ag, a1).
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The two standard projections of the torus onto S realize ¥(ag, @) as a covering space of S! with
either ag or a; sheets. Taking the projection with a; sheets, we get a description of ¥(ag,a1) as

the cyclic branched cover of S! along the empty set X(ag), a submanifold of codimension 2.

5.2 The Geometry of the Fiber

In this section we compute the homology of F, as well as the Seifert form on F’, considered as a
Seifert manifold for 3. This information will become important in Section 6.2, when we will need to
compute the signature of the intersection form on F. We conclude by computing the monodromy

of the bundle ¢, which will be important tool for understanding the geometry of 3.

2ms

Let €2,, C C denote the group of at? roots of unity, generated by €j = e % . Consider the space

7= {0z | 1) =1 a0d 2 e RF U0} v5)

= {(toglgo,...,tnsﬁ") | Yt =1and t; e RYU{0} Vj} Cc Vi,

and note that J can be identified with the join Q,, *...%€,, . Recall that I is homotopy equivalent
V1. The following lemma shows that F is homotopy equivalent to .J.

Lemma 5.2.1 J is a deformation retract of Vi.

Proof: For any z € V;, move z along a path z(t), with z = 2(0), such that for all j, z;(¢)* moves
on a straight line to the real axis. Then z moves to some 2’ such that (2})% = real(z;J) for all 5. If

J

all of the component paths are parametrized so that each z; moves at a constant speed, then we

have f (z(t)) =real f(2) + (1 —t)im f (z) = 1 for all ¢, hence z(t) stays in V;.

Next, for each j such that (2})* < 0, move (2})* in a straight line to 0 along the real axis,
while simultaneously scaling the positive (z;)aﬂ ’s 80 as to remain within V;. This path ends at some
2" € Vi such that each 2/ has the form tjafj for some t; > 0, k; € Z; in other words 2" € J. Since

J was fixed throughout this sequence of deformations, we are done. a

Consider the simplest possible Brieskorn link, ¥(a) C S'. As a set (a) is empty, and its
complement S fibers over S! with fiber I’ = V; = Q,. Indeed, €, is a Seiftert manifold for the
empty knot in S'. Lemma 5.2.1is in fact a special case of a more general phenomenon: for any knot
K™ C S™*? with Seifert manifold W, Kauffman and Neumann show that the knot M,(K) C S™+*
has a Seiftert manifold with W * Q, as a deformation retract [KN]. This in turn is a special case
of a still more general operation studied by Kauffman and Neumann.

Call a link L™ C S™*2 fibered if there exists a fibration ¢ : S™+t2 < L™ — S! that restricts
to a trivialization of a tubular neighborhood of L. Thus Theorem 5.1.1 says that ¥(aq, ..., a,) is
a fibered link, and in its more general form [M4] it states that the link associated to any analytic
singularity is fibered. Given a pair of knots K™ C S™*? and L™ C S™*? along with a fibration ¢
of L (K need not be fibered), Kaufman and Neumann define a knot product K @ L C S™+m+5,
As a special case, M,(K) is the knot product of K and the empty knot ¥(a), which is fibered
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by A;. Though we will not develop the general construction in this paper, we will proceed with
the philosophy suggested by Kauffman and Neumann’s approach, which is that ¥(aq,...,a,) =
Y(ag) ® ...® X(ay) should be thought of as built up from a bunch of empty knots.

Lemma 5.2.2 (Milnor) Let A, B be topological spaces such that H, A has no torsion. Then

f{k_H(A*B) = Z INJZ(A) ®I~{]‘(B).
iti=k

Proof: The space A x B can be described as (C’A X B) U (CB X A), where C'A and C'B denote

AxB
the cones over A and B, respectively. Consider the Meyer-Vietoris sequence

Hyp1(Ax B) = Hip(A x B) = Hy(CA x B) @ Hy(CB x A) -5 H(Ax B).

Note that the inclusion C'A x B— A x B is null-homotopic (first retract to B X (apex of C'A), then
retract to the apex of C'B). Similarly the inclusion C'B x A< A % B is null-homotopic, therefore
¢ = 0. Since Hy(CA x B) 2 Hy(B) and Hy(CB x A) 2 Hi(A), we are left with short exact
sequences

0— Hk-}-l(A* B) — Hk(A X B) — Hk(A) D Hk(B) — 0,

and we can conclude that
Hys1 (A% B) = Ker (Hk(A X B) = Hy(A) & Hk(B)>.

By the Kunneth formula and the fact that H,A has no torsion, Hxy1(A % B) is isomorphic to

Z H:(A)® H;(B). Then Hp1 (A B) = Hpy1(A* B) is the kernel of the map
iti=k

N Hi(A) @ Hj(B) — Hy(A) © Hy(B),
ivi=k

which is precisely equal to Z H;(A) ® H;(B). ]
i+i=k

Recall that the fiber F' of the bundle projection ¢ is diffeomorphic to Vi, which retracts onto

J. Thus F, F, Vi, and J all have the same homology, which we can describe explicitly with the

following

Corollary 5.2.3 The groups Hy(F) =0 for k < n, and H,(F) = Ho(Q4,) ® ...® Ho(Q,,) is free
of rank p = H(a]' -1).
7=0

27

Consider the basis {z* | 0 < k < a — 2} for Hy(Q,), where 2% = [¢¥] — [¢"11], and e = e« . Let
6, be the Seifert form for ¥(a) with Seifert manifold €,, considered as a Seifert manifold for the
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empty knot in S'. With respect to this basis, 8, is represented by the (@ — 1) x (a — 1) matrix

1 0

The following proposition asserts that the Seifert form on F, a Seifert manifold for 3, is represented

by a tensor product of matrices of this form.

Proposition 5.2.4 If § is the Seifert form on F, then § = (—=1)""tD/2. 9, o ... ®4,,.

Proof: By Corollary 5.2.3 and the Hurewicz theorem, the elements of H,(F) are spherical. By
Whitney’s embedding theorem (Corollary 3.3.2), they are represented by embedded spheres. Then
Lemma 5.2.2 allows us to reduce to the following statement:

Let r=2p+1,t=2¢+ 1. Suppose that o, 8 € Z,(S"), and o, 3’ € Z,(S?). Then

lkgreerr (ax al ) B B) = (=)D ko (a0, B) - lkse (o, )
To prove this, choose A, B € C'p+1(Dk+1) with A = @ and 0B = 3, so that
lkgrren(ax o, Bx3')=(Axa',Bx ).

Note that Axa’ = (AxCa/)U(CAxa') and B+’ = (BxCB')U(C'Bx ('), and the only intersection
comes from the pieces A x Co/ and B x C''. Note also that since o’ and 3’ are spherical, Ca/ and
C' can be smoothed. Then

lksrrn(axa,Bxp') = (Axd/,Bxp)

= (AxCd,BxCd)
(—=1)PDE+D) A BY . (Co/, OB
(=)D ks, (a, B) - Lkg (o, B7).

This proves Proposition 5.2.4. a

To conclude the section on the geometry of F, we will study the monodromy of the bundle
p: Sy — St If B — S'is a fiber bundle with fiber X, then E is obtained from X x [0, 1] by
identifying X x {0} with X x {1} via some diffeomorphism A : X — X. For § € R, z € §?"*1 {3
put hg(z) = 0 x z as defined in Section 5.1. Since this action was used to prove the local triviality
of the fibration ¢, h = hy, : F — F is the monodromy of the bundle . Restricting A to .J, we get

a diffeomorphism rq, * ... %7y, : J — J, where Ta; ° Qaj — Qaj is given by multiplication by ¢;.
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Let hy = 1y, @ ... ® 1q,, be the induced automorphism of H,(F') = H,(J), and let A(t) be its

characteristic polynomial.

Remark 5.2.5 Levine [L1] gives an interpretation of A(#) as the generalized Alexander polynomial
of the knot 3 C §%7+1,

Lemma 5.2.6 A(t) = H (t —egh 57@“)

1<k;<a;—1Vj
Proof: By our description of A, as the tensor product of maps r,; , we need only show that for
each j, the complexification r,;, ®@C: INJO(QQJ; C) — ﬁo(ﬂa] ; C) has eigenvalues €2, ~ {1}. Indeed,
Ta; ® C takes the vector

v = Z gj_ik[gé] to 5? - V.
1<i<a,;—1
The {vi |1 <k < a; — 1} form a basis for f{O(Qa]; C), thus we are done. O

5.3 The Geometry of the Link - When is ¥ a Homotopy Sphere?
Lemma 5.3.1 Ifn > 3, then ¥ is (n — 2)-connected.

Proof: First we follow Hirzebruch’s argument [Hz| to show that m(X) is abelian. We will then
complete the proof by showing that H;(X) =0 for k < n — 2.

Recall that we have f(2) = 20° +...4 227, and V = V(ag, ..., a,) = f~'(0). Let V be the space
obtained from V by removing those elements with z, = 0, and consider the inclusion V<=V ~ {0}.
Since the set {z, = 0} C V has codimension 2, this inclusion induces a surjection on fundamental
groups. The map I': V . {0} — X is a deformation retraction, hence 71 (X) = m;(V ~\ {0}) is the
homomorphic image of 71 (V). It is therefore enough to prove that m; (V) is abelian.

Define ¢ : V. — C* taking z = (20, -+, 2n) to z,. This is a bundle projection with fiber
Vs(ag,...,an-1) = {z [ 20 + ...+ 227 = 5}. Lemma 5.2.1 tells us that Vj(ag, ..., a,—1) is homo-
topy equivalent to the join Q,, *...x€Q, _ , which by Lemma 5.2.2 is simply connected for n > 3.

It follows that 71 (V) = m1(C*) = Z, therefore m; (X) is abelian.
Consider the homology sequence of the pair (F, F):

Hk+1(F) — Hk-|—1(F7 F) — Hk(F)

By Alexander duality [Ma], Hypy (I, F) =2 H*=F=1(¥) = H.(X). Then Corollary 5.2.3 tells us
that Hy(X) =0 for k < n — 2. ]

Proposition 5.3.2 The link ¥ is a homotopy sphere if and only if A(1) = +1.
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Proof: Consider the Wang sequence of the bundle ¢ : $?"+1 ¥ — S1:

Li—hx

0— Hop (ST NY) — H(F) H,(F) = H,(S* '\ X) = 0.

The map I, — h, is an isomorphism if and only if A(1) = det(/. — hs) = £1. By Alexander
duality, Hyy,(S?t1 \X) =2 H?F=1(X) = H,(X) for all k, hence I, — h, is an isomorphism if
and only if the groups H,11(S?"*1 \X) = H,(X) and H,(S*"*t! \X) = H,,_;(X) are both trivial.
By Lemma 5.3.1 and Poincare duality, this condition is equivalent to 3 being a homotopy sphere. O

We now use Proposition 5.3.2 to give some specific examples of homotopy spheres that arise as

links of Brieskorn polynomials.

Corollary 5.3.3 For n > 3 odd, ¥(3,2,...,2) is a homotopy sphere.

T ) 27 4mi

Proof:A(l):(1—627)-(1—647):2—67—6T:2—1:1. O

Corollary 5.3.4 For p, q odd and relatively prime, n > 3 even, ¥(p,q,2,...,2) is a homotopy
sphere.

Proof:

am= JI a+em = T a+o]-| T a+9o - I a+o9

i p—} CEQpg~{1} CeQp~{1} CeQq~{1}
q

For any odd number r,

IT a+o - JI a-0= ] a-¢= I a-9.

CEQT\{l} CEQT\{I} CGQT\{I} CEQT\{I}
Since H (1 = ¢) is nonzero, H (14 ¢) must equal 1. Hence A(1) = 77 = 1. O
CeQr~{1} CeQ~{1}
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§6 Construction of the Groups bP,

6.1 Construction of 6P, .-

In this section we give three different proofs that for n = 2m 41 > 3, ¥(3,2,...,2) is in fact the
Kervaire sphere, the only potentially nontrivial element of bPy,, 2.

27
3

Let e = e5 . By Corollary 5.2.3, H,,(F;Zs) = Hy(Q3;Zs) = {0,2°, 2", 2° + 2'}, where
2 =[1]-[e] and z'=[]-[?].

Any basis for a rank 2 Zy-vector space is symplectic with respect to any skew-symmetric form, hence
we may use the basis {z°, 2!} to compute ¢(F). The isomorphism A, induced by the monodromy A
takes 2° to 2! and 2! to 2%+ 2!, therefore we must have ®3(2°%) = ®5(z') = ®3(2°+ 2'). Since &,
is a quadratic form, these quantities cannot all be zero, hence ®5(2°) = ®@y(2') = 1 and ¢(F) = 1.
This proves that 3(3,2,...,2) is the Kervaire sphere.

Alternatively, we can see that ¢(F) = 1 using the knot theoretic approach. We saw in Propo-
sition 4.1.5 that ®3 = 63, the reduced Seifert form. We know by Proposition 5.2.4 that 6 is
represented by the matrix Az with respect to this basis, hence 6,(z%) = 63(z!) = 1.

Yet a third approach, also derived from knot theory, is to make use of a theorem of Levine

[L1] which asserts that ¢(#) = 1 if and only if A(—1) = +3 mod 8. In our case, A(—1) =
2me :

(—1—e3)-(-1— e43ﬂ) = 3, therefore ¢(F) = 1. For a more general formulation and proof of

Levine’s theorem, see [Lu].

6.2 Construction of bPy,,

In this section we will use Brieskorn’s construction with n = 2m > 4 to construct the elements
of bP,,,. The results of Section 3.4 tell us that we should study the intersection form on I, and
compute its signature. We will be able to do this using Lemma 5.2.4 and Proposition 4.1.4, which
relates the intersection form to the Seifert pairing. We will compute the intersection form on F for
general n, and the restrict to the case n = 2m even to compute its signature.

Let GG, denote the cyclic group of order a;, isomorphic to €2,,, with generator w; corresponding
to g; € Q,,. We will use the notation ,, when we want to think of this group abstractly, and
Qa] when we want to think of a subset of the complex numbers. Let G = G4, X ... x G,,. We
will also think of w; as the element of (&, representing the product of w; € G,, with the identity

e € G, for all i # j. The reason for the extra notation is that we will eventually want to consider

representations of G in which an element wgo ...wF" € G is mapped to €g°k° ...gZnkn ¢ C, where
(zo,...,z,) is some (n + 1)-tuple of integers. To avoid confusion, we must distinguish between w;

and ;.

Recall that by Lemma 5.2.1, I has the same homology as .J, an n-dimensional simplicial complex
with n-simplices corresponding bijectively to elements of G. Let x. be the simplex corresponding
to the identity element of G. Since G acts freely on the set of n-simplices, C),(J;Z) = Z(G)z.,
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where Z(G) is the group ring of G. Let n = H(e —w;) € Z(G), and let h =nz. € C,,(J; Z).

Jj=0
Lemma 6.2.1 The n'* homology group H,(J;Z) is congruent to the additive group Z(G)n C Z(G).

Proof: Since J has no cells in dimension greater than n, we have H,,(J;Z) = Z,(J;Z) C C,(J; Z).
By definition of h, Z(G)h = Z(G)n as an additive group. Thus we need to show that Z,(J;Z) =
Z(G)h.

Consider the face operator 9; : C,,(J;Z) — C,_1(J; Z) taking a simplex to the face opposite the
vertex corresponding to the (7, factor of GG. Since changing a vertex will not change the opposing
face, we have the composition 9; o w; = 0;, where w; denotes multiplication by w; € G C Z(G). It
follows that 9;(h) = 0 for all j, therefore h is a cycle, and we have Z(G)h C Z,(J;Z). By Lemma
5.2.3, Z,(J;Z) = H,,(J;Z) is free of rank (ag — 1) ...(a, — 1). Since Z(G)h is a free subgroup of
rank (ap —1)...(a, — 1) over Z, and its generators {gn | ¢ € G} are indivisible over Z, we must
have Z,(J;Z) = Z(G)h. O

27

Consider the basis {xf = [5;“] — [€§+1] |0 <k<a;— 2} for f{o(Qa]), where ¢; = 2% . In
Section 5.2 we showed that with respect to this basis, the Seifert form 6,;, has matrix A,;,. Now
consider a group element g = 'wgo ..wfn € Gy with 0 < k; < a; — 1 for all . The corresponding

cycle
n

gn = H(wkﬂ - wkﬂ_l) € H,(F;Z)~ H,(J;7)

J J

can be identified with the tensor product xgo R...0 :CfL" of elements of f{o(Qa]), using the isomor-
phism H,(F) 2 Hy(Q4,)®. . .©Hy(Qa,) of Corollary 5.2.3. We must be careful here: {22, m;J_Q}
is a basis for f{(Qa]). The element that we call :E;J_l is not in this basis, but can be expressed as
the sum — EZJ:_OZ mf This is important to keep in mind in the computation that follows.

By Proposition 4.1.4,
<w§° owkny, 77> = O(wSO Cowk )+ 0(n, 'wgo k)

n(n - K n(n & K
= ()R] 6, (277,29 + (1) 2T 04, (29, 27).
J=0 7=0

Looking at the matrix A,,

1 if kj = 0;

k .
0., ($j],33?) =< -1 ifk;=1;
0 otherwise.
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k
J

Hence []7_; 0,4, (2}, x?) = 0 unless k; € {0,1} Vj, in which case

k , .
Hga] (acjﬂ,w?) = (—1) , where r = #{j | k; = 1}.

Similarly,
1 if k]' = 0;
Oa](-r?a$?) =4 -1 if k]‘:a]‘ — 1
0 otherwise.

Hence []7_ 0,4, (m?, mfj) = 0 unless k; € {0,a; — 1} Vj, in which case

k s .
Hﬁa] (m?,.rjj) = (—1)°, where s =#{j | k; =a; — 1}.

We have thus proven the following

Theorem 6.2.2 Let g = w® ... wk» € G. Then (gn,n) = (=1)*+1)/2 (r(g) +s(g)), where

(—1)#Ulk=1}f k. € {0,1} V5; (—1)#Ulki=a=11 yf ko€ {0,a; — 1} V5
r(g) = and s(g) =

0 otherwise; 0 otherwise.

Left multiplication by G is an isometry; that is for all z,y € Z(G)n, g € G, we have (gz, gy) =
(z,y). Thus theorem 6.2.2 actually tells us everything about the intersection form on F. For
=3 ny,9 €L(G), let =3 5n,g7". Then for z, y € Z(G), we have (zn,yn) = (zyn, n). Now
define a function f : Z(G) — Z by sending ¢ to (¢gn,n), and extending linearly to Z(G). For all
z € Z(G), (zn,n) = f(z) = Tr(zf), where f = S f(g)g~" and Tr(Y>-nyg) = ne. Thus for all
z,y € Z(G)n,

(@n, ym) = (zym,n) = Tr(zyf).

Note that this form is symmetric if n is even, and skew-symmetric if n is odd. This is true
because it is the intersection form on a manifold of dimension 2n, but we can also verify it directly
by checking that f conjugates to (—1)”f, therefore (yn, zn) = Tr(a?yf) = Tr(a;y}) = (=1)" (zn, yn).
From this point on we will assume that n = 2m, in which case our form is symmetric, and
(=1)"(+1)/2 gsimplifies to (—1)™. We are interested in the signature of the intersection form over
Han (F5R) = R(G)n.

We will continue in a more general context. Let G be any abelian group, A an element of R(G)
such that A = A, and consider the G-invariant symmetric bilinear form (z,y) = Tr(zyA). Let o

be the signature of this form.

Proposition 6.2.3 If(;’ is the set of irreducible complex representations of G, then o = Z sign x(A).
XEG
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Proof: For any x € G, put

Sy = Zx(g) g !, ty = sy + 55, and w, = —i(sy, — sg),
g€eG

all elements of the complex group ring C(G). When we consider C(() as a representation of G, it
decomposes as @ C(G)y, where
x€G

C(G)y ={a e C(G) | Vg € G, ga=x(g)a}
is the complex one-dimensional subspace of C(G) spanned by s,. This leads to the decomposition

R(G)= @ (CG)y+CG)y) NR(G),

pairs x,X

where (C(G)y + C(G)g) NR(G) is spanned by t, and u,. For z € C(G)y,, y € C(G)y,, and g € G,
(z,y) = (9z,9y) = x1(9)x2(9)(z,y). If x1 is not equal to X2, then we can pick ¢ € G such that
X1(9)x2(g) # 1, therefore (z,y) = 0. Thus our bilinear form is orthogonal with respect to the above
decomposition of R(G), therefore to calculate its signature we can add up the signatures o, of the
restrictions to each piece (C(G)y + C(G)g) NR(G).

First look at the pieces where x = Y. These pieces are spanned by t, alone, and (t,,t,) =
Tr(ty b, A) = |1?| Tr(t,A), therefore o, = sign Tr(t, A).

Now look at the pieces where y # x. Since (G is an abelian group acting irreducibly on
a two dimensional vector space, it must act by rotation. A rotation-invariant inner product
on R? is unique up to scalar, hence our form must be a multiple of the standard inner prod-
uct. It follows that o, = 2sign(t,,t,) = 2signTr(¢t,A) = sign Tr(t, A) + sign Tr(tgA). Thus
o= Z oy = Z sign Tr(t, A).

x€eG e

Put A, = Tr(gA), the coefficient of g=! in A. Since A = A, A, = A,-1, therefore

Tr(t,A) = > (x(9) + x(9)) A,

G

= Y (@) A, +¥(9)4y)

g€G
= Z (X(g_l)Ag + X(g_l)Ag) because Ag_l = Ag

g€G
= 2:) x(e7"4,

g€G
= 2-x(A).
Then sign Tr(t, A) = sign x(A), and ¢ = Z sign y(A). 5
G

39



We will now apply this theorem to G = G, X...xG,, and A = f The irreducible characters
of G are indexed by (n + 1)-tuples (zo,...,%,), 0 < 2} < ay, taking wy, to €% for all 0 < k < n.

Lemma 6.2.4 If any z; =0, then x(f) = 0.

Proof: Suppose that g = 0. Then y descends to a function x’ on G' = G/G,,, and

x(H) = D floxtg™

g€eG

= Y Flgoh) (b7

hEGl g0 EGQO

= Y XGTY) YD Fgoh).

heq’ 90€Go

Either f(goh) = 0 for all gg € G4, or f(goh) = +1 for exactly one value of gg, —1 for exactly one

value of gg, and 0 for all other values of go. Hence Z f(goh) = 0 for all h € G', and therefore
A 90€Go

the total sum x(f) vanishes. ]

Proposition 6.2.5 Let x be the irreducible character corresponding to the (n+1)-tuple (zo, ..., z,),
n

with 0 <z}, < ag. Then x(f) < 0 if and only z'f0<zm—j<1 mod 2Z, and x(f) > 0 if and only
0

j=0 4

f 1 =L <2 mod 2Z.

if <]Z:;aj< mo

Proof: Evaluating x on f, and plugging in the values of f computed in Theorem 6.2.2, we have

X(f) — Z e,_:aafoko N .€;$"k"f(w§0 B win)
0<k;<a;Vj

= ()" YD e (ol k) o+ s(wfe i)
0<k;<a;Vj

= (—nm YT ke gpambn () #{k20)
hy€{0,1}¥)

(=)™ ST gk gprnkn () #RE0),
k;€{0,—1}Vj

Each of these sums then factors as a product, and we have

X(f) = <—1>mf[(1—€}“) +<—1>mfl (1-<7)

=0 =0

n

= 2-(=1)"real H (1 — 8?)

J=0
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We now use the identity 1 — e?? = —2ie’ sin(6) to obtain

A - misd ;
x(f) = 2-(—1)"real H (—Qie % sin (ﬁgc—]))
j=0 “
n ) mil L 2
= 2-¢"-(=1)"real H (QSin (ﬂ'ﬂ)) e <2+E aﬂ)
j=0 E

n ,o mi L4 %y

= 2-real H (2 sin (ﬂ'ﬁ)) e (2 > a]) , since " = (—1)™.

aj

i=0

n
T
Since we are taking the sign of this expression, we can drop the positive number 2-H (2 sin (ﬂ'—])) ,
a

7=0 I

and we are left with )
AN . St $_]
x(f) = sign real [exp (m (2 + Z aj))] ,

which proves Proposition 6.2.5. a

We now specialize to the case ¥ = ¥(p, ¢, 2, ...,2), where p, ¢ are odd and relatively prime. Let
Np7q:#{1§$§%|1§q$§p?;l modp}.

Proposition 6.2.6 The signature o of the Brieskorn link ¥(p,q,2,...,2) is equal to the quantity
(=™ [%(p = (g = 1) +2(Np,e + Nq,p)] :

Proof: Assume that m is even, so that (—1)™ = 1. The case m odd follows easily from this one.
Taken together, Propositions 6.2.3 and 6.2.5 tell us that

A
3p/2
p c
p/2 . B
A -
g/2 q 30/2
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In the above picture, o+ (F) is equal to the number of interior lattice points in region B, and
o~ (F) is equal to the number of interior lattice points in regions A and C, or twice the number of
interior lattice points in region A. Since (p, ¢,2) = 1, there are no lattice points on the diagonal lines,
hence o+ (F)+a~(F) = (p—1)(g—1). Then o(F) = (p—1)(q—1)~2-0~ (F) = (p—1)(g—1)—4-T,

where T is the number of interior lattice points in region A.

p=1 p=1
2 q qz 2 qg—1 qz 1 R

T = 217 = £ - _ (= Z_
Sl-s=x (- [5] m)),

where [_] denotes greatest integer function, and R, , is the least non-negative integer representing
gr mod p.

Evaluating this sum, we have

p—1
b=l -1 i[qw]
2 2 P,q g p .

By symmetry, we may switch p and ¢ in the above equation. Adding the two equations together,

we get
p=1 a=1
1 ~[az] O~ [ry
Q'T:5'(19_1)(q_1)_Np7q_Nq7p_Z o -
- LP - L4
p—1 g=1
We can calculate the quantity ) 2, {%} + Eyil {%} by a lattice point argument that is fa-

p—1
miliar from one of the common proofs of quadratic reciprocity. The sum ) 2, {q]ﬂ is equal to

the number of interior lattice points in the triangle with vertices at (0,0), (§,0), and (£, {), while
g—1

Eyi_l {%} is the number of interior lattice points in the triangle with vertices at (0,0), (0,7), and

(5,2). When we add these two sums together, we get the number of interior lattice points of the
rectangle of width £, height 1, and two sides along the coordinate axes, which is equal to % . %
Then o(F) = (p—1)(¢g—1) —4T = %(p = 1)(g= 1)+ 2(Np,g + Ngp)- =

Corollary 6.2.7 U(E(Gk -1,3,2, ...,2)) = (=1)"-8k. Thus bPy,, = 8Z/0,ZL = Zog_m, and all of
its elements are of the form ¥(p,q,2,...,2).

The main results of this paper can be summarized by the following

Theorem 6.2.8 Let X" be a homotopy sphere, n > 5. The following are equivalent:
1) ¥ is the cyclic branched cover of S™ along an oriented knot K™™*
2) 3 embeds in S"?
3) X €bPt.

Proof: 1 = 2 by Remark 4.2.1, which says that the cyclic branched cover of a sphere along a

manifold of codimension 2 itself embeds in codimension 2. Now suppose that we are given an em-
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bedding of 3 in S™*2. Since X is a homotopy sphere, H%(X) = 0, therefore there is no obstruction
to trivializing the normal bundle. Theorem 4.1.1 tells us that ¥ bounds a Seifert manifold, which
is oriented. An oriented, (n + 1)-dimensional submanifold of S"*2 has a trivial normal bundle,
therefore it is stably parallelizable. But this Seifert manifold has a nonvacuous boundary, therefore
by Corollary 2.2.2 it is parallelizable, and ¥ € bF, ;. This shows that 2 = 3. Finally, 3 = 1 by

the computations in this and the previous section. a
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