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Summary. Tropical varieties are not simple objects; even
tropical linear spaces have a very rich and interesting com-
binatorial structure which we only partially understand.
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Tropical geometry: a general philosophy

Tropicalisation is a very useful general technique:

algebraic variety 7→ tropical variety
V 7→ Trop(V ).

Idea: Obtain information about V from Trop(V ).

o Trop(V ) is simpler, but contains some information about V .

o Trop(V ) is a polyhedral complex, where we can do
combinatorics.

Similar to : toric variety 7→ polyhedral fan



tropical geometry tropical linear spaces, part 1: constant coefficients tropical linear spaces, part 2: arbitrary coefficients

Tropicalisation.

The field K = C{{t}} of Puiseux series:

f (t) = α1t r1 + α2t r2 + · · ·, αi ∈ C, {r1 < r2 < · · · } ⊂ Q.

has valuation deg : K → R ∪ {∞} =: R where deg(f ) = r1.

Tropicalising points: deg : K n → Rn

A = (A1, . . . ,An) 7→ a = (deg A1, . . . ,deg An)

(t2 + 3t3 + t4 + · · · , t1.5 + 2t2)7→(2,1.5)

Tropicalising polynomials: Trop : K [X1, ..,Xn]→ {f : Rn → R}
A 7→deg A X + Y 7→min(x , y) X · Y 7→x + y

(t1.5 + t3)X 2 + 2YZ 7→min(1.5 + 2x , y + z)
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Fundamental Theorem of Tropical Geometry.
Theorem/Defn. (Einsiedler-Lind-Kapranov, Speyer-Sturmfels)
Let I be an ideal in K [X±1

1 , . . . ,X±1
n ] and let

V = V (I) = {A ∈ (K ∗)n |F (A) = 0 for F ∈ I}

The tropical variety Trop(V ) is

Trop(V ) := {a ∈ Rn | (Trop F )(a) is achieved twice for F ∈ I}
= cl (deg A |A ∈ V )

Informally,

Trop(V ) := Solutions of tropical equations
= cl (Tropicalisation of the solutions).
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Trop(V ) := Solutions of tropical equations
= cl (Tropicalisation of the solutions).

Ex. V = {(X ,Y ,Z ) ∈ (K ∗)3 | (t−3 + 2)X + (t + 5t1.5)Y + Z = 0}

1. Tropicalise equations:

TropV = {(x , y , z) ∈ R3 |min(x − 3, y + 1, z) att. twice}.

2. Tropicalise solutions:

Trop(V ) = cl {(deg X ,deg Y ,deg Z ) | (X ,Y ,Z ) ∈ V}

(2 ⊆ 1): Exercise.
(1 ⊆ 2): Harder.
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Tropicalisation:
algebraic variety 7→ tropical variety

V 7→ Trop(V ).

To apply this technique, we ask two questions:

1. What does Trop(V ) know about V?
Find the right questions in alg. geom. to “tropicalise".
• Gromov-Witten invariants NC

g,d of CP2 (Mikhalkin)
• Double Hurwitz numbers. (Cavalieri-Johnson-Markwig)

2. What do we know about Trop(V )? Not very much!
• (V irred.) Pure, connected in codimension 1. (Bieri-Groves).
• (V Schön) Links have only top homology. (Hacking)

Tropical varieties are ‘simpler’, not ‘simple’. Study them!
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Examples of tropical varieties
Example 1. Tropical hyperplanes in TPn−1.

A1X1 + . . .+ AnXn = 0 7→ min(x1 + a1, . . . , xn + an) ach. twice

TP2: min(x − 3, y + 2, z) twice TP3: min(x1, x2, x3, x4) twice
(3,-2,0)

Tropical projective plane TP2:

(a,b, c) ∼ (a− c,b − c,0)

Polar fan of the simplex
centered at −(a1, . . . ,an).
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Example 2. Tropical conics in TP2:

AX 2 + BY 2 + CZ 2 + DXY + EXZ + FYZ = 0 7→
min(a + 2x ,b + 2y , . . . ,e + x + z, f + y + z) achieved twice.

Two tropical conics:

In principle, could have up to
(6

2

)
= 15 edges.

In fact, they all have 4 vertices and 9 edges (3 bounded).
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Example 3. A tropical line in TP3.

L = rowspace
[

1 t t2 t3

t3 t2 t 1

]
Trop L: The following are attained twice:

min(x1 + 2, x2 + 1, x3 + 2), min(x1 + 1, x2, x4 + 2),
min(x1 + 2, x3, x4 + 1), min(x2 + 2, x3 + 1, x4 + 2)

(1,2,1,0)    

(3,2,1,0)    

(1,3,1,0)    

(-1,0,1,0)    

(-3,-2,-1,0)    

(-1,0,2,0)    

1

2

3

4
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The goal of this talk:
To summarize what we know about tropical linear spaces.

(3,-2,0)

(1,2,1,0)    

(3,2,1,0)    

(1,3,1,0)    

(-1,0,1,0)    

(-3,-2,-1,0)    

(-1,0,2,0)    

1

2

3

4
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Tropical linear spaces, part 1: constant coefficients.

Goal. If V is a linear subspace, describe TropV .

(Part 1: Assume that all coefficients are in C.)

w ∈ TropV ↔ for each circuit (equation) a1Xi1 + · · ·+ akXik = 0
of V , min(wi1 , . . . ,wik ) is achieved twice.

Example. L = rowspace

 0 0 0 0 1
1 1 0 0 0
0 1 1 2 0

.

X1 − X2 + X3 = 0 , X4 = 2X3 Circuits: 123,34,124.

Trop L: min(w1,w2,w3),min(w1,w2,w4),min(w3,w4) att. twice.



tropical geometry tropical linear spaces, part 1: constant coefficients tropical linear spaces, part 2: arbitrary coefficients

L = rowspace

 0 0 0 0 1
1 1 0 0 0
0 1 1 2 0

. Circuits: 123,34,124.

Trop L: min(w1,w2,w3),min(w1,w2,w4),min(w3,w4) att. twice.

w1 = w2 < w5 = w3 = w4 ok w1 = w3 = w5 < ws = w4 no

Note.

• w5 is irrelevant.
• Order of w1,w2,w3,w4 is either

• w1 > w2 = w3 = w4,
• w2 > w1 = w3 = w4, or
• w3 = w4 > w1 = w2.

2>1=3=4

1>2=3=4

3=4>1=2

0011

1000

0100
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So Trop V only depends on the matroid (set of circuits) of V .

For any matroid M (set of circuits) we define

Trop M := {w ∈ RE | min
c∈C

wc is achieved twice for all circuits C.}

(sometimes called the Bergman fan of M.)

This calls for a crash course in matroid theory.
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Matroid theory, v1: circuits.

Matroid theory: An abstract theory of independence.

(Instances: linear, algebraic, graph independence.)

The key properties of (minimal) dependence:
A matroid M on a finite ground set E is a col-
lection C of circuits (subsets of E) such that:

C0. ∅ is not a circuit.
C1. No circuit properly contains another.
C2. If C1 and C2 are circuits and x ∈ C1 ∩ C2,

then C1 ∪ C2 − x contains a circuit.

Ex: The matroid of a vector space / config. L =row(E)

(circuits)↔ (minl eqns. of L)↔ (minl linear deps on cols of E)
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Why matroids?
• They are general, applicable, and well-developed.

Example: Every matroid has a well-defined rank function.
• Dimension of vector spaces
• Transcendence degree of a field extension
• The spanning trees of a graph have the same size.

• Many different (but equivalent) points of view.
• Matroid polytopes. We need it.
• Lattice of flats. We need it.
• Optimization (greedy algorithms). We need it.

• (Our main reason today.) Loosely speaking:
algebraic geometry 7→ tropical geometry

specialises to
linear algebra 7→ matroid theory.
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Matroid theory, v2: lattices of flats.
E : set of vectors
• flat: (the vectors of E in) span(A) for A ⊆ E .
• lattice of flats LM : the poset of flats ordered by containment.
• order complex ∆(LM): the simplicial complex of chains of LM .
(vertices = flats, faces = flags; LM = LM − {0̂, 1̂}).

L = rowspace
[

0 0 0 0 1
1 1 0 0 0
0 1 1 2 0

]
, C = {123,124,34}.

• Flats: F = {∅,1,2,34,5,1234,15,25,345,12345}.

Theorem. (Björner, 1980) ∆(LM) is a pure, shellable
simplicial complex. It has the homotopy type of a
wedge of |µ(LM)| (r − 2)-dimensional spheres.
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The main theorem.
Let Trop′M = TropM ∩ (unit sphere).

Theorem. (.f. - Klivans)
Trop′(M) “ = ” ∆(L̄M).

More precisely, ∆(L̄M) is a subdivision of Trop′(M).

Corollary. (.f. - Klivans) In constant coefficients, tropical
linear spaces are cones over wedges of (r − 2)-spheres.
The number of spheres is computable combinatorially.

Key observation:

wa1 = · · · = wak > wb1 = · · · = wbl > · · · is in Trop(M)
if and only if A,A ∪ B,A ∪ B ∪ C, . . . are flats of M.
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Some interesting special cases.
1. An−1 = {ei − ej |1 ≤ i < j ≤ n}
• Trop An−1 is the space of phylogenetic trees Tn. (.f. - Klivans)
(Tn also appears naturally in homotopy theory and in M0,n.)
• Tn has homotopy type

∨
(n−1)! Sn−3. (Vogtmann)

• (Chepoi-F. tree reconstruction alg.) = (tropical projection) (.f.)

2. Φ = root system of a finite Coxeter system (W ,S)

• Trop′Φ = (nested set complex of Φ), which encodes De
Concini and Procesi’s “wonderful compactification" of Cn −AΦ.
• Trop Φ can be described combinatorially as a space of
“phylogenetic trees of type W", which come from tubings of the
Dynkin diagram. (.f. - Reiner - Williams)
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Matroid theory, v3: matroid polytopes

A basis of M is a maxl. indept. set. The matroid polytope is

PM = conv(eb1 + · · ·+ ebr | {b1, . . . ,br} is a basis.)

L = rowspace
[

0 0 0 0 1
1 1 0 0 0
0 1 1 2 0

]
, C = {123,124,34}.

• Bases: B = {125,135,145,235,245}
• PM = conv(11001,10101,10011,01101,01011).

12

13

14

23

24

Interpretations:
o linear programming and greedy algorithms
o moment polytope of the closure of a torus orbit in Gr(d ,n)

Theorem. (GGMS) A 0-1 polytope is a matroid polytope
if and only if all its edges are of the form ei − ej .
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A matroid is loopless if every element is in some basis.

Proposition. (Sturmfels)
Trop M is the fan dual to the loopless faces of PM :

Trop M = {w ∈ RE |The w-max face of PM is loopless.}

12

13

14

23

24

2>1=3=4

1>2=3=4

3=4>1>2
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Tropical linear spaces, part 2: arbitrary coefficients.

(from constant to arbitrary coeffs) Let L be a linear space
with arbitrary coeffs and u ∈ Trop L. The local cone at u is

coneuTrop L = Trop Lu
for a linear space Lu with constant coefficients.

L = rowspace
[

1 t t2 t3

t3 t2 t 1

]
, Trop L =

(1,2,1,0)    

(3,2,1,0)    

(1,3,1,0)    

(-1,0,1,0)    

(-3,-2,-1,0)    

(-1,0,2,0)    

1

2

3

4

2

3

4

1

2

1 3

4

34 12
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Each local cone is dual to (loopless part of) a matroid polytope.
The matroid polytopes give a subdivision of the hypersimplex

∆(n,d) = conv(ei1 + · · ·+ eid | {i1, . . . , id} ⊆ [n])
(which is the matroid polytope of a generic vector space.)

1

2

3

4

12

13

14

23

24

34

3

4

12

2

1

34
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Theorem. (Speyer) A d-dimensional tropical linear space
in n-space is dual to a matroid subdivision: a subdivision of
∆(n,d) into matroid polytopes.

1

2

3

4

12

13

14

23

24

34

Tropical linear spaces:
constant coeffs. 7→ matroids
arbitrary coeffs. 7→ matroid subdivisions
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1

2

3

4

12

13

14

23

24

34

Tropical linear spaces:
constant 7→ matroids
arbitrary 7→ matroid subdivs.

Other occurrences of matroid subdivisions:
• Kapranov’s generalized Lie complexes.

Chow quot. Gr(d ,n)//T - limits of torus orbit closures in Gr(d ,n)

• Hacking, Keel, and Tevelev’s very stable pairs.
generalized hyperplane arrangements.

• Lafforgue’s compactif of fine Schubert cells in Grassmannian.

Lafforgue: PM indecomposable→ M has finitely many realizations.

Mnëv: Realization spaces of Ms can have arbitrarily bad singularities.
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Matroid subdivisions
How can a matroid polytope
can be divided into smaller
matroid polytopes?

(Construct? Verify?
Prove impossibility?)

One approach:
Find “measures" of a matroid
M that behave like valuations
on PM .

M

M

M

M

M

M

M

1 2

3

1

1

1

2

2

2

3

3

3

1 2

3 4
5
6

1

1 2

2

3
3
4

4

5

5 6

6

(6,3)

A function f : Matroids→ G is a matroid valuation if for any
subdivision of PM into PM1 , . . . ,PMm we have

f (M) =
m∑

i=1

(−1)dim PM−dim PMi f (Mi) (1)
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Some matroid valuations:

• Vol(PM) (.f.-Benedetti-Doker) (Lam-Postnikov, Stanley)
• |PM ∩ Zn| = number of bases of M
• Ehrhart polynomial EPM (t) = |tPM ∩ Zn|. (.f. - Doker)
• Tutte polynomial TM(x , y) (Speyer)

(the mother of all (del.-contr.) matroid invariants)
• Quasisym function QM(x1, . . . , xn) (Billera-Jia-Reiner)
• Invariants coming from K -theory of Gr(d ,n) (Speyer)

Theorem. (Speyer) A d-dimensional tropical linear space
in n-space has ≤

(n−i−1
d−i

)(2n−d−1
i−1

)
i-dimensional faces.

He uses a mysterious invariant gM(t) from K -theory. What does
it mean combinatorially? If we knew, we could prove:

Conjecture. This bound holds for any matroid subdivision.
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A very general matroid valuation.

Define V : Matroids→ G by:

V (M) =
∑
π∈Sn

(π, r(π1), r(π1, π2), . . . , r(π1, . . . , πn))

where G is the free abelian group generated by such symbols.

For L = rowspace
[

1 1 0 0
0 1 1 2

]
,

V (M) = (1234,1,2,2,2) + · · ·+ (3421,1,1,2,2) + · · ·.

Theorem. (.f. - Fink - Rincón, Derksen)
V is a matroid valuation.
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V (M) =
∑
π∈Sn

(π, (r(π1), r(π1, π2), . . . , r(π1, . . . , πn))

Theorem. (.f. - Fink - Rincón, Derksen)
V is a matroid valuation.

Example. For the subdivision of ∆(6,3),
V (M) = V (M1) + V (M2) + V (M3)

−V (M12)− V (M13)− V (M23) + V (M123)

The summands with π = 132456 give
(writing (132456, 1, 2, 3, 3, 3, 3)→ (1, 2, 3, 3))

(1, 2, 3, 3) = (1, 2, 3, 3) + (1, 2, 2, 3) + (1, 2, 2, 2)

−(1, 2, 2, 3)− (1, 2, 2, 2)− (1, 2, 2, 2) + (1, 2, 2, 2)

M

M

M

M

M

M

M

1 2

3

1

1

1

2

2

2

3

3

3

1 2

3 4
5
6

1

1 2

2

3
3
4

4

5

5 6

6

(6,3)

Idea of proof. Interpret each term like
(1,2,2,2)− (1,2,2,2)− (1,2,2,2) + (1,2,2,2) = 0

as a reduced Euler characteristic of a contractible space.
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All matroid valuations.

V (M) =
∑
π∈Sn

(π, (r(π1), r(π1, π2), . . . , r(π1, . . . , πn))

Theorem. (Derksen - Fink)
V is a universal matroid valuation.

Theorem. (Derksen - Fink)
Let v(n, r) be the rank of the abelian group of valuations on
matroids of n elements and rank r . Then

∞∑
n=0

∞∑
r=0

v(n, r)
xn−r y r

n!
=

x − y
xe−x − ye−y .

So in principle we know how far we can push this approach.
In practice there is more to do.
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summary
• We do not understand tropical varieties very well yet.
• We understand tropical linear spaces to some extent.

• Locally, they “are" matroids.
• Globally, they “are" matroid subdivisions.
• We know many things about matroids, and a few things

about matroid subdivisions.

some future directions
• Understand matroid subdivisions better. Systematic

construction? Mixed subdivisions? Secondary polytope?
• Generalize this story to subdivisions of Coxeter matroids

and tropical homogeneous spaces (under certain
hypotheses, to be determined). (.f. - Rincón - Velasco)

• What about general tropical varieties?
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many thanks !!!

linearity
  in the 
 tropics

Papers available at:
http://math.sfsu.edu/federico
http://front.math.ucdavis.edu
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