tropical linear spaces, part 1: constant coefficients

tropical linear spaces, part 2: arbitrary coefficients

ropical linear spaces, part 1: constant coefficients

tropical linear spaces, part 2: arbitrary coefficients

linearity in the tropics

federico ardila

san francisco state university san francisco california usa

connections for women . tropical geometry msri . aug 22,23 . 2009

(3,-2,0)

tropical linear spaces, part 1: constant coefficients

tropical linear spaces, part 2: arbitrary coefficients

outline

tropical geometry tropicalisation examples of tropical varieties

tropical linear spaces, part 1: constant coefficients linear spaces and matroids matroid theory the main theorem

tropical linear spaces, part 2: arbitrary coefficients from constant coefficients to arbitrary coefficients the combinatorics of matroid subdivisions

Summary. Tropical varieties are not simple objects; even tropical linear spaces have a very rich and interesting combinatorial structure which we only partially understand.

Tropical geometry: a general philosophy

Tropicalisation is a very useful general technique:

algebraic variety \mapsto tropical variety $V \mapsto$ Trop(V).

Idea: Obtain information about V from Trop(V).

o Trop(V) is simpler, but contains some information about V. o Trop(V) is a polyhedral complex, where we can do combinatorics.

Similar to : toric variety \mapsto polyhedral fan

Tropicalisation.

The field $K = \mathbb{C}\{\{t\}\}$ of Puiseux series:

 $f(t) = \alpha_1 t^{r_1} + \alpha_2 t^{r_2} + \cdots, \qquad \alpha_i \in \mathbb{C}, \{r_1 < r_2 < \cdots\} \subset \mathbb{Q}.$

has valuation deg : $\mathcal{K} \to \mathbb{R} \cup \{\infty\} =: \overline{\mathbb{R}}$ where deg $(f) = r_1$.

Tropicalising points: deg : $\mathcal{K}^n \to \overline{\mathbb{R}}^n$ $\mathcal{A} = (\mathcal{A}_1, \dots, \mathcal{A}_n) \mapsto \mathcal{a} = (\deg \mathcal{A}_1, \dots, \deg \mathcal{A}_n)$ $(t^2 + 3t^3 + t^4 + \dots, t^{1.5} + 2t^2) \mapsto (2, 1.5)$

Tropicalising polynomials: Trop : $K[X_1, .., X_n] \rightarrow \{f : \mathbb{R}^n \rightarrow \mathbb{R}\}$ $A \mapsto \deg A \qquad X + Y \mapsto \min(x, y) \qquad X \cdot Y \mapsto x + y$ $(t^{1.5} + t^3)X^2 + 2YZ \mapsto \min(1.5 + 2x, y + z)$

Fundamental Theorem of Tropical Geometry.

Theorem/Defn. (Einsiedler-Lind-Kapranov, Speyer-Sturmfels) Let *I* be an ideal in $K[X_1^{\pm 1}, \ldots, X_n^{\pm 1}]$ and let

$$V = V(I) = \{A \in (K^*)^n | F(A) = 0 \text{ for } F \in I\}$$

The tropical variety Trop(V) is

Trop(V) :=
$$\{a \in \overline{\mathbb{R}}^n | (\operatorname{Trop} F)(a) \text{ is achieved twice for } F \in I\}$$

= $\operatorname{cl}(\operatorname{deg} A | A \in V)$

Informally,

$$Trop(V) :=$$
 Solutions of tropical equations
= cl (Tropicalisation of the solutions).

tropical linear spaces, part 1: constant coefficients

tropical linear spaces, part 2: arbitrary coefficients

Trop(V) := Solutions of tropical equations = cl (Tropicalisation of the solutions).

Ex.
$$V = \{(X, Y, Z) \in (K^*)^3 | (t^{-3} + 2)X + (t + 5t^{1.5})Y + Z = 0\}$$

1. Tropicalise equations:

Trop
$$V = \{(x, y, z) \in \mathbb{R}^3 | \min(x - 3, y + 1, z) \text{ att. twice} \}.$$

2. Tropicalise solutions:

 $Trop(V) = cl \{ (deg X, deg Y, deg Z) | (X, Y, Z) \in V \}$

 $(2 \subseteq 1)$: Exercise. $(1 \subseteq 2)$: Harder.

tropical geometry	tropical linear spaces, part
00000	000
0000	000
	0000

Tropicalisation:

algebraic variety \mapsto tropical variety $V \mapsto$ Trop(V).

To apply this technique, we ask two questions:

1. What does Trop(V) know about V?

Find the right questions in alg. geom. to "tropicalise".

- Gromov-Witten invariants $N_{q,d}^{\mathbb{C}}$ of \mathbb{CP}^2 (Mikhalkin)
- Double Hurwitz numbers. (Čavalieri-Johnson-Markwig)
- 2. What do we know about Trop(V)? Not very much!
- (*V* irred.) Pure, connected in codimension 1. (Bieri-Groves).
- (V Schön) Links have only top homology. (Hacking)

Tropical varieties are 'simpler', not 'simple'. Study them!

Examples of tropical varieties

Example 1. Tropical hyperplanes in \mathbb{TP}^{n-1} .

 $A_1X_1 + \ldots + A_nX_n = 0 \mapsto \min(x_1 + a_1, \ldots, x_n + a_n)$ ach. twice

 \mathbb{TP}^2 : min(x - 3, y + 2, z) twice \mathbb{TP}^3 : min (x_1, x_2, x_3, x_4) twice

Tropical projective plane \mathbb{TP}^2 : $(a, b, c) \sim (a - c, b - c, 0)$

Polar fan of the simplex centered at $-(a_1, \ldots, a_n)$.

ropical linear spaces, part 1: constant coefficients

tropical linear spaces, part 2: arbitrary coefficients

Example 2. Tropical conics in \mathbb{TP}^2 :

 $AX^2 + BY^2 + CZ^2 + DXY + EXZ + FYZ = 0 \mapsto$ min $(a + 2x, b + 2y, \dots, e + x + z, f + y + z)$ achieved twice.

Two tropical conics:

In principle, could have up to $\binom{6}{2} = 15$ edges. In fact, they all have 4 vertices and 9 edges (3 bounded).

ropical linear spaces, part 1: constant coefficients

tropical linear spaces, part 2: arbitrary coefficients

Example 3. A tropical line in \mathbb{TP}^3 .

$$L = \text{rowspace} \left[\begin{array}{ccc} 1 & t & t^2 & t^3 \\ t^3 & t^2 & t & 1 \end{array} \right]$$

Trop *L*: The following are attained twice: $min(x_1 + 2, x_2 + 1, x_3 + 2), min(x_1 + 1, x_2, x_4 + 2),$ $min(x_1 + 2, x_3, x_4 + 1), min(x_2 + 2, x_3 + 1, x_4 + 2)$

ropical linear spaces, part 1: constant coefficients

tropical linear spaces, part 2: arbitrary coefficients

The goal of this talk:

To summarize what we know about tropical linear spaces.

tropical linear spaces, part 2: arbitrary coefficients

Tropical linear spaces, part 1: constant coefficients.

Goal. If V is a linear subspace, describe Trop V.

(Part 1: Assume that all coefficients are in \mathbb{C} .)

 $w \in \operatorname{Trop} V \iff$ for each circuit (equation) $a_1 X_{i_1} + \cdots + a_k X_{i_k} = 0$ of V, min $(w_{i_1}, \ldots, w_{i_k})$ is achieved twice.

Example.
$$L = \text{rowspace} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 2 & 0 \end{bmatrix}$$
.

 $X_1 - X_2 + X_3 = 0$, $X_4 = 2X_3$ Circuits: 123, 34, 124.

Trop *L*: min(w_1 , w_2 , w_3), min(w_1 , w_2 , w_4), min(w_3 , w_4) att. twice.

00000	tropical line						0000
L = rows	pace	0 1 0	0 1 1	0 0 1	0 0 2	1 ⁻ 0 0	. Circuits: 123, 34, 124.

Trop *L*: min(w_1 , w_2 , w_3), min(w_1 , w_2 , w_4), min(w_3 , w_4) att. twice.

 $w_1 = w_2 < w_5 = w_3 = w_4 \text{ ok}$ $w_1 = w_3 = w_5 < w_s = w_4 \text{ no}$

Note.

- w₅ is irrelevant.
- Order of w_1, w_2, w_3, w_4 is either

•
$$W_1 > W_2 = W_3 = W_4$$
,

• $W_2 > W_1 = W_3 = W_4$, or

•
$$W_3 = W_4 > W_1 = W_2$$
.

tropical geometry	tropical linear spaces, part 1: constant coefficients	tropical linear spaces, part 2: arbitrary coefficients
00000	000	0000
0000	0000	0000000

So Trop V only depends on the matroid (set of circuits) of V.

For any matroid M (set of circuits) we define

Trop $M := \{ w \in \overline{\mathbb{R}}^E \mid \min_{c \in C} w_c \text{ is achieved twice for all circuits } C. \}$

(sometimes called the Bergman fan of M.)

This calls for a crash course in matroid theory.

•00

Matroid theory, v1: circuits.

Matroid theory: An abstract theory of independence.

(Instances: linear, algebraic, graph independence.)

The key properties of (minimal) dependence:

A matroid *M* on a finite ground set *E* is a collection *C* of circuits (subsets of *E*) such that: C0. \emptyset is not a circuit. C1. No circuit properly contains another. C2. If C_1 and C_2 are circuits and $x \in C_1 \cap C_2$, then $C_1 \cup C_2 - x$ contains a circuit.

Ex: The matroid of a vector space / config. L = row(E)

(circuits) \leftrightarrow (minl eqns. of *L*) \leftrightarrow (minl linear deps on cols of *E*)

tropical linear spaces, part 1: constant coefficients

tropical linear spaces, part 2: arbitrary coefficients

Why matroids?

000

- They are general, applicable, and well-developed. Example: Every matroid has a well-defined rank function.
 - Dimension of vector spaces
 - Transcendence degree of a field extension
 - The spanning trees of a graph have the same size.
- Many different (but equivalent) points of view.
 - Matroid polytopes. We need it.
 - Lattice of flats. We need it.
 - Optimization (greedy algorithms). We need it.
- (Our main reason today.) Loosely speaking:

algebraic geometry \mapsto tropical geometry specialises to linear algebra \mapsto matroid theory.

tropical linear spaces, part 1: constant coefficients

tropical linear spaces, part 2: arbitrary coefficients

Matroid theory, v2: lattices of flats.

E: set of vectors

000

- flat: (the vectors of E in) span(A) for $A \subseteq E$.
- lattice of flats L_M : the poset of flats ordered by containment.
- order complex $\Delta(\overline{L}_M)$: the simplicial complex of chains of \overline{L}_M .

(vertices = flats, faces = flags; $\overline{L}_M = L_M - \{\widehat{0}, \widehat{1}\}$).

- $L = \text{rowspace} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 2 & 0 \end{bmatrix}, C = \{123, 124, 34\}.$
- Flats: $\mathcal{F} = \{ \emptyset, 1, 2, 34, 5, 1234, 15, 25, 345, 12345 \}.$

Theorem. (Björner, 1980) $\Delta(\overline{L}_M)$ is a pure, shellable simplicial complex. It has the homotopy type of a wedge of $|\mu(L_M)|$ (r-2)-dimensional spheres.

tropical linear spaces, part 1: constant coefficients

ropical linear spaces, part 2: arbitrary coeffic 0000 0000000

The main theorem.

Let $\text{Trop}'M = \text{Trop}M \cap (\text{unit sphere})$.

•000

Theorem. (.f. - Klivans) Trop'(M) " = " $\Delta(\overline{L}_M)$.

More precisely, $\Delta(\overline{L}_M)$ is a subdivision of Trop'(*M*).

Corollary. (.f. - Klivans) In constant coefficients, tropical linear spaces are cones over wedges of (r - 2)-spheres. The number of spheres is computable combinatorially.

Key observation:

 $w_{a_1} = \cdots = w_{a_k} > w_{b_1} = \cdots = w_{b_l} > \cdots$ is in Trop(*M*) if and only if $A, A \cup B, A \cup B \cup C, \ldots$ are flats of *M*.

tropical linear spaces, part 1: constant coefficients

tropical linear spaces, part 2: arbitrary coefficients

Some interesting special cases.

- **1.** $A_{n-1} = \{e_i e_j \mid 1 \le i < j \le n\}$
- Trop A_{n-1} is the space of phylogenetic trees T_n . (.f. Klivans) (T_n also appears naturally in homotopy theory and in $\overline{M}_{0,n}$.)
- T_n has homotopy type $\bigvee_{(n-1)!} S^{n-3}$. (Vogtmann)
- (Chepoi-F. tree reconstruction alg.) = (tropical projection) (.f.)

2. Φ = root system of a finite Coxeter system (W, S)

• Trop' Φ = (nested set complex of Φ), which encodes De Concini and Procesi's "wonderful compactification" of $\mathbb{C}^n - \mathcal{A}_{\Phi}$.

• Trop Φ can be described combinatorially as a space of "phylogenetic trees of type W", which come from tubings of the Dynkin diagram. (.f. - Reiner - Williams)

Matroid theory, v3: matroid polytopes

A basis of *M* is a maxl. indept. set. The matroid polytope is

 $P_M = \operatorname{conv}(e_{b_1} + \dots + e_{b_r} | \{b_1, \dots, b_r\} \text{ is a basis.})$

$$L = \text{rowspace} \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 2 & 0 \end{bmatrix}, \mathcal{C} = \{123, 124, 34\}.$$

- Bases: $\mathcal{B} = \{125, 135, 145, 235, 245\}$
- $P_M = \operatorname{conv}(11001, 10101, 10011, 01101, 01011)$.

Interpretations:

o linear programming and greedy algorithms e^{2i} o moment polytope of the closure of a torus orbit in Gr(d, n)

Theorem. (GGMS) A 0-1 polytope is a matroid polytope if and only if all its edges are of the form $e_i - e_i$.

tropical linear spaces, part 1: constant coefficients

tropical linear spaces, part 2: arbitrary coefficients

A matroid is loopless if every element is in some basis.

Proposition. (Sturmfels) Trop *M* is the fan dual to the loopless faces of P_M :

Trop
$$M = \{ w \in \overline{\mathbb{R}}^{E} \mid \text{The } w \text{-max face of } P_{M} \text{ is loopless.} \}$$

Tropical linear spaces, part 2: arbitrary coefficients.

(from constant to arbitrary coeffs) Let *L* be a linear space with arbitrary coeffs and $u \in \text{Trop } L$. The local cone at *u* is $\text{cone}_u \text{Trop } L = \text{Trop } L_u$ for a linear space L_u with constant coefficients.

ropical linear spaces, part 1: constant coefficients

tropical linear spaces, part 2: arbitrary coefficients

Each local cone is dual to (loopless part of) a matroid polytope. The matroid polytopes give a subdivision of the hypersimplex $\Delta(n, d) = \operatorname{conv}(e_{i_1} + \dots + e_{i_d} | \{i_1, \dots, i_d\} \subseteq [n])$ (which is the matroid polytope of a generic vector space.)

ropical linear spaces, part 1: constant coefficients

tropical linear spaces, part 2: arbitrary coefficients

Theorem. (Speyer) A *d*-dimensional tropical linear space in *n*-space is dual to a matroid subdivision: a subdivision of $\Delta(n, d)$ into matroid polytopes.

Tropical linear spaces:

constant coeffs. \mapsto matroids arbitrary coeffs. \mapsto matroid subdivisions

opical linear spaces, part 1: constant coefficients

tropical linear spaces, part 2: arbitrary coefficients

Tropical linear spaces: constant \mapsto matroids arbitrary \mapsto matroid subdivs.

Other occurrences of matroid subdivisions:

• Kapranov's generalized Lie complexes.

Chow quot. $Gr(d, n) / / \mathbb{T}$ - limits of torus orbit closures in Gr(d, n)

- Hacking, Keel, and Tevelev's very stable pairs. generalized hyperplane arrangements.
- Lafforgue's compactif of fine Schubert cells in Grassmannian.

Lafforgue: P_M indecomposable $\rightarrow M$ has finitely many realizations.

Mnëv: Realization spaces of Ms can have arbitrarily bad singularities.

tropical linear spaces, part 1: constant coefficients

tropical linear spaces, part 2: arbitrary coefficients

Matroid subdivisions

How can a matroid polytope can be divided into smaller matroid polytopes?

(Construct? Verify? Prove impossibility?)

One approach:

Find "measures" of a matroid M that behave like valuations on P_M .

A function f: Matroids $\rightarrow G$ is a matroid valuation if for any subdivision of P_M into P_{M_1}, \ldots, P_{M_m} we have

$$f(M) = \sum_{i=1}^{m} (-1)^{\dim P_M - \dim P_{M_i}} f(M_i)$$
(1)

ropical linear spaces, part 1: constant coefficients

tropical linear spaces, part 2: arbitrary coefficients

Some matroid valuations:

- Vol(*P_M*) (.f.-Benedetti-Doker) (Lam-Postnikov, Stanley)
- $|P_M \cap \mathbb{Z}^n| =$ number of bases of M
- Ehrhart polynomial $E_{P_M}(t) = |tP_M \cap \mathbb{Z}^n|$. (.f. Doker)
- Tutte polynomial T_M(x, y) (Speyer) (the mother of all (del.-contr.) matroid invariants)
- Quasisym function $Q_M(x_1, \ldots, x_n)$ (Billera-Jia-Reiner)
- Invariants coming from K-theory of Gr(d, n) (Speyer)

Theorem. (Speyer) A *d*-dimensional tropical linear space in *n*-space has $\leq \binom{n-i-1}{d-i} \binom{2n-d-1}{i-1} i$ -dimensional faces.

He uses a mysterious invariant $g_M(t)$ from *K*-theory. What does it mean combinatorially? If we knew, we could prove:

Conjecture. This bound holds for any matroid subdivision.

ropical linear spaces, part 1: constant coefficients

tropical linear spaces, part 2: arbitrary coefficients

A very general matroid valuation.

Define V : Matroids \rightarrow *G* by:

$$V(M) = \sum_{\pi \in S_n} (\pi, r(\pi_1), r(\pi_1, \pi_2), \dots, r(\pi_1, \dots, \pi_n))$$

where G is the free abelian group generated by such symbols.

For
$$L = \text{rowspace} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 2 \end{bmatrix}$$
,
 $V(M) = (1234, 1, 2, 2, 2) + \dots + (3421, 1, 1, 2, 2) + \dots$

Theorem. (.f. - Fink - Rincón, Derksen) *V* is a matroid valuation.

ropical linear spaces, part 1: constant coefficients

tropical linear spaces, part 2: arbitrary coefficients

$$V(M) = \sum_{\pi \in S_n} (\pi, (r(\pi_1), r(\pi_1, \pi_2), \dots, r(\pi_1, \dots, \pi_n)))$$

Theorem. (.f. - Fink - Rincón, Derksen) *V* is a matroid valuation.

Example. For the subdivision of $\Delta(6,3)$ $V(M) = V(M_1) + V(M_2) + V(M_3)$ $-V(M_{12}) - V(M_{13}) - V(M_{23}) + V(M_{123})$ The summands with $\pi = 132456$ give (writing (132456, 1, 2, 3, 3, 3, 3) \rightarrow (1, 2, 3, 3)) (1, 2, 3, 3) = (1, 2, 3, 3) + (1, 2, 2, 3) + (1, 2, 2, 2)-(1, 2, 2, 3) - (1, 2, 2, 2) - (1, 2, 2, 2) + (1, 2, 2, 2)

Idea of proof. Interpret each term like

(1,2,2,2) - (1,2,2,2) - (1,2,2,2) + (1,2,2,2) = 0as a reduced Euler characteristic of a contractible space.

ropical linear spaces, part 1: constant coefficients

tropical linear spaces, part 2: arbitrary coefficients

All matroid valuations.

$$V(M) = \sum_{\pi \in S_n} (\pi, (r(\pi_1), r(\pi_1, \pi_2), \ldots, r(\pi_1, \ldots, \pi_n)))$$

Theorem. (Derksen - Fink) *V* is a **universal** matroid valuation.

Theorem. (Derksen - Fink) Let v(n, r) be the rank of the abelian group of valuations on matroids of *n* elements and rank *r*. Then

$$\sum_{n=0}^{\infty} \sum_{r=0}^{\infty} v(n,r) \frac{x^{n-r} y^r}{n!} = \frac{x-y}{x e^{-x} - y e^{-y}}$$

So in principle we know how far we can push this approach. In practice there is more to do.

tropical linear spaces, part 1: constant coefficients

tropical linear spaces, part 2: arbitrary coefficients

summary

- We do not understand tropical varieties very well yet.
- We understand tropical linear spaces to some extent.
 - Locally, they "are" matroids.
 - Globally, they "are" matroid subdivisions.
 - We know many things about matroids, and a few things about matroid subdivisions.

some future directions

- Understand matroid subdivisions better. Systematic construction? Mixed subdivisions? Secondary polytope?
- Generalize this story to subdivisions of Coxeter matroids and tropical homogeneous spaces (under certain hypotheses, to be determined). (.f. - Rincón - Velasco)
- What about general tropical varieties?

ropical linear spaces, part 1: constant coefficients

tropical linear spaces, part 2: arbitrary coefficients

many thanks !!!

Papers available at:

http://math.sfsu.edu/federico
http://front.math.ucdavis.edu