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Abstract. We show that the center of a flat graded deformation of a standard Koszul algebra A
behaves in many ways like the torus-equivariant cohomology ring of an algebraic variety with
finite fixed-point set. In particular, the center of A acts by characters on the deformed standard
modules, providing a “localization map.” We construct a universal graded deformation of A,
and show that the spectrum of its center is supported on a certain arrangement of hyperplanes
which is orthogonal to the arrangement coming from the algebra Koszul dual to A. This is an
algebraic version of a duality discovered by Goresky and MacPherson between the equivariant
cohomology rings of partial flag varieties and Springer fibers; we recover and generalize their
result by showing that the center of the universal deformation for the ring governing a block
of parabolic category O for gln is isomorphic to the equivariant cohomology of a Spaltenstein
variety. We also identify the center of the deformed version of the “category O” of a hyperplane
arrangement (defined by the authors in a previous paper) with the equivariant cohomology of a
hypertoric variety.

1 Introduction

In 1976, Bernstein, Gelfand, and Gelfand introduced the category O of representations of a semisim-

ple Lie algebra g = Lie(G) [BGG76]. Over the course of the next decade, several new techniques

appeared in the algebraic and geometric study of this category. Two of the most important were

• the use of a deformed category Ô, which consists of families of representations over a formal

neighborhood of 0 in the weight space h∗ of g

• connections to the geometry of the flag variety G/B, especially through the localization

theorem of Beilinson and Bernstein [BB81].

The first of these was used by Soergel [Soe90] to show that an integral block of category O is

equivalent to the module category of a certain finite dimensional algebra A. Furthermore, Soergel

showed that the center of A is isomorphic to the cohomology ring of H∗(G/P ), where P ⊂ G is a

parabolic subalgebra that depends on the block. This fact reflects a second connection to geometry:
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each block of category O not only has a geometric interpretation via the localization theorem, it

is also Koszul dual to the category of Schubert smooth perverse sheaves on G/P , which is proved

independently of the localization theorem in [BGS96]. In later work [Soe92], Soergel showed that

Ô can be described using the T -equivariant geometry of G/P , where T is a maximal torus of G.

In particular, he computed a deformation Â of A whose module category is isomorphic to the

corresponding block of Ô, and he showed that the center of Â is isomorphic to a completion of the

equivariant cohomology ring H∗T (G/P ).

Our aim in this paper is to study how the first of these techniques, that of studying the repre-

sentation theory of a finite dimensional Koszul algebra by deforming it, can be applied in a general

algebraic context, without the benefit of the geometric or Lie theoretic interpretations of category

O. In Section 4 we use the work of Braverman and Gaitsgory [BG96] to show that any Koszul

algebra A has a universal flat graded deformation Ã, so that any other graded flat deformation is

obtained from Ã by a unique base change. In Sections 9 and 10, we use techniques of Soergel and

Fiebig [Soe90, Soe92, Fie03, Fie06, Fie08] to show that Soergel’s deformed algebra is in fact the

completion of the universal deformation.

For what follows, we will need to assume not just that our algebras are Koszul, but also stan-

dard Koszul (Definition 3.4), which roughly means that its module category is highest weight in

the sense of [CPS94]. The general study of standard Koszul algebras was initiated in [ÁDL03], and

the main examples are the algebras A introduced above, the generalizations obtained by replacing

O with its parabolic version, and the algebras which were defined in [BLPW10] using hyperplane

arrangements.

We focus our attention primarily on the center of the universal deformation Ã of a standard

Koszul algebra A. Recall that Soergel identified the center of his deformed algebra with the (com-

pleted) equivariant cohomology ring of a partial flag variety. We generalize this result by showing

that the center of Ã always “behaves like” a torus-equivariant cohomology ring. More precisely,

we introduce a structure called a localization algebra (Definition 2.1), which is an abstraction of

the data given by a torus-equivariant cohomology ring and the localization map to the fixed point

set, and we prove the following theorem (Corollary 5.7).

Theorem 1.1. The center Z(A) := Z(Ã) of the universal deformation canonically admits the

structure of a localization algebra.

For many of the examples of standard Koszul algebras mentioned above, the localization algebras

that we obtain are in fact isomorphic to equivariant cohomology rings. We have already addressed

the case where A is the algebra whose module category is a block of O. If g = gln and O is replaced

by its parabolic version, then Stroppel and Brundan [Str, Bru08b] show that the center of A is

isomorphic to the cohomology ring of a Spaltenstein variety.4 In this case, we show that the center

of Ã is isomorphic to the torus-equivariant cohomology ring of the same variety (Theorem 9.9),

4 A Spaltenstein variety is a certain subvariety of G/P , where once again the choice of P depends on the choice of
central character. If the central character is generic, then P will be a Borel subalgebra, and the Spaltenstein variety
will be a Springer fiber; this is the case proven in [Str]. See Section 9 for more details.
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generalizing Soergel’s result in the non-parabolic case and Brundan’s result for the un-deformed

algebra. Finally, in the case where A is one of the algebras introduced in [BLPW10], we show

that the center of Ã is isomorphic to the cohomology ring of a hypertoric variety (Theorem 8.5),

generalizing the un-deformed, non-equivariant result of [BLPW10, 4.16].

Once we have established that the center of the universal deformation is a localization algebra

(Theorem 1.1), we study the relationship between the localization algebras associated to a dual pair

of standard Koszul algebras. This problem is motivated by an observation made by Goresky and

MacPherson in a paper that has, a priori, nothing to do with Koszul algebras [GM10].5 If X is a

variety equipped with the action of a torus T with isolated fixed points, then the localization map

in equivariant cohomology may be used to define a finite collection of vector subspaces of HT
2 (X),

each of which is isomorphic to the Lie algebra t of T . Goresky and MacPherson observed that the

arrangement associated to a partial flag variety for gln is dual to the one associated to a Springer

fiber, in the sense that the equivariant second homology groups are dual as vector spaces, and the

subspaces appearing on one side are the perpendicular spaces to the subspaces appearing on the

other side.

Our approach to the problem is to interpret and generalize the examples of [GM10] in a purely

algebraic context. First, we define what it means for two localization algebras to be dual, so that

the result of [GM10] may be formulated as the duality of a certain pair of localization algebras.

We next introduce one more technical hypothesis: we call an algebra A flexible if it is standard

Koszul and the natural map from the center of Ã to the center of A is surjective in degree 2. Our

main result (Theorem 7.1 and Corollary 7.5) is the following.

Theorem 1.2. If A is flexible, then so is the dual algebra A!, and the localization algebras Z(A)

and Z(A!) are canonically dual.

In light of Theorem 9.9 and the fact that a regular block of parabolic category O for gln is Koszul

dual to a singular block of ordinary category O [BGS96], the examples found by Goresky and

MacPherson follow from Theorem 1.2. In fact, a theorem of Backelin’s [Bac99] says that an integral

block of parabolic category O is dual to another such block, and so the Goresky-MacPherson

phenomenon generalizes to all gln Spaltenstein varieties.

Example 1.3. Consider the quiver

• • •
x1

**

y1

jj
x2

**

y2

jj

and let A be the path algebra modulo the relations x1y1 and y1x1 − x2y2. This is a noncommu-

tative graded algebra, and it is standard Koszul. The category of finitely generated A-modules is

equivalent to a singular integral block of category O for sl3. Then Soergel [Soe90] tells us that its

center Z(A) is isomorphic to the cohomology ring of P2. Indeed, Z(A) is generated by the degree

5In particular, it is unrelated to the appearance of Koszul duality in [GKM98], which is very different in flavor
from anything in this paper.
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2 class x2y2 + y2x2, whose cube is zero. The center Z(A) := Z(Ã) of the universal deformation of

A is isomorphic to the T 2-equivariant cohomology ring of P2.

Now consider the Koszul dual ring A! of A, which is a quotient of the path algebra of the dual

quiver

• • •
x!1

tt

y!1

44

x!2
tt

y!2

44

by the relations x!
1y

!
1 + y!

2x
!
2, x!

2y
!
2, x!

2x
!
1, and y!

1y
!
2. The module category of A! is equivalent to a

regular block of parabolic category O for the parabolic subalgebra of sl3 preserving a line in C3

[Str03, 5.2.1]. The results of Stroppel or Brundan [Str, Bru08b] tell us that the center of A should

be isomorphic to the cohomology ring of a certain Springer fiber, namely the one consisting of two

projective lines that touch in a single point. Indeed, the center of A! is generated by the degree

2 classes y!
1x

!
1 and y!

2x
!
2, with all products trivial. The center Z(A!) := Z(Ã!) of the universal

deformation of A! is isomorphic to the T 1-equivariant cohomology ring of the same variety.

The equivariant cohomology rings associated to these two algebras constitute the simplest non-

trivial example of a dual pair from [GM10]. More details from the perspective of [GM10] are given

in Examples 2.4, 2.5, and 2.7.

Remark 1.4. The following is meant only to provide some additional geometric motivation for

our results. In both of the families of standard Koszul algebras considered in Sections 8-10, the

localization algebras that arise are isomorphic to equivariant cohomology rings of certain algebraic

symplectic manifolds or orbifolds.6 We expect that the algebra itself will be isomorphic to the

Ext-algebra of a certain module over a quantization of the structure sheaf of the manifold. The

map from the cohomology ring to the center of our algebra will then be induced by the action of

the constant sheaf on this module. For the case studied in Section 8, this program is being carried

out in [BLPW]. In the case of an algebra whose module category is equivalent to an integral block

of ordinary category O, it is well-known: the manifold in question is T ∗(G/P ), and the module is

the microlocalization of the direct sum of all of the Schubert-smooth simple D-modules on G/P .

The authors plan to treat the case of parabolic category O in a forthcoming paper.

When two algebraic symplectic manifolds give rise to dual standard Koszul rings in this way, we

refer to them as a symplectic dual pair. So the main result of this paper could be interpreted as

saying that symplectic dual pairs have equivariant cohomology rings that are dual as localization

algebras. Beside the pairs of hypertoric varieties and pairs of resolved Slodowy slices that we

consider in this paper, other conjectural examples include Hilbert schemes on ALE spaces, which

we expect to be dual to certain moduli spaces of instantons on C2, and quiver varieties of simply

laced Dynkin type, which we expect to be dual to resolutions of slices to certain subvarieties of the

affine Grassmannian. We expect further examples to arise from physics as Higgs branches of the

moduli space of vacua for mirror dual 3-dimensional N = 4 superconformal field theories, or as

6Hypertoric varieties are symplectic orbifolds, and Spaltenstein varieties are torus-equivariant deformation retracts
of resolved Slodowy slices, which are symplectic manifolds.
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the Higgs and Coulomb branches of a single such theory. That hypertoric varieties occur in mirror

dual theories was observed by Kapustin and Strassler in [KS99].
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2 Localization algebras

In this section we introduce localization algebras and define a notion of duality between them.

Before giving the general definition of a localization algebra, we consider a motivating setup from

equivariant topology.

Let X be a complex algebraic variety and T be an algebraic torus acting on X with the fixed

point set XT finite and non-empty. The equivariant cohomology ring7 H∗T (X) is a graded algebra

over the polynomial ring Sym t∗ (the T -equivariant cohomology of a point), where the elements of

t∗ lie in degree 2. From these data, we obtain natural graded algebra homomorphisms

Sym t∗ ↪→ SymH2
T (X)→ H∗T (X)→ H∗T (XT ) ∼= H∗(XT )⊗ Sym t∗, (1)

where the second map is given by multiplying classes of degree 2 together, and the third, often

called the localization map, is given by restriction to XT . (To simplify notation, we will write ⊗
in place of ⊗C throughout the paper.) If the ordinary cohomology of X vanishes in odd degrees (for

example if X is a smooth projective variety), then H∗T (X) is a free Sym t∗-module, the localization

map is injective, and the cokernel of the localization map is a torsion Sym t∗-module. With this

example in mind, we formulate the following general definitions.

Definition 2.1. A localization algebra is a quadruple Z = (U,Z, I, h), where U is a finite-

dimensional complex vector space, Z is a finitely generated graded SymU -algebra, I is a finite set,

and

h : Z →
⊕
α∈I

SymU

is a homomorphism of SymU -algebras. If the kernel and cokernel of h are torsion SymU -modules,

then we call Z strong. If Z is free of rank |I| as a SymU -module, we call Z free. When there is

no chance for confusion, we may refer to Z itself as a localization algebra.

Example 2.2. By the preceding discussion, the equivariant cohomology ring H∗T (X) carries a

natural structure of a localization algebra, with U = t∗ and I = XT . It is both strong and free if

and only if Hodd(X) = 0.

7All cohomology groups in this paper will be taken with complex coefficients.
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If Hodd(X) = 0, it is often easier to think of the morphisms of (1) in terms of the dual morphisms

of schemes:

t � HT
2 (X)← SpecH∗T (X) � XT × t.

The composite map SpecH∗T (X) → t is a flat family of schemes, with zero fiber equal to the fat

point SpecH∗(X) and with general fiber isomorphic to SpecH∗(XT ) ∼= XT . For each α ∈ XT ,

let Hα be the image of {α} × t in HT
2 (X), a linear subspace that projects isomorphically onto

t. The union of all of these subspaces is equal to the spectrum of the subring of H∗T (X) that is

generated by the degree two part H2
T (X); equivalently, it is the image of the map from SpecH∗T (X)

to HT
2 (X) [GM10, 3.2]. This leads us naturally to the following definition, which can be found in

[GM10, §8.1].

Definition 2.3. A fibered arrangement is a surjective map of finite-dimensional complex vector

spaces E � F along with a finite set I and a collection {Hα | α ∈ I} of linear subspaces of E

that project isomorphically onto F . For example, a localization algebra (U,Z, I, h) gives rise to a

fibered arrangement by taking E = Z∗2 , F = U∗, and Hα equal to the image of the dual of the

degree 2 part of the α component of the localization map h.

Example 2.4. Let X = P2, and let T ⊂ PGL2 be the diagonal subgroup. Then T acts on X

with three isolated fixed points. The ring H∗T (X) is isomorphic to C[b1, b2, b3]/〈b1b2b3〉, where

bi ∈ H2
T (X) is the equivariant Thom class of the ith coordinate projective line in X. The subring

Sym t∗ is generated by the classes b1 − b2 and b2 − b3. The vector space HT
2 (X) is 3-dimensional,

with coordinates b1, b2, and b3. The kernel of the map to t is generated by the (1, 1, 1) vector, and

the three subspaces Hα are the coordinate hyperplanes.

Example 2.5. Let X be a pair of projective lines touching at a single point, and let T be a

one-dimensional torus. We consider the action of T on X such that T acts effectively on each

component, and the double point is an attracting fixed point for one component and a repelling

fixed point for the other. The ring H∗T (X) is isomorphic to C[c1, c2, c3]/〈c1c2, c1c3, c2c3〉, where ci is

a degree 2 generator whose restriction to the fixed point pj is δij times a fixed generator of H2
T (pt).

The vector space HT
2 (X) is 3-dimensional, with coordinates c1, c2, and c3. The kernel of the map

to t is defined by the equation c1 + c2 + c3 = 0, and the three subspaces Hα are the coordinate

lines.

Examples 2.4 and 2.5 motivate the notion of dual fibered arrangements and dual localization

algebras.

Definition 2.6. Consider a fibered arrangement with notation as in Definition 2.3. Its dual is

given by E∗ � E∗/F ∗, along with the linear subspaces H⊥α ⊂ E∗, indexed by the same finite set

I. A duality between two localization algebras Z and Z∨ is an isomorphism between the fibered

arrangement associated to Z∨ and the dual of the fibered arrangement associated to Z. Thus it

consists of an identification of I∨ with I and a perfect pairing between Z∗2 and (Z∨2 )∗ such that

each Hα ⊂ Z∗2 is the perpendicular space to H∨α ⊂ (Z∨2 )∗, and the kernels of the projections to U∗

and (U∨)∗ are also perpendicular to each other.
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Example 2.7. The localization algebras in Examples 2.4 and 2.5 are dual via the perfect pairing

of vector spaces with respect to which b1, b2, b3 and c1, c2, c3 are dual coordinate systems, and the

bijection of fixed point sets that takes Li ∩ Lj to pk for i, j, k distinct.

3 Koszul, quasi-hereditary, and standard Koszul algebras

In this section we review the well-known definitions of quadratic, Koszul, and quasi-hereditary

algebras, along with the slightly less well-known notion of a standard Koszul algebra. Let I be

a finite set of order n, and let R := C{eα | α ∈ I} be a ring spanned by pairwise orthogonal

idempotents. Let M be a finitely generated R-bimodule, and let W ⊂M ⊗RM be a sub-bimodule.

Let

A := TR(M)
/
〈W 〉

be the associated quadratic algebra. For all α ∈ I, let

Lα := A
/
A+ ⊕ C{eβ | β 6= α}

be the simple right A-module indexed by α, and let Pα := eαA be its projective cover.

Definition 3.1. A complex · · · →Mi+1 →Mi →Mi−1 → · · · of graded right A-modules is called

linear if Mi is generated in degree i. The algebra A is called Koszul if each simple module Lα

admits a linear projective resolution.

Suppose that we are given a partial order ≤ on I, and consider the idempotents

εα :=
∑
γ 6≤α

eγ and ε′α := εα + eα.

The right-standard module Vα is defined to be the largest quotient of Pα that is supported at

or below α, that is

Vα := eαA
/
eαAεαA.

Left-projective modules and left-standard modules are defined similarly.

Definition 3.2. Consider the natural surjections

Pα
Πα−→ Vα

πα−→ Lα.

The algebra A is called quasi-hereditary if the following two conditions hold for all α ∈ I:

• kerπα admits a filtration with each subquotient isomorphic to Lβ for some β < α

• ker Πα admits a filtration with each subquotient isomorphic to Vγ for some γ > α.

Remark 3.3. This is equivalent to asking that the regular right A-module admits a filtration with

standard subquotients, and that the endomorphism algebra of each right-standard module Vα is a
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division algebra [ÁDL03, §1]. It is also equivalent to requiring that the standard modules form an

exceptional sequence with respect to the partial order on I [Bez03, Proposition 2].

Definition 3.4. The algebra A is called standard Koszul if it is finite-dimensional and quasi-

hereditary,8 each right-standard module Vα admits a linear projective resolution, and the analogous

condition holds for left-standard modules, as well.

Theorem 3.5. [ÁDL03, Theorem 1] If A is standard Koszul, then it is Koszul.

The quadratic dual A! of A is defined as the quotient

A! := TRM
∗/〈W⊥〉,

where M∗ = HomC(M,C), with the natural R-bimodule structure for which eαM
∗eβ = (eβMeα)∗.

It is a well-known fact that A! is Koszul if and only if A is. The analogous fact holds for standard

Koszulity, as well.

Theorem 3.6. [ÁDL03, Theorem 3] If A is standard Koszul, then A! is standard Koszul with

respect to the opposite partial order on I.

Remark 3.7. In fact, it is shown in [ÁDL03, Theorem 3] that any finite-dimensional, quasi-

hereditary, Koszul algebra is standard Koszul if and only if its dual is quasi-hereditary. Thus

standard Koszul algebras form the largest class of simultaneously Koszul and quasi-hereditary

finite-dimensional algebras that is closed under the operation of quadratic duality.

We conclude with two technical lemmas that we will need in Section 6. The first says that if we

express a standard Koszul algebra A as a quadratic quotient of the path algebra of a quiver with

vertex set I, that quiver has no loops, and it only has arrows between nodes that are comparable

in our partial order. The second says that any path of length 2 that starts and ends at α may be

uniquely expressed as a sum of paths that avoid all nodes that lie below α.

Lemma 3.8. If A is standard Koszul and eαMeβ 6= 0, then either α < β or β < α. In particular,

eαMeα = 0 for all α ∈ I.

Proof. For any A-module N , the cosocle of N is defined to be the largest semisimple quotient

of N . Consider the right A-module N = (Pα)≥1/(Pα)≥2, which is isomorphic as an R-module to

eαM . Since N has a grading that is concentrated in a single degree, it is semisimple, and therefore

a quotient of the cosocle of (Pα)≥1.

The standard filtration of Pα induces a filtration of (Pα)≥1 with each subquotient isomorphic to

either ker(πα) or Vγ for some γ > α. This in turn induces a filtration of the cosocle of (Pα)≥1, with

subquotients isomorphic to the cosocle of ker(πα) or of Vγ for some γ > α. We know that ker(πα)

only has composition factors of the form Lβ for β < α, and that the cosocle of Vγ is isomorphic to

Lγ . Thus the simple modules that appear in the cosocle of (Pα)≥1 are all of the form Lβ for β < α

or β > α. Since N = eαM is a quotient of the cosocle of (Pα)≥1, the same is true for N .

8[ÁDL03] is internally inconsistent about whether or not a standard Koszul algebra should be required to be either
finite-dimensional or quasi-hereditary. For the purposes of this paper, we require both.
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Lemma 3.9. If A is standard Koszul, then the projection eαMεα ⊗R εαMeα → eαA2eα is an

isomorphism for every α ∈ I.

Proof. Since A is standard Koszul, it is lean [ÁDL03, 1.4], which means that

ε′α(radA)ε′α(radA)ε′α = ε′α(radA)2ε′α

for all α ∈ I. Since A is finite-dimensional by assumption, we have radA = A+, so multiplying on

both the left and the right by eα and looking in degree 2, we have a surjection

eαMεα ⊗R εαMeα = eαMε′α ⊗R ε′αMeα � eαA1ε
′
αA1eα = eαA2eα, (2)

where the equality on the left follows from Lemma 3.8.

Consider the exact sequence

0→ K → Pα → Vα → 0.

Since Vαeα vanishes in positive degrees, we have K2eα = (Pα)2ea = eαA2eα. Note that K has a

graded filtration whose subquotients are isomorphic to Vβ(i) for β > α and i > 0, where (i) denotes

shifting the grading up by i — see [CPS94, (1.2)]. It follows that K1
∼=
⊕

β>α eαMeβ.

The subquotients Vγ(j) of K with j ≥ 2 cannot contribute to K2eα, so we have an isomorphism

K2eα ∼=
⊕
β>α

eαMeβ ⊗ (Vβ)1eα =
⊕
β>α

eαMeβ ⊗ eβMeα.

It follows that dim eαA2eα = dim eαMεα ⊗R εαMeα, so the projection (2) is an isomorphism.

4 Flat deformations of Koszul algebras

In this section we study graded deformations of Koszul algebras. To begin we consider a quadratic

algebra A = TR(M)/〈W 〉 which is not necessarily Koszul. Let U be a finite-dimensional C-vector

space and let S = SymU , graded so that elements of U have degree two. Now suppose given a

graded deformation of A over U∗, that is, a graded R-algebra Ã together with graded homomor-

phisms

S
j−→ Ã

π−→ A

so that j maps into the center of Ã and π induces an isomorphism A ∼= Ã/〈j(U)〉 of graded algebras.

Since S is generated in degree two, the map π is an isomorphism in degrees zero and one, so

we have Ã0
∼= R and Ã1

∼= M . In degree two we have the right exact sequence

R⊗ U → Ã2 → A2 → 0.

We will make the additional assumption that Ã is flat over S; in particular, this implies that the

sequence above is in fact short exact.
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Since W is contained in the kernel of the projection TR(M)→ A, we get a map of R-bimodules

Φ: W → R⊗U by letting Φ(w) be the image of w under the multiplication map T 2
R(M) = T 2

R(Ã1)→
Ã.

Note that if N is any R-bimodule and V is a C-vector space, then any map Ψ: N → R⊗ V of

R-bimodules must annihilate any “off-diagonal” summand eαNeβ ⊂ N with α 6= β. In particular,

this means that such bimodule maps are in bijection with linear maps Ψ◦ : N → V that kill the

off-diagonal summands, via the formula

Ψ(eαxeβ) = eα ⊗Ψ◦(eαxeβ).

For any map Ψ: W → R⊗ U of R-bimodules, we define

ÃΨ := TR(M)⊗ S
/
〈w ⊗ 1− 1⊗Ψ(w) | w ∈W 〉. (3)

We then get a surjective map ÃΦ → Ã of graded algebras which becomes an isomorphism upon

tensoring over S with C. Since we are assuming that Ã is flat over S, this map must be an

isomorphism even before tensoring. Thus every flat graded deformation of A with deformation

parameters in degree two arises from a bimodule map Ψ: W → R⊗U as in Equation (3). It is not

the case, however, that every bimodule map gives a flat graded deformation. If A is Koszul, we

have the following criterion for flatness.

Theorem 4.1. Suppose that A is Koszul. Let Ψ : W → R ⊗ U be a bimodule map, and let ÃΨ

be the graded deformation of A given in Equation (3). This deformation is flat if and only if Ψ◦

factors through the quotient map W ∼= (A!
2)∗ → Z(A!)∗2.

Remark 4.2. Since Z(A!)2 has no off-diagonal summands, Theorem 4.1 implies that graded flat

deformations of A over U∗ with deformation parameters in degree two are in bijection with linear

maps ψ : Z(A!)∗2 → U . If we take U to be Z(A!)∗2 and ψ to be the identity map, we call the resulting

ring Ã the universal deformation of A. It is universal in the sense that if ψ′ : Z(A!)∗2 → U ′ is

another linear map, then the corresponding deformation is isomorphic to Ã⊗S SymU ′, where the

map S → SymU ′ is induced by ψ′.

In Section 10, we will also need the analogous statement for deformations over power series

rings. If Â is a flat deformation of A over the spectrum of the power series ring
∏∞
i=0 Symi U ′ and

Â admits a formal grading Â =
∏∞
i=0 Âi compatible with its algebra structure, then Â may be

obtained from the universal deformation of A via a base change to U∗ followed by a completion at

the unique graded maximal ideal of SymU .

Proof of Theorem 4.1. For any linear map χ : U → C let Cχ denote the associated one-dimensional

SymU -algebra, and consider the specialization

Aχ := ÃΨ ⊗SymU Cχ

of ÃΨ at the point χ ∈ U∗. Explicitly, the ring Aχ is the quotient of the tensor algebra TRM by the

10



two-sided ideal 〈w − χR ◦Ψ(w) | w ∈W 〉, where χR : R⊗ U → R is given by χR(eα ⊗ u) = eαχ(u)

for all α ∈ I and u ∈ U . The grading on ÃΨ induces a filtration on Aχ, and the ring ÃΨ is flat if

and only if the natural surjection A→ grAχ is an isomorphism for all χ.

Our theorem now follows directly from a result of Braverman and Gaitsgory [BG96]. They study

a more general situation, taking the quotient Q of the tensor algebra TR(M) by the two-sided ideal

〈w − a(w) − b(w) | w ∈ W 〉, where a : W → M and b : W → R are maps of R-bimodules. Their

main result9 [BG96, 4.1] gives necessary and sufficient conditions on a and b to have grQ ∼= A. In

our case, we have a = 0 and b = χR ◦Ψ. In this situation their conditions reduce to the statement

that the map

b⊗ id− id⊗ b : (W ⊗RM) ∩ (M ⊗RW )→M

vanishes.

To relate this condition to the dual ring, note that

A!
3 = M∗ ⊗RM∗ ⊗RM∗

/
(W⊥ ⊗RM +M ⊗RW⊥)

is naturally dual to (W ⊗R M) ∩ (M ⊗R W ). Thus we may identify Z(A!)2 with the set of C-

linear maps b◦ : W → C that kill the off-diagonal terms (this implies that b◦ commutes with the

idempotents) and for which

b◦ ⊗ γ − γ ⊗ b◦ : (W ⊗RM) ∩ (M ⊗RW )→ C

vanishes for any γ ∈M∗. Here we consider W ⊗RM as a subspace of W ⊗M in the obvious way,

so (b◦⊗γ)(w⊗m) =
∑

α b
◦(eαweα)γ(eαm), and similarly for γ⊗ b◦. Then if b : W → R⊗C = R is

the bimodule map corresponding to a C-linear map b◦, we have b◦⊗γ−γ⊗b◦ = γ ◦ (b⊗ id− id⊗b),
so b◦ represents an element of Z(A!)2 if and only if b⊗ id− id⊗b = 0.

In other words, we have shown that ÃΨ is flat if and only if (χR ◦Ψ)◦ = χ ◦Ψ◦ is central for all

χ ∈ U∗, which is equivalent to saying that Ψ factors through Z(A!)∗2.

Remark 4.3. If we drop the Koszulity hypothesis, then the “if” direction of Theorem 4.1 becomes

false; it fails, for example, when |I| = 1 and A = C〈x, y〉/〈x2, y2 − xy〉.10

Remark 4.4. Theorem 4.1 can be understood more abstractly using the fact that Koszul duality

induces an equivalence of derived categories of graded modules

Db(A− gmod) ∼= Db(A! − gmod).

Since Hochschild cohomology is equal to the Ext-algebra of the identity functor on the derived

category [Toë07, 1.6], this also induces an isomorphism of Hochschild cohomology groups. The

behavior of this equivalence on grading shift functors is such that the group HHr(A!)s is identified

9Braverman and Gaitsgory only treat the case when R is a field, but their results easily generalize to our semisimple
ring R. Their condition (I) forces a and b to be bimodule maps.

10We thank Andrew Connor for this example.
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with HHr+s(A)−s [BGS96, 1.2.6]. In particular, if A is Koszul, Z(A!)2 = HH0(A!)2 is naturally

isomorphic to HH2(A)−2. In fact, the proof of the main result of [BG96] proceeds by showing that

an element of Z(A!)2 lifts to an R-bimodule map M ⊗M → R satisfying a cocycle condition which

allows it to represent a class in HH2(A)−2.

5 Deformed standard modules and malleable algebras

Throughout this section we assume that A is a standard Koszul algebra, S = SymU is a polynomial

ring, and Ã is a flat graded deformation of A over U∗. Consider the right Ã-modules

P̃α := eαÃ and Ṽα := P̃α

/
eαÃ εαÃ.

Since P̃α is a summand of Ã, it is a flat deformation of Pα. The purpose of this section is to show

that the center of Ã acts on each Ṽα via a central character

hα : Z(Ã) −→ S.

It will follow that the data Z(Ã) := (U, Z(Ã), I, ⊕hα) form a localization algebra.

For any α ∈ I, consider the algebra Cα := ε′αAε
′
α ⊂ A and its deformation C̃α := ε′αÃ ε

′
α ⊂ Ã.

By [ÁDL03, 3.9], Cα is standard Koszul. The deformed algebra C̃α is a direct summand of Ã as

an S-module, so it is flat over U∗. For any α ≤ β, let

V α
β := eβCα

/
eβCαεβCα

be the standard cover of Lβ in the category of right Cα-modules, and consider its deformation

Ṽ α
β := eβC̃α

/
eβC̃αεβC̃α.

Lemma 5.1. We have an isomorphism V α
β ⊗Cα ε′αA ∼= Vβ of right A-modules, and an isomorphism

Ṽ α
β ⊗C̃α ε

′
αÃ
∼= Ṽβ of right Ã-modules.

Proof. Using the equalities eβε
′
α = eβ and εβε

′
α = εβ = ε′αεβ, we have

V α
β ⊗Cα ε′αA =

(
eβCα

/
eβCαεβCα

)
⊗Cα ε′αA

=
(
eβAε

′
α

/
eβAεβAε

′
α

)
⊗Cα ε′αA

∼= eβA
/
eβAεβA = Vβ.

The proof of the second statement is identical.

Remark 5.2. The most important case of Lemma 5.1, and also the easiest one to think about, is

the case in which α = β, so that V α
β = V α

α is isomorphic to the simple module for Cα supported at

the node α.
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Proposition 5.3. For all α ∈ I, Ṽα is a flat deformation of Vα.

Proof. We first consider the case where α is a minimal element of our poset. In this case Vα ∼= Lα is

one-dimensional. Then by semicontinuity, the Ãχ-module (Ṽα)χ = eαÃχ

/
eαÃχ εαÃχ has dimension

0 or 1 for every χ ∈ U∗. We must show that that dimension is equal to 1 for every χ, or equivalently

that eα /∈ eαÃχ εαÃχeα. Since α is minimal, Lemma 3.9 tells us that there are no nontrivial

relations among loops of length 2 based at α. In particular there are no relations to deform, and

the conclusion follows.

In the general case, α is a minimal element of the poset of simples for the subalgebra Cα, so

Ṽ α
α is a flat deformation of V α

α . This then implies the result for Ṽα ∼= Ṽ α
α ⊗C̃α ε

′
αÃ.

Lemma 5.4. The regular right Ã-module Ã admits a filtration indexed by I for which the subquo-

tient indexed by α ∈ I is isomorphic to a direct sum of shifts of the deformed standard Ṽα.

Proof. Choose a maximal index α ∈ I. Let B = A/AeαA, and let WB ↪→ B1 ⊗R B1 be the space

of relations for B. The algebra B is standard Koszul by [ÁDL03, 3.9]. Let B̃ = Ã/ÃeαÃ. We first

use the results of Section 4 to show that B̃ is a flat deformation of B over U∗.

Let ē = 1 − eα. The surjection A � B induces an inclusion B! ↪→ A! with image contained in

ēA!ē ⊂ A!. By [ÁDL03, 2.5], the image is equal to ēA!ē. The map q : A!
2 → B!

2 given by q(x) = ēxē

is a left inverse for the inclusion B!
2 ↪→ A!

2. It follows that if the deformation Ã is described by an

A0-bimodule map Ψ: WA → A0 ⊗ U as in Section 4, then B̃(V) is described by the composition

WB
q∗−→WA

Ψ−→ A0 ⊗ U
·ē−→ B0 ⊗ U.

Then q sends Z(A!)2 into Z(B!)2, so Theorem 4.1 implies that B̃(V) is flat over U∗.

A deformed standard module over B̃ becomes a deformed standard Ã-module under the quotient

homomorphism Ã → B̃. Thus, inducting on the size of our poset, we may assume that the right

Ã-module B̃ has a filtration by graded Ã-modules indexed by I \ {α} such that the associated

graded indexed by β is isomorphic to a direct sum of shifts of Ṽβ.

Consider the exact sequence

0→ ÃeαÃ→ Ã→ B̃ → 0. (4)

We have

ÃeαÃ = Ãeα ⊗eαÃeα eαÃ = Ãeα ⊗eαÃeα P̃α = Ãeα ⊗eαÃeα Ṽα,

where the last equality follows from the maximality of α. Maximality also implies that eαÃeα ∼= S

(by Lemma 3.9), thus the Ã-module ÃeαÃ is isomorphic to a direct sum of dimAeα copies of Ṽα.

The result then follows from the exact sequence (4).

Corollary 5.5. Suppose that Ṽ is a graded Ã-module which is a flat deformation of Vα; that is, it

is free as an S-module and Ṽ ⊗S C0 is isomorphic to Vα as an A-module. Then Ṽ ∼= Ṽα.
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Proof. Consider the surjection Ṽ � Ṽ ⊗S C0
∼= Vα. Since P̃α is projective, we can lift the map

P̃α → Ṽα → Vα to a map φ : P̃α → Ṽ . The fiber of φ over 0 is a surjection, so Nakayama’s lemma

tells us that φ itself must be surjective. For any β ∈ I, the natural map

HomÃ(P̃β, Ṽ )⊗S C0 → HomA(Pβ, Ṽ ⊗S C0)

is injective, thus HomÃ(P̃β, Ṽ ) = 0 for any β 6≤ α. It follows that kerφ contains eαÃ εαÃ, hence Ṽ

is a quotient of Ṽα. Since they are both free S-modules and their fibers over 0 are isomorphic, we

have Ṽ ∼= Ṽα.

The next result says that our deformed standard modules have well-defined central characters.

Proposition 5.6. For each α ∈ I, there is an S-algebra homomorphism hα : Z(Ã)→ S such that

v · ζ = hα(ζ)v for all v ∈ Ṽα and ζ ∈ Z(Ã).

Proof. If α is minimal, then Vα ∼= Lα and Ṽα ∼= S by Proposition 5.3, and the claim follows from the

fact that Ã acts on Ṽα by S-module endomorphisms. The general case follows from the isomorphism

Ṽα ∼= Ṽ α
α ⊗C̃α ε

′
αÃ of Lemma 5.1.

As a consequence, we can construct a localization algebra from a flat graded deformation Ã of

a standard Koszul algebra A, thus completing the proof of Theorem 1.1.

Corollary 5.7. The data Z(Ã) := (U, Z(Ã), I, ⊕hα) form a localization algebra.

Let K be the fraction field of S, and for any S-module N , let N∞ = N ⊗S K. The filtration

of Ã from Lemma 5.4 induces a filtration of Ã∞ with subquotients isomorphic to direct sums of

modules of the form Ṽ∞α .

Theorem 5.8. Suppose that A ∼= Aop as R-algebras. The following are equivalent:

1. The deformed standard filtration of Ã∞ splits.

2. The action map Ã∞ →
⊕

α EndK(Ṽ∞α ) is an isomorphism.

3. The map
⊕

α h
∞
α : Z(Ã)∞ →

⊕
αK is an isomorphism.

4. The maps {hα | α ∈ I} from Z(Ã) to S are all distinct.

Proof. (1) ⇒ (2): Since the deformed standard filtration of Ã∞ splits, an element of Ã∞ which

kills every Ṽ∞α must also act trivially on Ã∞, and must therefore be zero. Thus the action map is

injective. Comparing dimensions, we have

dimK Ã
∞ = dimCA =

∑
α,β

[Lα : Pβ] =
∑
α,β,γ

[Lα : Vγ ][Vγ : Pβ] =
∑
α,β,γ

[Lα : Vγ ][Lβ : Vγ ] =
∑
γ

(dimVγ)2,

where the penultimate equality follows from BGG reciprocity [CPS88, 3.11] and the isomorphism

A ∼= Aop. Thus our map must be an isomorphism.
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(2)⇒ (3): This follows from the fact that Z(Ã)∞ ∼= Z(Ã∞).

(3)⇒ (4): Immediate from surjectivity.

(4) ⇒ (1): If all of the deformed standard modules have different central characters, then the

filtration of Ã can be split by taking the isotypic decomposition for the action of the center. Here

we use the fact that there is no overlap between central characters of consecutive subquotients,

which follows from Lemma 5.4.

Definition 5.9. If Ã satisfies the conditions of Theorem 5.8, we will call Ã malleable.

Proposition 5.10. Suppose that A ∼= Aop. Then Z(Ã) is a strong localization algebra iff Ã is

malleable.

Proof. By Definition 2.1, Z(Ã) is strong if and only if the kernel and cokernel of ⊕αhα are torsion.

This is equivalent to asking that ⊕αh∞α be an isomorphism, which is condition (3) above.

6 Flexible algebras

In this section we define and study flexible algebras in preparation for the next section, which

contains proofs of our central results, Theorem 7.1 and Corollary 7.5. Let A be a standard Koszul

algebra, let S = SymU be a polynomial ring generated in degree 2, and let Ã be a flat graded

deformation of A over U∗.

Definition 6.1. We say that Ã is flexible if the natural projection Z(Ã)2 → Z(A)2 is surjective.

Example 6.2. Let I = {1, 2} be the nodes of a quiver with r > 0 arrows x1, . . . , xr from 1 to 2 and

s > 0 arrows y1, . . . , ys from 2 to 1. Let Ars be the path algebra modulo the quadratic relations

yjxi = 0 for all i and j. Thus a right Ars-module is a representation of the quiver for which

every loop based at the node 2 acts trivially. We have standard modules V1 = L1 and V2 = P2

with ker Π1
∼= P⊕r2 and kerπ2

∼= L⊕s1 , so A is quasi-hereditary with respect to the order 1 < 2.

It is clear that both standard modules have linear projective resolutions. Furthermore, since the

opposite algebra of Ars is isomorphic to Asr, the same is true for left-standard modules. Hence Ars

is standard Koszul. It is also easy to see that Ars is isomorphic to its own quadratic dual.

The center Z(Ars) is spanned by the unit and the r×s elements xiyj . The universal deformation

Ãrs has central generators uij in degree 2 and relations yjxi = uije2. It is easy to check that the

generators xiyj of Z(Ars)2 lift to central elements of Ãrs if and only if r = s = 1, thus only Ã11 is

flexible. We note that Ã11 is also malleable in the sense of Definition 5.9.

For the rest of this section, let us suppose that our algebra A is connected, meaning that for

all α, β ∈ I we have eαTR(M)eβ 6= 0. In other words, the category of A-modules does not split

into smaller blocks. Then Z(A)0
∼= C, and so we have an exact sequence

0→ U → Z(Ã)2 → Z(A)2 (5)
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which is also right exact if Ã is flexible. In that case, each homomorphism hα : Z(Ã)2 → S2 = U

of Proposition 5.6 splits this exact sequence. The difference between any two splittings vanishes on

U , and thus induces a map jαβ : Z(A)2 → U given by

jαβ(z) := hβ(ζ)− hα(ζ) for any lift ζ of z.

Define maps

µ : Z(A)2 →
⊕
α∈I

eαMεα ⊗R εαMeα and ν : Z(A)2 → Ã2 (6)

by setting µ(z) equal to the unique expression for z as a sum of loops that go first up and then

down (which exists by Lemmas 3.8 and 3.9), and ν(z) to the image of µ(z) in Ã2.

Proposition 6.3. Suppose that Ã is flexible. For all z ∈ Z(A)2 and ã ∈ eαÃeβ, we have

[ν(z), ã] = jαβ(z) ã.

Proof. Let z be given, and let ζ be a lift of z to Z(Ã)2. Since the kernel of the projection from

Ã2 to A2 is equal to R ⊗ U , there exist elements uα ∈ U such that ζ = ν(z) +
∑

α uαeα. Since

the deformed standard module Ṽα is supported on and below α, and ν(z) is expressed in terms of

paths that avoid such nodes, we have hα(ζ) = uα for all α ∈ I, and therefore jαβ(z) = uβ − uα for

all α, β ∈ I. Since ζ is central, we have

[ν(z), ã] = [ν(z)− ζ, ã] = (uβ − uα) ã = jαβ(z) ã

for all ã ∈ eαÃeβ.

Proposition 6.4 may be regarded as a converse to Proposition 6.3.

Proposition 6.4. Suppose that there exists a collection of linear maps

{
j′αβ : Z(A)2 → U

∣∣ α, β ∈ I}
satisfying the following two conditions:

• j′αβ + j′βγ = j′αγ for all α, β, γ ∈ I (in particular j′αβ = −j′βα for all α, β ∈ I)

• for all z ∈ Z(A)2 and ã ∈ eαÃeβ, we have [ν(z), ã] = j′αβ(z) ã.

Then Ã is flexible, and j′αβ = jαβ for all α, β ∈ I.

Proof. Let z ∈ Z(A)2 be given; we must show that we can lift it to Z(Ã)2. Choose an element

δ ∈ I arbitrarily, and let

ζ = ν(z) +
∑
γ∈I

j′δγ(z)eγ ∈ Ã2.
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Then for any ã ∈ eαÃeβ, we have

[ζ, ã] = [ν(z), ã] + j′δα(z) ã− j′δβ(z) ã =
(
j′αβ(z) + j′δα(z)− j′δβ(z)

)
ã = 0,

where the vanishing of the expression inside the parentheses follows from the first condition on the

homomorphisms j′αβ. Thus ζ is central.

By the same argument that we used in the proof of Proposition 6.3, we have hγ(ζ) = j′δγ(z) for

all γ, thus jαβ(z) = hβ(ζ)− hα(ζ) = j′δβ(z)− j′δα(z) = j′αβ(z).

We conclude with a lemma that we will use in the last section to show that a certain flexible

deformation of a standard Koszul algebra is universal, or at least has the universal deformation as a

quotient. Let ψ : Z(A!)∗2 → U be given, and let Ã be the graded flat deformation provided by Theo-

rem 4.1. Suppose that this deformation is flexible, so that we can define the maps jαβ : Z(A)2 → U .

Lemma 6.5. For any α, β ∈ I, Im jαβ is contained in the image of ψ.

Proof. First suppose that eαMeβ 6= 0, and let ã be any nonzero element of this space. Then for any

z ∈ Z(A)2, Proposition 6.3 implies that jαβ(z)ã is a nonzero element of the subring of Ã generated

by the degree 0 and 1 parts, thus jαβ(z) is in the image of Im(ψ). The general case follows from

the identity jαβ + jβγ = jαγ , since we are assuming that A is connected.

7 Koszul duality and GM duality

In this section we explore the relation between Koszul duality and the localization algebras of

flexible deformations. Let A be a connected standard Koszul algebra, and let Ã be its universal

deformation over U∗ = Z(A!)2. On the dual side, let Ã! be the universal deformation of the dual

ring A! over (U !)∗ = Z(A)2. Let S = SymU and S! = SymU !.

We will call a standard Koszul algebra flexible if its universal deformation is flexible. If A is

flexible, then we have the maps jαβ : Z(A)2 → U = Z(A!)∗2 constructed in the previous section. If

A! is flexible, then the same construction gives maps j!
αβ : Z(A!)2 → U ! = Z(A)∗2.

Theorem 7.1. If A is flexible, then so is A!. Furthermore, for all α, β ∈ I, we have an identity

j!
αβ = j∗βα of maps from Z(A!)2 = U∗ to U ! = Z(A)∗2.

Proof. By Proposition 6.4, it is enough to show that

[ν!(z!), ã!] = j∗βα(z!) ã!

for all z! ∈ Z(A!)2 and ã! ∈ eαÃeβ. Retracing the computation in the proof of Proposition 6.4, this

is equivalent to showing that, for a fixed δ ∈ I,

ζ ! := ν!(z!) +
∑
γ∈I

j∗γδ(z
!)eγ ∈ Ã!

2
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is central. It clearly commutes with the idempotents, so it is enough to show that it commutes

with elements of M∗.

We need to work with explicit representatives in the deformed tensor algebra

˜TR(M∗) := TR(M∗)⊗ Sym(U !).

Since elements of U ! have degree 2, we have

˜TR(M∗)2 = TR(M∗)2 ⊕ (R⊗ U !) and ˜TR(M∗)3 = TR(M∗)3 ⊕ (M ⊗ U !).

Define a lift η! ∈ ˜TR(M∗) of ζ ! by

η! := µ!(z!) +
∑
γ∈I

j∗γδ(z
!)eγ ∈ TR(M∗)2 ⊕ (R⊗ U !),

where µ! is defined as in Equation (6). Fix a pair of indices α, β ∈ I, and let x! be any element of

eβM
∗eα. We need to show that the commutator [ζ !, x!] ∈ TR(M∗)3 ⊕ (M∗ ⊗U !) reduces to zero in

Ã!
3.

Let Q1 = M ⊗W and Q2 = W ⊗M ⊂ TR(M)3. By the definition of the quadratic dual, the

kernel of the map from TR(M∗)3 to A!
3 is equal to

M∗ ⊗W⊥ +W⊥ ⊗M∗ = Q⊥2 +Q⊥1 = (Q1 ∩Q2)⊥.

We now need a similar expression for the relations in Ã!
3. Let

O1 = C{xµ(z) + x⊗ z | x ∈M, z ∈ Z(A)2} ⊂ TR(M)3 ⊕ (M ⊗ Z(A)2)

and

O2 = C{µ(z)x+ x⊗ z | x ∈M, z ∈ Z(A)2} ⊂ TR(M)3 ⊕ (M ⊗ Z(A)2).

Then the kernel of the quotient map ˜TR(M∗)3 = TR(M∗)3 ⊕ (M∗ ⊗ U !)→ Ã!
3 is equal to

(Q2 +O2)⊥ + (Q1 +O1)⊥ =
(

(Q2 +O2) ∩ (Q1 +O1)
)⊥
.

Consider any pair of elements x ∈ M and z ∈ Z(A)2. Since µ(z) reduces to a central element

of A, there exist elements x1, . . . , xk, y1, . . . , y` ∈ M and r1, . . . , rk, s1, . . . , s` ∈ W ⊂ M ⊗M such

that

[µ(z), x] =
k∑
i=1

xiri +
∑̀
j=1

sjyj . (7)

(To avoid unwanted cancellations, we choose our elements in a way that minimizes k + `, and we

make a choice once and for all for each pair (x, z) ∈M ⊗ Z(A)2.) Now consider the element

κ(x, z) := µ(z)x−
∑

sjyj + x⊗ z = xµ(z) +
∑

xiri + x⊗ z ∈ (Q2 +O2) ∩ (Q1 +O1).
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The vector space (Q1+O1)∩(Q2+O2) is spanned by the elements κ(x, z) and the subspace Q1∩Q2,

hence any class in TR(M∗)3 ⊕ (M∗ ⊗ U !) that reduces to zero in A! and is orthogonal to all of the

elements κ(x, z) must also reduce to zero in Ã!. The commutator [η!, x!] clearly reduces to zero in

A!, since η! is a lift of z!, which was chosen to be central. Thus it remains only to show that it is

orthogonal to each κ(x, z).

Lemma 7.2. If x ∈ eαMeβ and α < β, then

〈z!, jαβ(z)〉x =

k∑
i=1

〈µ!(z!), ri〉xi ∈M and sj ∈ eαMεαMεβ for all 1 ≤ j ≤ `.

If x ∈ eαMeβ and β < α, then

〈z!, jαβ(z)〉x =
∑̀
j=1

〈µ!(z!), sj〉 yj ∈M and ri ∈ εαMεβMeβ for all 1 ≤ i ≤ k.

Proof. We will prove only the case where α < β (the proof of the opposite case is identical). From

the definition of µ(z) in Equation (6), we have

[µ(z), x] ∈ eαMεαMeαMeβ + eαMeβMεβMeβ ⊂ eαMεαM(eα + εβ)Meβ.

It follows that sj ∈ eαMεαM(eα + εβ) for all j. For any j, the element sjeα lies in the subspace

ι(W ) ∩ eαMεαMeα, which is trivial by Lemma 3.9. Hence we have sj ∈ eαMεαMεβ as claimed.

Consider the specialization Ãz! of Ã. Since A is quadratic, the natural map from M to Ãz! is

an inclusion, thus we may regard M as a subspace of Ãz! . The image of [µ(z), x] in Ãz! lies in M ,

and Equation (7) tells us that it is equal to the element

k∑
i=1

〈z!, ri〉xi +
∑̀
j=1

〈z!, sj〉 yj =

k∑
i=1

〈z!, ri〉xi,

where the second equality follows from the fact that eγsjeγ = 0 for all j and all γ ∈ I. On the other

hand, it is also equal to 〈z!, jαβ(z)〉x by Proposition 6.3, thus we obtain the desired identity.

We now use Lemma 7.2 to show that
〈

[η!, x!], κ(x, z)
〉

= 0 for all x ∈ eαMeβ, x! ∈ eβM∗eα,

and z ∈ Z(A)2, and thus complete the proof of Theorem 7.1. By Lemma 3.8, we may assume that

either α < β or β < α. We have〈
[η!, x!], κ(x, z)

〉
=
〈
µ!(z!)x!, κ(x, z)

〉
−
〈
x!µ!(z!), κ(x, z)

〉
+
〈
x! ⊗ j∗βδ(z!)− x! ⊗ j∗αδ(z!), x⊗ z

〉
=
〈
µ!(z!)x!, xµ(z) +

∑
xiri

〉
−
〈
x!µ!(z!), µ(z)x−

∑
siyi
〉

+
〈
x!, x

〉
·
〈
j∗βα(z!), z

〉
=
〈
µ!(z!)x!,

∑
xiri

〉
+
〈
x!µ!(z!),

∑
sjyj

〉
+
〈
x!, x

〉
·
〈
z!, jβα(z)

〉
=
∑〈

x!, xi
〉
·
〈
µ!(z!), ri

〉
+
∑〈

x!, yi
〉
·
〈
µ!(z!), si

〉
−
〈
x!, x

〉
·
〈
z!, jαβ(z)

〉
.
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First assume that α < β. By Lemma 7.2, each si pairs to zero with any loops, thus the second

term of the last line vanishes. The lemma also tells us that the first and third terms cancel, so the

entire expression is equal to zero. Similarly, if β < α, the first term vanishes and the second and

third terms cancel.

Suppose that A and A! are flexible. For all ζ ∈ Z(Ã)2 and ζ ! ∈ Z(Ã!)2, let π(ζ) and π!(ζ !)

denote their images in Z(A)2 and Z(A!)2, respectively. For all α ∈ I, the splitting hα of the exact

sequence (5) and the analogous splitting h!
α on the dual side induce a perfect pairing

〈 , 〉α : Z(Ã)2 × Z(Ã!)2 → C

given by the formula

〈ζ, ζ !〉α := 〈hα(ζ), π!(ζ !)〉+ 〈π(ζ), h!
α(ζ !)〉,

where we once again exploit the fact that hα(z) ∈ U ∼= Z(A!)∗2 and h!
α(ζ !) ∈ U ! ∼= Z(A)∗2.

Proposition 7.3. All of these pairings coincide.

Proof. By definition of jαβ, we have

〈ζ, ζ !〉α − 〈ζ, ζ !〉β =
〈
jβα ◦ π(ζ), π!(ζ !)

〉
+
〈
π(ζ), j!

βα ◦ π!(ζ !)
〉

=
〈
π(ζ), j∗βα ◦ π!(ζ !)

〉
−
〈
π(ζ), j!

αβ ◦ π!(ζ !)
〉
,

which vanishes by Theorem 7.1.

Example 7.4. We illustrate Proposition 7.3 for the algebra A = A11 from Example 6.2. Though

the dual algebra A! is isomorphic to A, we will use separate notation in order to keep track of the

two sides. The algebra A is generated by x ∈ e1Ae2 and y ∈ e2Ae1, which satisfy the relation

yx = 0. Its deformation Ã is generated by x, y, and a central variable u, which satisfy the relation

yx = ue2. On the dual side, A! is generated by x! ∈ e2A
!e1 and y! ∈ e1A

!e2, subject to the relation

y!x! = 0. Its deformation Ã! is generated by x!, y!, and a central variable u!, which satisfy the

relation y!x! = u!e1. The generator u ∈ U pairs to 1 with the generator x!y! ∈ Z(A!)2, while

u! ∈ U ! pairs to 1 with xy ∈ Z(A)2.

The vector space Z(Ã)2 is spanned by the elements xy + ue2 and ue1 − xy, and we have

(h1 ⊕ h2)(xy + ue2) = (0, u) and (h1 ⊕ h2)(ue1 − xy) = (u, 0).

On the dual side, Z(Ã!)2 is spanned by x!y! + u!e1 and u!e2 − x!y!, and we have

(h!
1 ⊕ h!

2)(x!y! + u!e1) = (u!, 0) and (h!
1 ⊕ h!

2)(u!e2 − x!y!) = (0, u!).

Let ζ = a(xy+ue2) + b(ue1−xy) ∈ Z(Ã)2 and ζ ! = a!(x!y! +u!e1) + b!(u!e2−x!y!) ∈ Z(Ã!)2. Then

〈ζ, ζ !〉1 = 〈bu, (a! − b!)x!y!〉+ 〈a!u!, (a− b)xy〉 = b(a! − b!) + a!(a− b) = aa! − bb!,
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and

〈ζ, ζ !〉2 = 〈au, (a! − b!)x!y!〉+ 〈b!u!, (a− b)xy〉 = a(a! − b!) + b!(a− b) = aa! − bb!.

Thus the two pairings are the same.

We may now use Proposition 7.3 to prove Theorem 1.2, which we restate here.

Corollary 7.5. If A is flexible, then Z(A) and Z(A!) are canonically GM dual.

Proof. By Definition 2.3, we associate to the localization algebra Z(A) the fibered arrangement

consisting of the subspaces

Hα := h∗α(U∗) ⊂ Z(Ã)∗2,

each of which projects isomorphically onto U∗. Definition 2.6 tells us that a duality between

Z(A) and Z(A!) is a perfect pairing between Z(Ã)∗2 and Z(Ã!)∗2 such that the kernels of the two

projections are perpendicular to each other, as are Hα and H !
α for each α ∈ I.

For each α ∈ I, we have constructed a perfect pairing

〈 , 〉α : Z(Ã)2 × Z(Ã!)2 → C,

which induces a dual pairing

〈 , 〉∗α : Z(Ã)∗2 × Z(Ã!)∗2 → C.

It is clear from the definition of the pairing that the kernels of the two projections are perpendicular

spaces of each other, and that Hα is the perpendicular space to H !
α. By Proposition 7.3, the pairings

〈 , 〉α all coincide, therefore we have one canonical pairing satisfying all of the required properties.

8 Example: Polarized arrangements and hypertoric varieties

In this section and the next, we consider two families of examples of Koszul dual pairs of flexible

algebras, along with the associated dual pairs of localization algebras. As we will see, most of our

examples have cohomological interpretations in addition to algebraic ones. For our first example,

we use a ring that we introduced in an earlier paper [BLPW10], constructed from the following

linear algebra data.

Definition 8.1. A polarized arrangement V is a triple (V, η, ξ), where V is a linear subspace

of a coordinate vector space Rn, η ∈ Rn/V , and ξ ∈ V ∗.

It is convenient to think of these data as describing an affine space Vη ⊆ Rn given by translating

V away from the origin by η, together with an affine linear functional on Vη given by ξ and a finite

hyperplane arrangement H in Vη, whose hyperplanes are the (possibly empty) restrictions of the

coordinate hyperplanes in Rn. We will assume that η and ξ are chosen generically enough so that H
is simple (any set of m hyperplanes intersects in codimension m or not at all) and ξ is non-constant

on any positive-dimensional intersection of the hyperplanes. For now (until Remark 8.10) we will

also assume that V is rational, meaning that V , η, and ξ are all defined over Q.
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In [BLPW10, §4], we explained how to associate to this data a standard Koszul algebra B(V).

We sketch this construction here; many more details are given in [BLPW10]. For all α ∈ {±1}n,

let

∆α =
{
v ∈ Vη ⊂ Rn

∣∣ α(i) · vi ≥ 0 for all i = 1, . . . n
}
.

Geometrically, ∆α is the chamber of H consisting of vectors that lie on a fixed side of each hy-

perplane. Let the indexing set I be the set of sign vectors α such that ∆α is nonempty and the

affine linear functional ξ is bounded above on ∆α. To each α ∈ I, we may associate a toric variety

Xα, with an effective action of the algebraic torus T whose Lie algebra is equal to V ∗C and whose

character lattice is Zn ∩ V ⊂ VC. The action of the maximal compact subtorus is hamiltonian, and

∆α is the moment polyhedron for this action.

For all α, β ∈ I, let dαβ be codimension of ∆α∩∆β in Vη, and let Xαβ be the toric variety with

moment polyhedron ∆α ∩∆β. As a graded vector space, B(V) is defined as the sum⊕
α,β ∈I

H∗(Xαβ)[−dαβ]. (8)

The product that we define is a convolution product: to multiply an element of H∗(Xαβ) with

an element of H∗(Xβγ), we pull both classes back to the toric variety with moment polyhedron

∆α ∩ ∆β ∩ ∆γ , multiply them there, and then push forward to Xαγ . It is an easy combinatorial

exercise to check that this product respects the grading. Showing that it is associative is more

subtle, and in fact is only true if we push forward not with respect to the complex orientations, but

with respect to a collection of combinatorially defined orientations on the various toric varieties

[BLPW10, 4.10].

Remark 8.2. The motivation for this definition comes from the geometry of the hypertoric va-

riety M(V) associated to V, which is a complex symplectic algebraic variety of dimension 2 dimV

(or a hyperkähler manifold of real dimension 4 dimV ). It comes equipped with an effective hamil-

tonian action of T (or a tri-hamiltonian action of the maximal compact subtorus). The variety

itself depends only on H, and the covector ξ determines an action of C∗ on M(V). For each α ∈ I,

the toric variety Xα sits inside of M(V) as a Lagrangian subvariety. The union of all of these

subvarieties is equal to the set of points p ∈ M(V) such that limλ→∞ λ · p exists. We conjecture

that the algebra B(V) is isomorphic to the Ext-algebra in the Fukaya category of M(V) of the sum

of the objects associated to the Lagrangian subvarieties Xα. For more information on hypertoric

varieties, see the survey article [Pro08].

Given a polarized arrangement V, we define its Gale dual V∨ = (V ⊥,−ξ,−η), where V ⊥ sits

inside of the dual coordinate vector space (Rn)∗, −ξ ∈ V ∗ ∼= (Rn)∗/V ⊥, and −η ∈ Rn/V ∼= (V ⊥)∗.

Theorem 8.3. [BLPW10, 3.11, 4.14, 4.16, 5.23, & 5.24] The algebra B(V) is standard Koszul, and

its center is isomorphic as a graded ring to the cohomology ring of M(V). The algebras B(V) and

B(V∨) are Koszul dual to each other.
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Remark 8.4. Note that for B(V) and B(V∨) to be Koszul dual, their degree 0 parts must be

isomorphic. The degree 0 part of B(V) is spanned by the unit elements 1αα ∈ H∗(Xαα) for all

α ∈ I. Let I∨ be the corresponding set for V∨, that is, the set of sign vectors that give chambers

of V∨ on which −η is bounded above. We prove in [BLPW10, 2.4] that I∨ = I, and therefore that

there is a canonical isomorphism between B(V)0 and B(V∨)0.

In [BLPW10] we also define a deformation B̃(V) of B(V). It is defined by replacing all of

cohomology rings in (8) with T -equivariant cohomology rings:

B̃(V) :=
⊕
α,β ∈I

H∗T (Xαβ)[−dαβ], (9)

with a convolution product defined as for B(V). By [BLPW10, 4.5 & 4.10] it is a flat deformation

of B(V) over V ∗C , where B̃(V)→ B(V) is the map forgetting the equivariant structure, and the map

S := Sym(VC) ∼= H∗T (pt)→ B̃(V)

sends an element of S to the sum of its images in H∗T (Xαα) over all α ∈ I.

Proposition 8.5. The deformation B̃(V) is flexible and malleable. Its center (with localization al-

gebra structure defined in Corollary 5.7) is isomorphic as a localization algebra to the T -equivariant

cohomology ring of M(V) (with localization algebra structure defined in Example 2.2).

Proof. The isomorphism of S-algebras between the center of B̃(V) and H∗T (M(V)) is given in

[BLPW10, 4.16], where we show that both rings are quotients of the polynomial ring C[u1, . . . , un]

by the same ideal. This result also shows that Z(B̃(V)) → Z(B(V)) is surjective, so B̃(V) is a

flexible deformation. We also exhibit in [BLPW10, §2.6] a natural bijection between I and the

fixed point set M(V)T ; it sends α to the fixed point xα ∈ XT
α ⊂M(V)T corresponding to the vertex

of ∆α on which ξ attains its maximum.

The standard modules over B(V) are described geometrically by [BLPW10, 5.22]; we have

Vα ∼=
⊕
β∈I

H∗({xα} ∩Xβ)[−dαβ],

with a natural right action of B(V) by convolution. Corollary 5.5 now implies that

Ṽα :=
⊕
β∈I

H∗T ({xα} ∩Xβ)[−dαβ],

with the action of B̃(V) by convolution, is the deformed standard object defined in Section 5.

It follows immediately that the map hα : Z(B̃(V))2 → VC of Proposition 5.6 coincides with the

localization map H2
T (M(V))→ H2

T (xα).

To see that B̃(V) is malleable, first note that the anti-involution induced by the isomorphism

of Xαβ with Xβα induces an isomorphism B(V) ∼= B(V)op. Malleability now follows from the fact
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that the localization map H∗T (M(V)) → H∗T
(
M(V)T

)
is an isomorphism over the generic point of

t.

Using this, we have a simple description of the degree two part of the maps hα from the

localization algebra structure, and hence of the associated fibered arrangement. For simplicity we

will assume that V is not contained in any coordinate hyperplane, so there are no empty hyperplanes

in our arrangement.

For each α ∈ I, let pα ∈ ∆α be the point at which ξ attains its maximum and let bα ⊂ {1, . . . , n}
be the set of indices i for which the ith hyperplane of H contains pα. The collection {bα | α ∈ I}
consists precisely of all subsets of {1, . . . , n} for which then the composition of the inclusion ι : V ↪→
Rn with the coordinate projection πα : Rn → Rbα is an isomorphism. Such subsets are known as

the bases of V.

Proposition 8.6. There is an isomorphism of H2
T (M(V)) with Cn such that the inclusion

VC ∼= H2
T (pt) ↪→ H2

T (M(V)) ∼= Cn

is the complexification of ι. Under this identification, the restriction of the localization algebra map

hα to degree 2 is the complexification of (πα ◦ ι)−1 ◦πα. The fibered arrangement associated to B̃(V)

is the union of the coordinate subspaces (Cbα)∗ of the dual space (Cn)∗ ∼= HT
2 (M(V)).

Proof. The first statement follows from the standard description of the equivariant cohomology of

a hypertoric variety [Pro08, 3.2.2]. The remaining statements follow easily from the fact that Cbcα
must be in the kernel of hα.

Theorem 8.7. Suppose that the subspace V ⊂ Rn contains no coordinate line. Then B̃(V) is

isomorphic to the universal deformation of B(V).

Proof. Since V contains no coordinate line, V ⊥ is not contained in any coordinate plane, and so

Theorem 8.3 implies that

Z(B(V)!)2
∼= Z(B(V∨))2

∼= H2(M(V∨)) ∼= V ∗C ,

where the last isomorphism comes from the formula for the cohomology of a hypertoric variety

[Kon00, HS02, Pro08], which gives H2(M(V∨)) ∼= Cn/V ⊥C = V ∗C .

Thus to prove that the map ψ : VC → Z(B(V)!)∗2 associated to the deformation B̃(V) by Theorem

4.1 is an isomorphism, it is enough to show that it is surjective. We can do this using Lemma 6.5.

Using Proposition 8.6 and a little linear algebra, it is not hard to show that for any α, β ∈ I, the

value of jαβ on the parameter η ∈ Cn/VC ∼= Z(B(V))2 is given by

jαβ(η) = pβ − pα ∈ V ⊂ VC ∼= Z(B(V)!)∗2.

(Note that pα and pβ both lie in the affine space Vη, so their difference lies in the vector space V .)
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The surjectivity of ψ now follows from Lemma 6.5, using the fact that the points pα form an affine

spanning set for Vη (this is where we use the assumption that V contains no coordinate line).

Corollary 8.8. The localization algebras Z(B̃(V)) and Z(B̃(V∨)) are dual.

Corollary 8.8 follows immediately from Corollary 7.5, but the concrete description of these

fibered arrangements in Proposition 8.6 makes it easy to see this directly: if b∨α ⊂ {1, . . . , n} is the

basis for V∨ indexed by α, then we have b∨α = bcα [BLPW10, 2.9], and so H∨α = Cb∨α is perpendicular

to (Cbα)∗ = Hα.

Example 8.9. If V is (n − 1)-dimensional and H consists of a collection of n hyperplanes in

general position, then the hypertoric variety M(V) is isomorphic to the cotangent bundle of Pn−1.

Dually, if V is one-dimensional and H consists of n points on a line, then M(V) is isomorphic to

the minimal resolution of the symplectic surface singularity C2/Zn, which retracts onto a chain of

n − 1 projective lines. Thus the duality of Z(B̃(V)) and Z(B̃(V∨)) generalizes that of Examples

2.4 and 2.5.

Remark 8.10. We have assumed that V is rational in order to give that shortest and best motivated

definition of the algebra B(V). In [BLPW10], however, we do not make this assumption. Although

the toric varieties Xα and the hypertoric variety M(V) are not defined when V is not rational, it is

still possible to give combinatorial definitions of rings and localization algebras that specialize to

the ordinary and equivariant cohomology rings of these spaces in the rational case. In this more

general setting, Theorem 8.3, Proposition 8.5, Proposition 8.6, Theorem 8.7, and Corollary 8.8 go

through exactly as stated. The rings B(V) for V not rational are the only examples that we know

of flexible algebras that are not associated with any algebraic variety.

9 Example: Category O and Spaltenstein varieties

In this section, we apply our deformation result to integral blocks of parabolic category O for the

Lie algebra g = gln(C). In particular, we show that the universal deformation of the endomorphism

algebra of a minimal projective generator of such a block is malleable and flexible, and identify the

associated localization algebra, which turns out to come from the equivariant cohomology ring of

a Spaltenstein variety. We accomplish this by identifying modules over our universal deformation

with objects in “deformed category O” as considered by Soergel and Fiebig. Most of the results

of this section should be true for g an arbitrary reductive Lie algebra, but in our proofs we use

Brundan’s computation of centers of blocks of parabolic category O for gln and therefore restrict

ourselves to g = gln(C).

We mostly follow Brundan’s notation to describe the blocks of O. Let g = gln(C), and let b and

h be the Lie subalgebras of g consisting of upper triangular and diagonal matrices, respectively.

The Weyl group W = W (g, h) is the symmetric group Sn, which acts on h∗ ∼= Cn and on the

weight lattice Λ = X(T ) ⊂ h∗ by permuting coordinates. With these conventions, a weight λ ∈ Λ

is dominant if and only if λi > λj for all i < j. Let w0 ∈W denote the longest element.
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A composition of n is a doubly-infinite sequence ν = (. . . , ν−1, ν0, ν1, ν2, ν3, . . . ) of non-

negative integers whose sum is n. Given such a ν, there is a unique dominant weight αν with

νi entries equal to −i for every integer i ∈ Z. This gives a bijection between the W -orbits Λ/W of

the weight lattice and the set of compositions of n.

For any composition ν of n, let Wν = Wαν ⊂W be the stabilizer of the dominant weight αν ∈ Λ.

Elements of Wν are permutations which preserve subsets of consecutive elements of {1, . . . , n} of

sizes . . . ν−1, ν0, ν1, . . . , in that order. We will refer to these subsets as ν-blocks. We also define

another associated composition ν̄ by letting ν̄1 = νi where i is the smallest index with νi 6= 0,

ν̄2 = νi′ where i′ is the next smallest index where ν is nonzero, and so on, letting all other ν̄j be

zero.

Associated to g = gln we have the Bernstein-Gelfand-Gelfand categoryO of all finitely generated

g-modules which are h-diagonalizable and locally finite over b. For simplicity we add the additional

assumption that all weights lie in the lattice Λ. For α ∈ Λ, there is a unique simple g-module L(α)

with highest weight α− ρ, where ρ = (0,−1,−2, . . . ,−n+ 1). These are the simple objects of O.

For a composition ν of n, define Oν to be the Serre subcategory of O generated by all L(wαν)

for w ∈ W . Obviously the weight wαν only depends on the image of w in W/Wν . Define a

composition νt by letting νtj be the number of i ∈ Z for which νi ≥ j if j ≥ 1, and zero otherwise.

It is a partition, meaning a composition that’s supported on N and non-increasing. The partition

ν+ := (νt)t has the same parts as ν, sorted into non-increasing order.

Given another composition µ of n, let p = pµ be the parabolic subalgebra of g given by all block

upper-triangular matrices where the blocks are the µ-blocks. Associated to µ we have the parabolic

category Oµ = Op, the full subcategory of O of objects which are p-locally finite. Its simple objects

are {L(α) | α ∈ Λ+
µ }, where

Λ+
µ := {α ∈ Λ | αj > αk whenever j < k and j, k lie in the same Wµ-orbit}.

Define Oµν := Oµ ∩ Oν ; it is the Serre subcategory of O generated by the simple objects L(wαν)

for w ∈ Iµν , where

Iµν = {w ∈W/Wν | wαν ∈ Λ+
µ }.

Lemma 9.1. The category Oµν is nonzero if and only if µ+ ≤ νt in the dominance order on

partitions. The map w 7→ Wµw defines a bijection between Iµν and the set of double cosets in

Wµ\W/Wν of size |Wµ| × |Wν |.

The category Oµν has enough projectives. For w ∈ Iµν , let Pµ(wαν) be a projective cover of

L(wαν) in Oµν . (Note that although L(wαν) can lie in Oµν for many choices of µ, in general the

projective covers in these categories will be different.) Let Pµν :=
⊕

w∈Iµν P
µ(wαν) be a minimal

projective generator of Oµν , and let Aµν := End(Pµν ), so that M 7→ Hom(Pµν ,M) is an equivalence

between Oµν and the category of finitely generated right Aµν -modules.

For a composition µ, let µo denote the reversed composition given by µoi := µ−i.

26



Proposition 9.2. The ring Aµν has a grading with respect to which it is standard Koszul. There

is an isomorphism (Aµν )! ∼= Aνµo whose map on idempotents is induced by the map Iµν → Iνµo taking

wWν to w−1w0Wµo, where w0 has maximal length in the coset wWν .

Proof. The construction of a Koszul grading and the identification of the Koszul dual is accom-

plished in Backelin [Bac99, 1.1]. The fact that Aµν is quasi-hereditary follows from [RC80, Theorem

6.1]. Since both Aµν and its dual are quasi-hereditary, and the associated partial orders on the

idempotents are reversed, [ÁDL03, Theorem 3] implies that Aµν is standard Koszul.

Remark 9.3. Up to isomorphism the algebra Aµν only depends on the subgroups Wν ,Wµ ⊂ W .

This is obvious for µ, while for ν the required equivalences are given by translation functors. In

addition, the rings Aµν and Aµ
o

νo are isomorphic, using the automorphism of g given by the adjoint

action by any representative for w0 in G = GLn(C).

Since Aµν is Koszul, we can consider our universal graded deformation Ãµν and its associated

localization algebra Z(Ãµν ) as given by Corollary 5.7. We wish to relate this localization algebra

with one arising from geometry, specifically, from the equivariant cohomology of a Spaltenstein

variety.

As before, let µ, ν be compositions of n, and suppose that µ+ ≤ νt. Let Pν ⊂ G := GLn(C) be

the parabolic subgroup with Lie algebra pν , and let

Xν = G/Pν = {0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Cn | dimC Fi = ν̄1 + · · ·+ ν̄i}

be the associated partial flag variety. (Note that on the geometric side it is ν, not µ, which specifies

the parabolic; this is related to Remark 9.4 below.) The cotangent bundle T ∗Xν may be identified

with the variety of pairs

{(F•, N) ∈ Xν × g | NFi ⊂ Fi−1 for all i > 0}.

The moment map π : T ∗Xν → g∗ is a resolution of the closure of a nilpotent coadjoint orbit; the

Spaltenstein variety Xµ
ν is the fiber of this map over a point in an orbit of type µ. More precisely,

we identify g∗ with g via the inner product 〈A,B〉 := tr(AB), and we let Nµ ∈ g∗ be the nilpotent

matrix defined by Nµ(ei) = ei+1 if i and i+ 1 are in the same µ-block, and Nµ(ei) = 0 otherwise,

where ei is the ith standard basis element of Cn. Then we define

Xµ
ν := π−1(Nµ) = {F• ∈ Xν | NµFi ⊂ Fi−1 for all i > 0}.

Let T ⊂ G be the maximal torus consisting of diagonal matrices. It acts naturally on the flag

variety Xν , and the subtorus Tµ := TWµ = ZG(Nµ) ∩ T preserves the subvariety Xµ
ν .

Remark 9.4. The group G whose flag variety we have introduced is morally the Langlands dual of

the group with Lie algebra g whose representations we are studying. In particular, the Lie algebra
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t of T should be identified with the dual of h. The Lie algebra tµ is a subspace of t, so its dual hµ

should be thought of as a quotient of h.

This can be confusing, since the group GLn(C) is isomorphic to its own Langlands dual. In

particular, hµ is isomorphic to tµ, and the quotient map from h to hµ is given by averaging over

Wµ. We will, however, be careful never to use this isomorphism; we will always distinguish between

t and h.

Recall that the T -fixed points in the flag variety Xν are in bijection with W/Wν by w 7→ pw,

where pw is the flag F•(w) given by Fi(w) = Span{ew(j) | 1 ≤ j ≤ ν̄1 + · · ·+ ν̄i}.

Proposition 9.5. The set of Tµ-fixed points in Xµ
ν is {pw | w ∈ Iµν }.

Proof. First we show that a Tµ-fixed point in Xµ
ν must in fact be fixed by T . Let V1, . . . , Vr be the

vector spaces spanned by the standard basis vectors in the µ-blocks, so that an element of T lies

in Tµ if and only if it acts on each Vj by multiplication by a scalar. Let F• ∈ Xµ
ν be fixed by Tµ;

we need to show that each Fi is spanned by vectors in the standard basis. Since F• is fixed by Tµ,

we have Fi =
⊕r

j=1 Fi ∩ Vj for each i. The operator Nµ acts on Vj as a regular nilpotent matrix

which sends each ek to ek+1 or to 0. Since Nµ(F1 ∩ Vj) = 0 and Nµ(Fi ∩ Vj) ⊂ Fi−1 ∩ Vj for i > 1,

it follows that Fi ∩ Vj is spanned by vectors ek, and so Fi is as well.

Thus all our fixed points are of the form pw for some w ∈W/Wν . In order to have pw ∈ Xµ
ν , we

must have Nµ(Fi(w)) ⊂ Fi−1(w) for all i > 0. This is equivalent to saying that if j < k lie in the

same µ-block, then w−1(j) lies in a later ν-block than w−1(k), or equivalently, (wαν)j > (wαν)k.

Therefore pw ∈ Xµ
ν if and only if w ∈ Iµν .

We will show below that the torus-equivariant cohomology of Xµ
ν is isomorphic to the local-

ization algebra of the universal deformation of Aµν . However, the torus Tµ is too large in general.

For instance, take n = 3 and let µ = ν be the partition (2, 1). Then Iµν has only one element, so

Aµν ∼= C and its degree two part is zero, while Tµ is two-dimensional. The action of Tµ will factor

through a quotient torus which we define as follows.

Let λ = νt, the transpose partition to ν.

Definition 9.6. Let J be the collection of all subsets J ⊂ {1, . . . , n} such that J is a union of

µ-blocks and

|J | = λ1 + · · ·+ λk,

where k is the number of µ-blocks appearing in J .

Note that the existence of such a J other than {1, . . . , n} implies that there is an index where

the dominance inequality required for µ+ ≤ λ is an equality. Thus, the elements of J measure

where µ+ comes closest to not being less than λ.

For any J ∈ J , let 1J :=
∑

i∈J ei ∈ tµ ⊂ t ∼= Cn, and let Tµν be the quotient of Tµ by the

connected subtorus with Lie algebra spanned by {1J | J ∈ J }, so

LieTµν = tµν := tµ/ Span{1J | J ∈ J }.
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The meaning of the sets J ∈ J is explained by the following combinatorial result. For any

J ⊂ {1, . . . , n}, let WJ := {w ∈W | w(J) = J}.

Lemma 9.7. For any J ∈ J , the set {wαν | w ∈ Iµν } is contained in a single WJ -orbit. In

particular, the inner product 〈wαν ,1J〉 is independent of w for w ∈ Iµν .

Proof. We can assume that µ+ ≤ λ, since otherwise Iµν = ∅. Take an element J ∈ J , and suppose

that |J | = λ1 + · · ·+ λk. Fix a permutation w ∈W . The vector wαν has νi entries equal to −i for

all i ∈ Z, so if we let mi = #{j ∈ J | (wαν)j = −i}, we have mi ≤ νi for all i. If w ∈ Iµν then wαν

lies in Λ+
µ , so the entries in each µ-block are strictly decreasing. In particular, each µ-block has

distinct entries, and since J is the union of exactly k µ-blocks, we must have mi ≤ k for all i ∈ Z.

But then

|J | =
∑
i∈Z

mi ≤
∑
i∈Z

min(νi, k) = λ1 + · · ·+ λk = |J |,

so we must have mi = min(νi, k) for all i. This means that the multiset of entries of wαν in the

places j ∈ J is independent of w ∈ Iµν .

Proposition 9.8. The action of Tµ on Xµ
ν factors through the quotient Tµ → Tµν .

Proof. Take any J ∈ J , and let TJ ⊂ Tµ be the connected subtorus with Lie algebra C·1J . We need

to show that TJ acts trivially on Xµ
ν . Suppose not; then Xµ

ν must meet more than one connected

component of the fixed point set (Xν)TJ , and so the fixed point set (Xµ
ν )T

µ
must also meet more

than one component. But two T -fixed points pw, pw′ lie in the same component of (Xν)TJ if and

only if w and w′ lie in the same WJ -orbit, contradicting Lemma 9.7.

The following is our main result relating Spaltenstein varieties with category O. The next

section is devoted to its proof.

Theorem 9.9. The universal deformation Ãµν of Aµν is malleable and flexible. There is an isomor-

phism of localization algebras between Z(Ãµν ) and H∗T νµ (Xµ
ν ).

Remark 9.10. Theorem 9.9 implies that the rings Z(Aµν ) and H∗(Xµ
ν ) are isomorphic. Another

proof of this can be obtained by using [Bru08b], which gives a presentation by generators and

relations for Z(Aµν ), and [BO], which shows that the same presentation gives H∗(Xµ
ν ). The proof

of Theorem 9.9 uses some technical results of Brundan from [Bru08a] which were also used in

[Bru08b], so our proof is not entirely new.

Note also that Theorems 9.2 and 9.9 imply that tµν and Z((Aµν )!)2
∼= Z(Aνµo)2

∼= Z(Aν
o

µ )2 must

be isomorphic, as they can all be interpreted as the base of the universal deformation of Aµν . This

also follows from Brundan’s work: in fact, our description of tµν is exactly the degree two part of

the isomorphism H∗(Xνo
µ ) ∼= Z(Aν

o

µ ) given in [Bru08b].

Remark 9.11. Like the algebras B(V) considered in Section 8, the algebras Aµν are related to the

geometry of certain symplectic algebraic varieties. Let Sµ be the Slodowy slice to the nilpotent

matrix Nµ, constructed explicitly in [Slo80, §7.4], and recall the moment map π : T ∗Xν → g∗.
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The preimage S̃µν := π−1(Sµ) is a smooth symplectic algebraic variety, and the projection π is a

symplectic resolution of singularities [Maf05, Theorem 12]. The variety S̃µν deformation retracts

onto the Spaltenstein variety Xµ
ν , and the irreducible components of Xµ

ν are Lagrangian in S̃µν .

We conjecture that Aµν is isomorphic to the Ext-algebra of a sum of Lagrangians in the Fukaya

category of S̃µν . This conjecture is completely analogous to the one that we made above involving

B(V) and the hypertoric variety M(V) in Remark 8.2. When Nµ is the zero matrix, so that S̃µν

is isomorphic to the cotangent bundle of the partial flag variety, our conjecture follows from the

Beilinson-Bernstein localization theorem [BB81] and the work of Kapustin, Witten, Nadler, and

Zaslow relating the Fukaya category of a cotangent bundle to the category of perverse sheaves on

the base [KW07, NZ09].

10 Deformed category O

In this section we prove Theorem 9.9. In order to understand the universal deformation Ãµν ,

we will compare it to a ring Âνµ coming from the “deformed category O” considered by Soergel

[Soe90, Soe92] and Fiebig [Fie03, Fie06, Fie08]. Here the deformation comes from deforming the

action of the Cartan subalgebra. Results of Fiebig and Soergel allow us to show that Âνµ carries a

formal grading in the sense of Remark 4.2, so it comes from the universal deformation by extension

of scalars. It is easy to construct deformed standard objects in the deformed category O, and to

compute their central characters. We use this to show that the “formal localization algebra” Z(Âνµ)

is isomorphic to the completion of the the equivariant cohomology ring of the Spaltenstein Xµ
ν , but

for the larger torus Tµ ⊃ Tµν .

Most of the following material on deformed category O can be found in Fiebig’s paper [Fie03].

However, he does not treat the parabolic case; when necessary, we will indicate how his arguments

can be extended; see also [Str, §2]. Let µ, ν be compositions of n as in the previous section, and

assume that µ+ ≤ νt, so the blockOµν is nonzero. Let Sµ := Sym(tµ)∗ ∼= Sym hµ. A µ-deformation

algebra is a commutative noetherian Sµ-algebra D with structure map τ : Sµ → D. Given a µ-

deformation algebra and a weight α ∈ Λ ⊂ h∗, the α-weight space of a left U(g)⊗D-module M

is

Mα := {v ∈M | Hv = (α(H) + τ(Hµ))v for all H ∈ h},

where Hµ denotes the image of H in the quotient hµ of h. Let p = pµ be the parabolic subalgebra

determined by µ, as defined in the previous section, and let D be a µ-deformation algebra.

Definition 10.1. The D-deformed µ-parabolic category OµD is the category of finitely generated

U(g)⊗D-modules M such that

• M =
⊕

α∈ΛMα, and

• (U(p)⊗D)v is a finitely generated D-module for all v ∈M .

For instance, if D = C and the map Sµ → C kills hµ, then OµC is the usual parabolic category Oµ.
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If D → D′ is a map to another µ-deformation algebra, then M 7→M ⊗D D′ defines a base change

functor OµD → O
µ
D′ .

Deformed standard objects in OµD, which we call deformed Verma modules, are defined in

the following way. Let m = Zg(t
µ) ⊂ p be the centralizer of tµ; it is the subalgebra of block diagonal

matrices for the µ-blocks. For each α ∈ Λ+
µ there is a finite-dimensional irreducible m-module Eα

with highest weight α − ρ, and these give all finite-dimensional irreducible modules with integral

weights. For α ∈ Λ+
µ , we define a deformed Verma module

Mµ
D(α) := U(g)⊗U(p) (Eα ⊗D),

where U(p) acts on Eα via the map U(p) → U(m) obtained by projecting away the off-diagonal

blocks of p, and on D via U(p) → Sµ
τ→ D. It is an object of OµD, where D acts only on the last

factor. Since it is generated as a module over U(g) ⊗ D by 1 ⊗ v ⊗ 1, where v ∈ Eα is a highest

weight vector, the action of D induces an isomorphism EndÔµ(M̂µ
D(α)) ∼= D. For any map D → D′

of µ-deformation algebras, we have a natural isomorphism Mµ
D(α) ⊗D D′ = Mµ

D′(α). The object

Mµ
C(α) is the standard cover of the simple module L(α) in the usual parabolic category Oµ.

To apply Fiebig’s results we need our deformation algebra to be local. Let Ŝµ =
∏
i≥0 S

µ
i be the

completion of Sµ at the graded maximal ideal Sµ>0, and let Ôµ denote the corresponding deformed

category Oµ
Ŝµ

. We denote the deformed Verma modules in this category by M̂µ(α) := Mµ

Ŝµ
(α).

Definition 10.2. A Verma flag for an object M ∈ Ôµ is a finite filtration with subquotients that

are isomorphic to deformed Verma modules.

Theorem 10.3. [Fie03, §2] The category Ôµ has enough projectives. The base change functor

Ôµ → OµC = Oµ induces bijections between isomorphism classes of simples in Ôµ and in Oµ, and

between isomorphism classes of indecomposible projectives in both categories. All projective objects

in Ôµ have Verma flags. If P ∈ Ôµ is projective and M ∈ Ôµ has a Verma flag, then HomÔµ(P,M)

is a free Ŝµ-module, and the natural map

HomÔµ(P,M)⊗
Ŝµ

C→ HomOµ(P ⊗
Ŝµ

C,M ⊗
Ŝµ

C)

is an isomorphism.

Remark 10.4. Note that Fiebig does not treat the parabolic case. He assumes that p is a Borel

subgroup, meaning that µi ≤ 1 for all i, so Wµ = {1}. We call such a composition regular.

The main argument in [Fie03] that needs modifying when µ is not regular is Lemma 2.3, which

constructs the projectives. He explains that arguments of Rocha-Caridi and Wallach [RCW82] can

be adapted to the deformed situation. The arguments of [RCW82] do cover the parabolic case, so

extending Fiebig’s arguments is straightforward.

Theorem 10.3 gives us for each α ∈ Λ+
µ a projective object P̂µ(α) such that P̂µ(α) ⊗

Ŝµ
C ∼=

Pµ(α). If ν is another composition of n, we define α = αν as before, and let Ôµν be the full
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subcategory of Ôµ whose objects are all quotients of direct sums of P̂µ(wα) for w ∈ Iνµ. Then P̂µν :=⊕
w∈Iµν P̂

µ(wα) is a projective generator of this category, so HomÔµν (P̂µν ,−) defines an equivalence

of categories between Ôµν and finitely generated right modules over Âµν := End(P̂µν ). Theorem

10.3 also implies that the image of M̂µ(wαν) satisfies the formal analogues of the hypotheses of

Corollary 5.5, so it is isomorphic to the deformed standard object in the category of Âµν -modules

which we defined in Section 5.

The base change functor Ôµν → Oµν sends P̂µν to Pµν , so it induces a ring homomorphism

Âµν → Aµν . Theorem 10.3 implies that Âµν is a flat deformation of Aµν over Spec Ŝµ. We wish to

use Remark 4.2 to relate this deformation to the universal deformation Ãµν . To do this, we need to

construct a formal grading on Âµν .

When µ is regular, we use a geometric interpretation of deformed category O due to Soergel

[Soe92] and Fiebig [Fie03, Fie08] to construct our formal grading; we then deduce the case when

µ is general from this. So assume for the moment that µ is regular. To indicate this, we omit the

superscript µ from our notations.

As in the last section, let Xν denote the partial flag variety G/Pν , and let T ⊂ G be the diagonal

subtorus acting on Xν . Let S := Sym t∗ ∼= H∗T (pt), and let Ŝ :=
∏∞
i=1 Si be the completion of S at

the graded maximal ideal. For an element w ∈W/Wν , let Cw ⊂ Xν denote the B-orbit containing

the T -fixed point pw. Let Ẑ be the center of Âν .

Theorem 10.5. We have Ŝ-algebra isomorphisms

H∗T (Xν)⊗S Ŝ ∼= Ẑ ∼= EndÔν (P̂0),

where P̂0 := P̂ (w0αν) is the antidominant projective. The functor

V = HomÔν (P̂0,−) : Ôν → Ẑ −mod

is full and faithful on objects with a Verma flag (in particular, on projectives) and we have natural

Ẑ-module isomorphisms

VP̂ (wαν) ∼= IH∗T (Cw)⊗S Ŝ and VM̂(wαν) ∼= H∗T (Cw)⊗S Ŝ

for all w ∈W/Wν .

Proof. The identification of the center of Âν is accomplished in [Soe90, Theorem 9] and [Fie03,

3.6]. Fiebig’s proof is instructive from our point of view: he shows that the map

Ẑ →
⊕

w∈W/Wν

EndÔν

(
M̂(wα)

)
∼=

⊕
w∈W/Wν

Ŝ ∼= H∗T (XT
ν )⊗S Ŝ

is an injection, and the relations cutting out the image are the same as those that describe the image

H∗T (Xν)→ H∗T (XT
ν ) in terms of the T -invariant curves in Xν [GKM98, 1.2.2]. Since tensoring with

Ŝ is exact for graded S-modules, this gives the first isomorphism in Theorem 10.5. It also gives the
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identification of VM̂(wαν) with H∗T (Cw)⊗S Ŝ.

The full faithfulness of V is proven in [Fie08, 7.1]. Finally, [Fie08, 7.6] identifies VP̂ (wαν)

with the completion of sections of a sheaf on a “moment graph” constructed from the zero and

one-dimensional orbits of Xν . By [BM01, §2] this gives exactly IH∗T (Cw)⊗S Ŝ.

Corollary 10.6. We have Ŝ-algebra isomorphisms

Âν ∼= End
Ẑ

 ⊕
w∈W/Wν

VP̂ (wαν)

 ∼= EndH∗T (X)

 ⊕
w∈W/Wν

IH∗T (Cw)

⊗S Ŝ.
This gives our formal grading of Âν in the non-parabolic case: the ith graded piece consists of

maps which increase degree of the intersection cohomology groups on the right by i. The grading

in the general case now arises from the following proposition.

Proposition 10.7. Let µ, ν be arbitrary compositions of n. There is a surjective map from Âν to

Âµν , with kernel generated by the idempotents {ew | w ∈ Iν \ Iµν } and the kernel of the projection

h→ hµ.

Remark 10.8. In fact, the kernel is generated by the idempotents alone, but we do not need this,

and will not prove it.

Proof. We construct a truncation functor τ̂ : Ôν → Ôµν which is the deformed analogue of the

functor that takes the maximal p-locally finite quotient of objects in category O. We do this in

two steps. First, for an object M ∈ Ôν , define Mµ := M ⊗
Ŝ
Ŝµ, the image of M under the functor

Ô → O
Ŝµ

. Next, define

Q :=
⊕

w∈Iν\Iµν

P̂ (wα)µ,

and define τ̂M to be the cokernel of the natural map HomO
Ŝµ

(Q,Mµ) ⊗
Ŝµ
Q → Mµ. It is the

largest quotient of Mµ which contains no subquotients isomorphic to any simple object L(wα)µ

with w ∈ Iν \ Iµν .

It follows that this functor does indeed send Ôν to Ôµν . It is not hard to see that τ̂ is right exact

and left adjoint to the inclusion ι : Ôµν → Ôν , so it sends projectives to projectives, and in fact sends

a projective generator of Ôν to a projective generator of Ôµν . This gives a natural homomorphism

Âν → Âµν , which clearly contains the ideal described in the statement of the theorem. It is also

surjective, since the adjunction map M → ιτ̂M is surjective for any M . Our description of the

kernel now follows from the characterization of τ̂M in the previous paragraph.

Let Ãµν be the universal deformation of Aµν . Let Sµν be the symmetric algebra of Z((Aµν )!)∗2,

so Ãµν is an Sµν -algebra. Theorem 4.1, Remark 4.2, and Proposition 10.7 now imply the following

result.
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Theorem 10.9. There exists a linear map ψµν : Z((Aµν )!)∗2 → hµ, inducing a graded ring homomor-

phism Sµν → Ŝµ, such that we have an Ŝµ-algebra isomorphism

Âµν
∼= Ãµν ⊗Sµν Ŝ

µ.

By itself, Theorem 10.9 doesn’t help us understand the universal deformation. For instance,

if it turned out that ψµν = 0, then we would have Âµν ∼= Aµν ⊗ Ŝµ. However, the following result

implies that Âµν carries all the information of the universal deformation.

Proposition 10.10. The map ψµν of Theorem 10.9 is injective. As a result, we have an Sµν -algebra

isomorphism

Ãµν
∼=
⊕
i≥0

(
Âµν

)
i
⊗Sµ Sµν ,

where the map Sµ → Sµν comes from any left inverse of ψµν .

We postpone the proof of Proposition 10.10 until we have established some further properties

of the deformation Âµν . Note that since the maps Âν → Âµν → Aµν are surjective, they induce maps

between the centers of these algebras.

Lemma 10.11. The maps Z(Âν)→ Z(Âµν )→ Z(Aµν ) are surjective.

Proof. By [Bru08a, Theorem 2], the action of the center of the enveloping algebra induces a sur-

jection Z(U(g)) → Z(Aµν ). It follows that Z(U(g)) ⊗ Ŝµ surjects onto Z(Âµν ) and (as a special

case) Z(U(g)) ⊗ Ŝ surjects onto Z(Âν). The result then follows from the surjectivity of the maps

Z(U(g))⊗ Ŝ → Z(U(g))⊗ Ŝµ → Z(U(g)).

Remark 10.12. Proposition 10.10 and Lemma 10.11 together imply that the universal deformation

Ãµν is flexible in the sense of Section 6.

The center of Âµν acts on the deformed Verma module M̂µ(wα) by a character

hµw : Z(Âµν )→ EndOνν (M̂µ(wα)) ∼= Ŝµ.

When µ is regular, which we indicate as usual by omitting µ from the notation, Theorem 10.5

identifies hw with the map H∗T (Xν)⊗S Ŝ → H∗T (pw)⊗S Ŝ ∼= Ŝ induced by restriction. In terms of

the identification

H∗T (Xν) ∼= H∗G(Xν)⊗H∗G(pt) H
∗
T (pt) ∼= H∗Pν (pt)⊗H∗G(pt) H

∗
T (pt) ∼= SWν ⊗SW S,

we have hw(f ⊗ g) = g · w(f). In particular, in degree 2 we have

H2
T (Xν) ∼= hν ⊕ h and hw(x, y) = y + w(x). (10)

The characters of deformed parabolic Verma modules are determined by the non-parabolic charac-

ters via the following result.
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Lemma 10.13. The diagram

Z(Âν)

��

hw // Ŝ

��
Z(Âµν )

hµw // Ŝµ

commutes, where the left vertical map is the natural projection.

Proof. Using the proof of Proposition 10.7, we see that the deformed parabolic Verma module

M̂µ(wα) ∼= τ̂ M̂(wα) is a quotient of M̂(wα)⊗
Ŝ
Ŝµ.

Remark 10.14. Proposition 10.10, Lemma 10.13, and our formula for the characters hw in Equa-

tion (10) together imply that the universal deformation Ãµν is malleable in the sense of Section

5.

We now use these calculations to determine the center of Âµν . This result, along with Proposition

10.10, will complete the proof of Theorem 9.9.

Theorem 10.15. The formal localization algebra Z(Âµν ) is isomorphic to H∗Tµ(Xµ
ν )⊗ Ŝµ.

Proof. Consider the commutative diagram

Z(Âν)

��

⊕hw //
⊕
w∈Iν

Ŝ

q

��

Z(Âµν )
⊕hµw //

⊕
w∈Iµν

Ŝµ

where q is the quotient map Ŝ → Ŝµ for all w ∈ Iµν , and kills all terms for w /∈ Iµν . The horizontal

maps are injective by Equation (10) and Lemma 10.13, while the left vertical map is surjective by

Lemma 10.11. Thus we have an isomorphism Z(Âµν ) ∼= q(Im⊕hw).

This diagram has a topological analogue:

H∗T (Xν)⊗S Ŝ

��

ι∗ //
⊕
w∈Iν

Ŝ

q

��

H∗Tµ(Xµ
ν )⊗Sµ Ŝµ

(ιµ)∗ //
⊕
w∈Iµν

Ŝµ

The left vertical map is the composition of the restriction to the subtorus Tµ with the restriction

to Xµ. The maps ι∗ and (ιµ)∗ are the restrictions to the fixed point sets, which are indexed as

indicated by Proposition 9.5.

Both Xν and Xµ
ν have vanishing odd cohomology, so they are equivariantly formal, which implies

that the horizontal maps are injections. The restriction from H∗(Xν) to H∗(Xµ
ν ) is surjective by
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[BO, Corollary 2.5]. Together with equivariant formality this implies that the left vertical map is

surjective, so we have an isomorphism H∗Tµ(Xµ
ν ) ∼= q(Im ι∗). We have already seen in the proof of

Proposition 10.5 that ι∗ is identified with ⊕hw, so this proves the theorem.

By Lemma 10.13 the image of (x, y) under the composition

hν ⊕ h ∼= Z(Âν)2 → Z(Âµν )2 → End(M̂µ(wα))

is multiplication by (y + w(x))µ ∈ hµ ⊂ Ŝµ. It follows from [Bru08a, Theorem 2] that any two

simples in Oµν can be connected by a chain of non-trivial Ext1 groups, so by Lemma 6.5 we see that

the image of ψµν contains

Σ := {(w(αν)− v(αν))µ | v, w ∈ Iµν } ⊂ hµ.

Using this, we can finally prove Proposition 10.10.

Proof of Proposition 10.10. We have dim Span(Σ) ≤ rankψµν ≤ dimZ(Aν
o

µ )2, so it will be enough

to show that dim Span(Σ) = dimZ(Aν
o

µ )2.

As we noted in Remark 9.10, Brundan [Bru08b] shows that Z(Aν
o

µ )2
∼= tµν . Lemma 9.7 shows

that the pairing between hµ and tµ induces a well-defined pairing between Σ (a subspace of hµ)

and tµν (a quotient of tµ). We will show that this pairing is non-degenerate.

As we saw in the proof of Lemma 9.7, the set {w(αν) | w ∈ Iµν } is the set of all vectors in Zn

which have ν−i entries equal to i for all i ∈ Z, and for which the entries in each µ-block are strictly

decreasing. It follows that if the µ-blocks are reordered, the effect on the set Σ is just to apply the

appropriate permutation to each element. The same holds for tµν , so without loss of generality we

can assume that µ = µ+. It is also easy to see that we can take ν = ν+.

We must show that every element in tµ which pairs to zero with Σ must lie in the span of

{1J | J ∈ J }. To do this, let k1 < · · · < kr be the solutions k to the equation

µ1 + · · ·+ µk = λ1 + · · ·+ λk,

and let Ji be the union of the first ki µ-blocks. Then Lemma 9.7 says that for any vector wαν and

any i the multiset of entries indexed by j ∈ Ji \ Ji−1 is independent of w. It is also clear that the

entries in each Ji \ Ji−1 can be chosen independently. It follows that without loss of generality we

can assume that J = {{1, . . . , n}}.
We make this assumption, and proceed by induction on the number of nonzero entries in µ. If

there is only one, then tµν = 0 and we are done. Otherwise, consider filling the µ-blocks with entries

of αν , starting with the left-most block first. If we fill the first block with the entries 1, . . . , µ1, then

the remaining blocks give an element of {w(αν′) | w ∈ Iµ
′

ν′ } for the pair

µ′ = (µ2, µ3, . . . ) and ν ′ = (ν1 − 1, . . . , νµ1 − 1, νµ1+1, . . . )
+.
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We can describe the transpose partition λ′ := (ν ′)t as follows: if m is the unique integer such that

λm ≥ µ1 and λm+1 < µ1, then

λ′ = (λ1, . . . , λm−1, λm+1 + λm − µ1, λm+2, . . . ).

Note that for these new partitions, we have µ′ < λ′ and J = {{1, . . . , n}}

(λ′1 + · · ·+ λ′k) = (λ1 + · · ·+ λk) > (µ1 + · · ·+ µk) ≥ (µ2 + · · ·+ µk+1) = (µ′1 + · · ·+ µ′k) if k < m

and

(λ′1 + · · ·+ λ′k) = (λ1 + · · ·+ λk+1 − µ1) > (µ2 · · ·+ µk+1) = (µ′1 + · · ·+ µ′k) if k ≥ m.

Using permutations that keep the first block fixed, we obtain an inclusion Σµ′

ν′ ↪→ Σµ
ν , and by

our inductive hypothesis, no element of the span of this subset is annihilated by tµν , which pairs via

the surjective quotient map tµν → tµ
′

ν′ .

The kernel of this map is one dimensional, spanned by the element 1[1,µ1] which has all 1’s on

the first block and 0’s elsewhere. So by the inductive hypothesis, we only need to find an element

of Σ which pairs non-trivially with this vector. That is, we must find v and w in Iµν for which

v(αν) and w(αν) have different entries in the first block. Rather than construct the whole vector,

we note that a choice of entries in the first block can be extended to a vector of the form w(αν) if

and only if the remaining partitions µ′′ and ν ′′ still satisfy the dominance condition (µ′′)+ ≤ λ′′.
We have already noted that we can take the entries in our first block to be 1, . . . , µ1. We claim

that 1, . . . , µ1 − 1, µ1 + 1 will also extend to a vector of the form v(αν) for v ∈ Iµν . This will finish

the proof, since the difference of these vectors will pair non-trivially with 1[1,µ1], and thus establish

non-degeneracy.

In this case, we have

ν ′′ = (ν1 − 1, . . . , νµ1−1 − 1, νµ1 , νµ1+1 − 1, νµ1+2, . . . )
+.

If νµ1 = νµ1+1, then ν ′ = ν ′′, so (µ′′)+ ≤ λ′′ = λ′ and we are done. Otherwise, we find that

(ν ′′)t = (λ1, . . . , λm−2, λm−1 − 1, λm+1 + λm − µ1 + 1, λm+2, . . . ).

Since λ1 + · · ·+ λm−1 > µ1 + · · ·+ µm−1 by assumption, we have µ ≤ (ν ′′)t, and so it is possible to

continue filling the remaining blocks.
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