tropical linear spaces, part 1: constant coefficients 000 000 0000

linearity in the tropics

federico ardila

san francisco state university
san francisco california usa

> connections for women . tropical geometry msri . aug 22,23 . 2009

outline

tropical geometry
tropicalisation
examples of tropical varieties
tropical linear spaces, part 1: constant coefficients
linear spaces and matroids
matroid theory
the main theorem
tropical linear spaces, part 2: arbitrary coefficients from constant coefficients to arbitrary coefficients the combinatorics of matroid subdivisions

Summary. Tropical varieties are not simple objects; even tropical linear spaces have a very rich and interesting combinatorial structure which we only partially understand.

Tropical geometry: a general philosophy

Tropicalisation is a very useful general technique:

$$
\begin{aligned}
\text { algebraic variety } & \mapsto \text { tropical variety } \\
V & \mapsto \operatorname{Trop}(V) .
\end{aligned}
$$

Idea: Obtain information about V from $\operatorname{Trop}(V)$.
o $\operatorname{Trop}(V)$ is simpler, but contains some information about V.
o $\operatorname{Trop}(V)$ is a polyhedral complex, where we can do combinatorics.

Similar to: toric variety \mapsto polyhedral fan

Tropicalisation.

The field $K=\mathbb{C}\{\{t\}\}$ of Puiseux series:

$$
f(t)=\alpha_{1} t^{r_{1}}+\alpha_{2} t^{r_{2}}+\cdots, \quad \alpha_{i} \in \mathbb{C},\left\{r_{1}<r_{2}<\cdots\right\} \subset \mathbb{Q}
$$

has valuation deg : $K \rightarrow \mathbb{R} \cup\{\infty\}=: \overline{\mathbb{R}}$ where $\operatorname{deg}(f)=r_{1}$.

Tropicalising points: deg : $K^{n} \rightarrow \overline{\mathbb{R}}^{n}$
$A=\left(A_{1}, \ldots, A_{n}\right) \mapsto a=\left(\operatorname{deg} A_{1}, \ldots, \operatorname{deg} A_{n}\right)$

$$
\left(t^{2}+3 t^{3}+t^{4}+\cdots, t^{1.5}+2 t^{2}\right) \mapsto(2,1.5)
$$

Tropicalising polynomials: Trop : $K\left[X_{1}, . ., X_{n}\right] \rightarrow\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R}\right\}$
$A \mapsto \operatorname{deg} A \quad X+Y \mapsto \min (x, y) \quad X \cdot Y \mapsto x+y$ $\left(t^{1.5}+t^{3}\right) X^{2}+2 Y Z \mapsto \min (1.5+2 x, y+z)$

Fundamental Theorem of Tropical Geometry.

Theorem/Defn. (Einsiedler-Lind-Kapranov, Speyer-Sturmfels) Let I be an ideal in $K\left[X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}\right]$ and let

$$
V=V(I)=\left\{A \in\left(K^{*}\right)^{n} \mid F(A)=0 \text { for } F \in I\right\}
$$

The tropical variety $\operatorname{Trop}(V)$ is

$$
\begin{aligned}
\operatorname{Trop}(V) & :=\left\{a \in \overline{\mathbb{R}}^{n} \mid(\operatorname{Trop} F)(a) \text { is achieved twice for } F \in I\right\} \\
& =\operatorname{cl}(\operatorname{deg} A \mid A \in V)
\end{aligned}
$$

Informally,

Trop $(V):=$ Solutions of tropical equations $=\mathrm{cl}$ (Tropicalisation of the solutions).

$\operatorname{Trop}(V):=$ Solutions of tropical equations $=\mathrm{cl}$ (Tropicalisation of the solutions).

Ex. $V=\left\{(X, Y, Z) \in\left(K^{*}\right)^{3} \mid\left(t^{-3}+2\right) X+\left(t+5 t^{1.5}\right) Y+Z=0\right\}$

1. Tropicalise equations:

$$
\text { Trop } V=\left\{(x, y, z) \in \overline{\mathbb{R}}^{3} \mid \min (x-3, y+1, z) \text { att. twice }\right\} \text {. }
$$

2. Tropicalise solutions:

$$
\operatorname{Trop}(V)=\operatorname{cl}\{(\operatorname{deg} X, \operatorname{deg} Y, \operatorname{deg} Z) \mid(X, Y, Z) \in V\}
$$

$(2 \subseteq 1):$ Exercise.
(1 $\subseteq 2$): Harder.

Tropicalisation:

$$
\begin{aligned}
\text { algebraic variety } & \mapsto \text { tropical variety } \\
V & \mapsto \operatorname{Trop}(V) .
\end{aligned}
$$

To apply this technique, we ask two questions:

1. What does $\operatorname{Trop}(V)$ know about V ?

Find the right questions in alg. geom. to "tropicalise".

- Gromov-Witten invariants $N_{g, d}^{\mathbb{C}}$ of $\mathbb{C P}^{2}$ (Mikhalkin)
- Double Hurwitz numbers. (Cavalieri-Johnson-Markwig)

2. What do we know about $\operatorname{Trop}(V)$? Not very much!

- (V irred.) Pure, connected in codimension 1. (Bieri-Groves).
- (V Schön) Links have only top homology. (Hacking)

Tropical varieties are 'simpler', not ‘simple'. Study them!

Examples of tropical varieties

Example 1. Tropical hyperplanes in $\mathbb{T} \mathbb{P}^{n-1}$.
$A_{1} X_{1}+\ldots+A_{n} X_{n}=0 \mapsto \min \left(x_{1}+a_{1}, \ldots, x_{n}+a_{n}\right)$ ach. twice $\mathbb{T P}^{2}: \min (x-3, y+2, z)$ twice $\mathbb{T P}^{3}: \min \left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ twice

Tropical projective plane $\mathbb{T} \mathbb{P}^{2}$:
$(a, b, c) \sim(a-c, b-c, 0)$
Polar fan of the simplex centered at $-\left(a_{1}, \ldots, a_{n}\right)$.

Example 2. Tropical conics in $\mathbb{T P}^{2}$:
$A X^{2}+B Y^{2}+C Z^{2}+D X Y+E X Z+F Y Z=0 \mapsto$
$\min (a+2 x, b+2 y, \ldots, e+x+z, f+y+z)$ achieved twice.
Two tropical conics:

In principle, could have up to $\binom{6}{2}=15$ edges.
In fact, they all have 4 vertices and 9 edges (3 bounded).

Example 3. A tropical line in $\mathbb{T} \mathbb{P}^{3}$.

$$
L=\text { rowspace }\left[\begin{array}{cccc}
1 & t & t^{2} & t^{3} \\
t^{3} & t^{2} & t & 1
\end{array}\right]
$$

Trop L : The following are attained twice:
$\min \left(x_{1}+2, x_{2}+1, x_{3}+2\right), \min \left(x_{1}+1, x_{2}, x_{4}+2\right)$,
$\min \left(x_{1}+2, x_{3}, x_{4}+1\right), \min \left(x_{2}+2, x_{3}+1, x_{4}+2\right)$

The goal of this talk:
To summarize what we know about tropical linear spaces.

Tropical linear spaces, part 1: constant coefficients.

Goal. If V is a linear subspace, describe Trop V.
(Part 1: Assume that all coefficients are in \mathbb{C}.)
$w \in \operatorname{Trop} V \leftrightarrow$ for each circuit (equation) $a_{1} X_{i_{1}}+\cdots+a_{k} X_{i_{k}}=0$ of $V, \min \left(w_{i_{1}}, \ldots, w_{i_{k}}\right)$ is achieved twice.

Example. $L=$ rowspace $\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 2 & 0\end{array}\right]$.
$X_{1}-X_{2}+X_{3}=0, X_{4}=2 X_{3} \quad$ Circuits: $123,34,124$.

Trop $L: \min \left(w_{1}, w_{2}, w_{3}\right), \min \left(w_{1}, w_{2}, w_{4}\right), \min \left(w_{3}, w_{4}\right)$ att. twice.
$L=$ rowspace $\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 2 & 0\end{array}\right]$. Circuits: $123,34,124$.
Trop $L: \min \left(w_{1}, w_{2}, w_{3}\right), \min \left(w_{1}, w_{2}, w_{4}\right), \min \left(w_{3}, w_{4}\right)$ att. twice.

$$
w_{1}=w_{2}<w_{5}=w_{3}=w_{4} \text { ok } \quad w_{1}=w_{3}=w_{5}<w_{s}=w_{4} \text { no }
$$

Note.

- w_{5} is irrelevant.
- Order of $w_{1}, w_{2}, w_{3}, w_{4}$ is either
- $w_{1}>W_{2}=W_{3}=W_{4}$,
- $w_{2}>w_{1}=w_{3}=w_{4}$, or
- $W_{3}=W_{4}>W_{1}=W_{2}$.

So Trop V only depends on the matroid (set of circuits) of V.
For any matroid M (set of circuits) we define
Trop $M:=\left\{w \in \overline{\mathbb{R}}^{E} \mid \min _{c \in C} w_{C}\right.$ is achieved twice for all circuits C. $\}$
(sometimes called the Bergman fan of M.)
This calls for a crash course in matroid theory.

Matroid theory, v1: circuits.

Matroid theory: An abstract theory of independence.
(Instances: linear, algebraic, graph independence.)
The key properties of (minimal) dependence:
A matroid M on a finite ground set E is a collection \mathcal{C} of circuits (subsets of E) such that:

CO. \emptyset is not a circuit.
C1. No circuit properly contains another.
C2. If C_{1} and C_{2} are circuits and $x \in C_{1} \cap C_{2}$, then $C_{1} \cup C_{2}-x$ contains a circuit.

Ex: The matroid of a vector space / config. $L=\operatorname{row}(E)$
(circuits) $\leftrightarrow($ minl eqns. of $L) \leftrightarrow($ minl linear deps on cols of $E)$

Why matroids?

- They are general, applicable, and well-developed.

Example: Every matroid has a well-defined rank function.

- Dimension of vector spaces
- Transcendence degree of a field extension
- The spanning trees of a graph have the same size.
- Many different (but equivalent) points of view.
- Matroid polytopes. We need it.
- Lattice of flats. We need it.
- Optimization (greedy algorithms). We need it.
- (Our main reason today.) Loosely speaking:
algebraic geometry \mapsto tropical geometry specialises to linear algebra \mapsto matroid theory.

Matroid theory, v2: lattices of flats.

E : set of vectors

- flat: (the vectors of E in) $\operatorname{span}(A)$ for $A \subseteq E$.
- lattice of flats L_{M} : the poset of flats ordered by containment.
- order complex $\Delta\left(\bar{L}_{M}\right)$: the simplicial complex of chains of \bar{L}_{M}. (vertices $=$ flats, faces $=$ flags; $\bar{L}_{M}=L_{M}-\{\widehat{0}, \widehat{1}\}$).
$L=$ rowspace $\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 2 & 0\end{array}\right], \mathcal{C}=\{123,124,34\}$.
- Flats: $\mathcal{F}=\{\emptyset, 1,2,34,5,1234,15,25,345,12345\}$.

Theorem. (Björner, 1980) $\Delta\left(\bar{L}_{M}\right)$ is a pure, shellable simplicial complex. It has the homotopy type of a wedge of $\left|\mu\left(L_{M}\right)\right| \quad(r-2)$-dimensional spheres.

The main theorem.

Let $\operatorname{Trop}{ }^{\prime} M=\operatorname{Trop} M \cap$ (unit sphere).

> Theorem. (.f. - Klivans)
> $\operatorname{Trop}^{\prime}(M)$ " $=" \Delta\left(\bar{L}_{M}\right)$.

More precisely, $\Delta\left(\bar{L}_{M}\right)$ is a subdivision of $\operatorname{Trop}^{\prime}(M)$.
Corollary. (.f. - Klivans) In constant coefficients, tropical linear spaces are cones over wedges of $(r-2)$-spheres.
The number of spheres is computable combinatorially.

Key observation:

$$
\begin{aligned}
& w_{a_{1}}=\cdots=w_{a_{k}}>w_{b_{1}}=\cdots=w_{b_{1}}>\cdots \text { is in } \operatorname{Trop}(M) \\
& \text { if and only if } A, A \cup B, A \cup B \cup C, \ldots \text { are flats of } M .
\end{aligned}
$$

Some interesting special cases.

1. $A_{n-1}=\left\{e_{i}-e_{j} \mid 1 \leq i<j \leq n\right\}$

- $\operatorname{Trop} A_{n-1}$ is the space of phylogenetic trees T_{n}. (.f. - Klivans)
(T_{n} also appears naturally in homotopy theory and in $M_{0, n}$.)
- T_{n} has homotopy type $\mathrm{V}_{(n-1)!} S^{n-3}$. (Vogtmann)
- (Chepoi-F. tree reconstruction alg.) $=$ (tropical projection) (.f.)

2. $\Phi=$ root system of a finite Coxeter system (W, S)

- Trop' $\Phi=$ (nested set complex of Φ), which encodes De Concini and Procesi's "wonderful compactification" of $\mathbb{C}^{n}-\mathcal{A}_{\Phi}$.
- Trop Φ can be described combinatorially as a space of "phylogenetic trees of type W", which come from tubings of the Dynkin diagram. (.f. - Reiner - Williams)

Matroid theory, v3: matroid polytopes

A basis of M is a maxl. indept. set. The matroid polytope is

$$
P_{M}=\operatorname{conv}\left(e_{b_{1}}+\cdots+e_{b_{r}} \mid\left\{b_{1}, \ldots, b_{r}\right\} \text { is a basis. }\right)
$$

$L=$ rowspace $\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 2 & 0\end{array}\right], \mathcal{C}=\{123,124,34\}$.

- Bases: $\mathcal{B}=\{125,135,145,235,245\}$
- $P_{M}=\operatorname{conv}(11001,10101,10011,01101,01011)$.

Interpretations:
o linear programming and greedy algorithms
o moment polytope of the closure of a torus orbit in $\operatorname{Gr}(d, n)$
Theorem. (GGMS) A 0-1 polytope is a matroid polytope if and only if all its edges are of the form $e_{i}-e_{j}$.

A matroid is loopless if every element is in some basis.

Proposition. (Sturmfels)

Trop M is the fan dual to the loopless faces of P_{M} :
Trop $M=\left\{w \in \overline{\mathbb{R}}^{E} \mid\right.$ The w-max face of P_{M} is loopless. $\}$

$3=4>1>2$

Tropical linear spaces, part 2: arbitrary coefficients.

(from constant to arbitrary coeffs) Let L be a linear space with arbitrary coeffs and $u \in \operatorname{Trop} L$. The local cone at u is

$$
\text { cone }_{u} \operatorname{Trop} L=\operatorname{Trop}_{L}
$$

for a linear space L_{u} with constant coefficients.
$L=$ rowspace $\left[\begin{array}{cccc}1 & t & t^{2} & t^{3} \\ t^{3} & t^{2} & t & 1\end{array}\right]$, $\operatorname{Trop} L=$

Each local cone is dual to (loopless part of) a matroid polytope. The matroid polytopes give a subdivision of the hypersimplex

$$
\Delta(n, d)=\operatorname{conv}\left(e_{i_{1}}+\cdots+e_{i_{d}} \mid\left\{i_{1}, \ldots, i_{d}\right\} \subseteq[n]\right)
$$

(which is the matroid polytope of a generic vector space.)

Theorem. (Speyer) A d-dimensional tropical linear space in n-space is dual to a matroid subdivision: a subdivision of $\Delta(n, d)$ into matroid polytopes.

Tropical linear spaces:

constant coeffs. \mapsto matroids
arbitrary coeffs. \mapsto matroid subdivisions

Tropical linear spaces:
constant \mapsto matroids arbitrary \mapsto matroid subdivs.

Other occurrences of matroid subdivisions:

- Kapranov's generalized Lie complexes.

Chow quot. $\operatorname{Gr}(d, n) / / \mathbb{T}$ - limits of torus orbit closures in $\operatorname{Gr}(d, n)$

- Hacking, Keel, and Tevelev's very stable pairs.
generalized hyperplane arrangements.
- Lafforgue's compactif of fine Schubert cells in Grassmannian.

Lafforgue: P_{M} indecomposable $\rightarrow M$ has finitely many realizations.
Mnëv: Realization spaces of Ms can have arbitrarily bad singularities.

Matroid subdivisions

How can a matroid polytope can be divided into smaller matroid polytopes?
(Construct? Verify?
Prove impossibility?)

One approach:

Find "measures" of a matroid M that behave like valuations on P_{M}.

A function f : Matroids $\rightarrow G$ is a matroid valuation if for any subdivision of P_{M} into $P_{M_{1}}, \ldots, P_{M_{m}}$ we have

$$
\begin{equation*}
f(M)=\sum_{i=1}^{m}(-1)^{\operatorname{dim} P_{M}-\operatorname{dim} P_{M_{i}} f\left(M_{i}\right)} \tag{1}
\end{equation*}
$$

Some matroid valuations:

- $\operatorname{Vol}\left(P_{M}\right)$ (.f.-Benedetti-Doker) (Lam-Postnikov, Stanley)
- $\left|P_{M} \cap \mathbb{Z}^{n}\right|=$ number of bases of M
- Ehrhart polynomial $E_{P_{M}}(t)=\left|t P_{M} \cap \mathbb{Z}^{n}\right|$. (.f. - Doker)
- Tutte polynomial $T_{M}(x, y)$ (Speyer)
(the mother of all (del.-contr.) matroid invariants)
- Quasisym function $Q_{M}\left(x_{1}, \ldots, x_{n}\right)$ (Billera-Jia-Reiner)
- Invariants coming from K-theory of $\operatorname{Gr}(d, n)$ (Speyer)

Theorem. (Speyer) A d-dimensional tropical linear space in n-space has $\leq\binom{ n-i-1}{d-i}\binom{2 n-d-1}{i-1} i$-dimensional faces.

He uses a mysterious invariant $g_{M}(t)$ from K-theory. What does it mean combinatorially? If we knew, we could prove:

Conjecture. This bound holds for any matroid subdivision.

A very general matroid valuation.

Define V : Matroids $\rightarrow G$ by:

$$
V(M)=\sum_{\pi \in S_{n}}\left(\pi, r\left(\pi_{1}\right), r\left(\pi_{1}, \pi_{2}\right), \ldots, r\left(\pi_{1}, \ldots, \pi_{n}\right)\right)
$$

where G is the free abelian group generated by such symbols.
For $L=$ rowspace $\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 2\end{array}\right]$,

$$
V(M)=(1234,1,2,2,2)+\cdots+(3421,1,1,2,2)+\cdots
$$

Theorem. (.f. - Fink - Rincón, Derksen) V is a matroid valuation.

$$
V(M)=\sum_{\pi \in S_{n}}\left(\pi,\left(r\left(\pi_{1}\right), r\left(\pi_{1}, \pi_{2}\right), \ldots, r\left(\pi_{1}, \ldots, \pi_{n}\right)\right)\right.
$$

Theorem. (.f. - Fink - Rincón, Derksen)
V is a matroid valuation.
Example. For the subdivision of $\Delta(6,3)$
$V(M)=V\left(M_{1}\right)+V\left(M_{2}\right)+V\left(M_{3}\right)$
$-V\left(M_{12}\right)-V\left(M_{13}\right)-V\left(M_{23}\right)+V\left(M_{123}\right)$
The summands with $\pi=132456$ give (writing (132456, 1, 2, 3, 3, 3, 3) $\rightarrow(1,2,3,3)$)

$$
\begin{aligned}
& (1,2,3,3)=(1,2,3,3)+(1,2,2,3)+(1,2,2,2) \\
& -(1,2,2,3)-(1,2,2,2)-(1,2,2,2)+(1,2,2,2)
\end{aligned}
$$

Idea of proof. Interpret each term like

$$
(1,2,2,2)-(1,2,2,2)-(1,2,2,2)+(1,2,2,2)=0
$$

as a reduced Euler characteristic of a contractible space.

All matroid valuations.

$$
V(M)=\sum_{\pi \in S_{n}}\left(\pi,\left(r\left(\pi_{1}\right), r\left(\pi_{1}, \pi_{2}\right), \ldots, r\left(\pi_{1}, \ldots, \pi_{n}\right)\right)\right.
$$

Theorem. (Derksen - Fink)
V is a universal matroid valuation.
Theorem. (Derksen - Fink)
Let $v(n, r)$ be the rank of the abelian group of valuations on matroids of n elements and rank r. Then

$$
\sum_{n=0}^{\infty} \sum_{r=0}^{\infty} v(n, r) \frac{x^{n-r} y^{r}}{n!}=\frac{x-y}{x e^{-x}-y e^{-y}}
$$

So in principle we know how far we can push this approach. In practice there is more to do.

summary

- We do not understand tropical varieties very well yet.
- We understand tropical linear spaces to some extent.
- Locally, they "are" matroids.
- Globally, they "are" matroid subdivisions.
- We know many things about matroids, and a few things about matroid subdivisions.

some future directions

- Understand matroid subdivisions better. Systematic construction? Mixed subdivisions? Secondary polytope?
- Generalize this story to subdivisions of Coxeter matroids and tropical homogeneous spaces (under certain hypotheses, to be determined). (.f. - Rincón - Velasco)
- What about general tropical varieties?

many thanks

Papers available at:
http://math.sfsu.edu/federico http://front.math.ucdavis.edu

