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Abstract. Given a real hyperplane arrangement A, the complement M(A) of the complexification of A

admits an action of Z2 by complex conjugation. In this note we survey the results of [P1] and [P2], in

which the equivariant cohomology and KO-theory of M(A) are described combinatorially.

1 Introduction

Let A = {H1, . . . , Hn} be an arrangement of n hyperplanes in Cd, with Hi = ω−1

i (0) for some affine linear

map ωi : C
d → C. Let M(A) denote the complement of A in C

d. It is a fundamental problem in the study

of hyperplane arrangements to determine the extent to which the topology of M(A) is controlled by the

combinatorics of A, by which we mean its pointed matroid. Geometrically, the pointed matroid encodes two

types of data:

1. which subsets S ⊆ {1, . . . , n} have the property that
⋂

i∈S Hi = ∅, and

2. which subsets S ⊆ {1, . . . , n} have the property that codim
⋂

i∈S Hi < |S|.

The first major success of this program, due to Orlik and Solomon, is a combinatorial presentation of the

cohomology ring of M(A).

Definition 1.1 The Orlik-Solomon algebra A(A; R) is the cohomology ring H∗(M(A); R) of the complement

of the complexified arrangement with coefficients in the ring R.

For each i ≤ n, let ei = ω∗

i [R+] ∈ A(A; R) be the pullback of the generator [R+] ∈ H1(C∗; R) under the

map ωi : M(A) → C∗ = C\{0}. The following theorem, due to Orlik and Solomon, states that the elements

e1, . . . , en generate A(A; R), and gives explicit relations in terms of the pointed matroid of A. We give here

a simplified version by working only with the coefficient ring R = Z2, because this is the version that will

extend well to the equivariant setting.

Theorem 1.2 [OS] Consider the linear map ∂ =
∑n

i=1

∂
∂ei

from Z2[e1, . . . , en] to itself, lowering degree by 1.

The Orlik-Solomon algebra A(A; Z2) is isomorphic to Z2[e1, . . . , en]
/

I, where I is generated by the following

three families of relations:

1) e2
i for i ∈ {1, . . . , n}

2)
∏

i∈S

ei if
⋂

i∈S

Hi = ∅

3) ∂
∏

i∈S

ei if
⋂

i∈S

Hi is nonempty with codimension less than |S|.

Now suppose that our arrangement A is the complexification of a real hyperplane arrangement, i.e. that

ωi restricts to a map ωi : Rd → R for all i. This allows us to define a richer combinatorial object called the

pointed oriented matroid of A. Let

H+

i = {p ∈ R
d | ωi(p) ≥ 0} and H−

i = {p ∈ R
d | ωi(p) ≤ 0},
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both half-spaces in Rd with boundary Hi. Like the pointed matroid, the pointed oriented matroid also

encodes two types of geometrical data:

1. which pairs of subsets S+, S− ⊆ {1, . . . , n} have the property that
⋂

i∈S+ H+

i ∩
⋂

j∈S−
H−

j = ∅, and

2. which pairs of subsets S+, S− ⊆ {1, . . . , n} have the property that
⋂

i∈S+ H+

i ∩
⋂

j∈S−
H−

j is nonempty

and contained in some hyperplane.

In addition to enhancing our notion of the combinatorics of a complexified hyperplane arrangement, we

may also enhance our notion of the topology of its complement. The space M(A) is now equipped with

an action of the group Z2 = Gal(C/R), given by complex conjugation. It is therefore natural to make the

following definition.

Definition 1.3 The equivariant Orlik-Solomon algebra A2(A, Z2) of a complexified hyperplane arrangement

is the equivariant cohomology ring H∗

Z2
(M(A); Z2).

The purpose of this note is to announce the results of [P1] and [P2], in which we describe the equivariant

cohomology and KO-rings of M(A) in terms of the pointed oriented matroid. Along the way we will interpret

A2(A, Z2) as a deformation from the ordinary Orlik-Solomon algebra A(A; Z2) to the Varchenko-Gelfand

ring V G(A; Z2) of locally constant functions from the real locus of M(A) to Z2, thus proving topologically

the well-known fact that the dimension of the Orlik-Solomon algebra is equal to the number of components

of the complement of the real arrangement.

Acknowledgments. The author is grateful to Graham Denham, Michael Falk, and Allen Knutson for their

help with this project, and for the organizers of FPSAC for the opportunity to present these results.

2 Equivariant cohomology and K-theory

In this section we review some basic definitions and results in equivariant algebraic topology. Let X be a

topological space equipped with an action of a group G.

Definition 2.1 Let EG be a contractible space with a free G-action. Then we put

XG := X ×G EG = (X × EG)/G

(well-defined up to homotopy equivalence), and define the G-equivariant cohomology of X

H∗

G(X) := H∗(XG).

The G-equivariant map from X to a point induces a map on cohomology in the other direction, hence

H∗

G(X) is a module over H∗

G(pt) ∼= H∗(BG), where BG = EG/G is the classifying space for G. Indeed, H∗

G

is a contravariant functor from the category of G-spaces to the category of H∗

G(pt)-modules.

Example 2.2 If G = Z2, then we may take EG = S∞ and BG = S∞/Z2 = RP∞. Then H∗

Z2
(pt; Z2) =

H∗(RP∞; Z2) ∼= Z2[x].

The following theorem is a consequence of [Bo, IV.3.7(b) and XII.3.5]; it says that we may interpret

H∗

Z2
(X ; Z2) as a deformation of H∗(X ; Z2) into H∗(F ; Z2) over the Z2 affine line.

Theorem 2.3 Suppose that F = XZ2 is nonempty, the induced action of Z2 on H∗(X ; Z2) is trivial, and

H∗(X ; Z2) is generated in degree 1. Then H∗

Z2
(X ; Z2) is a free module over Z2[x], and we have

H∗(X ; Z2) ∼= H∗

Z2
(X ; Z2)/〈x〉
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and

H∗(F ; Z2) ∼= H∗

Z2
(X ; Z2)/〈x − 1〉.

Remark 2.4 If X = M(A) for some complexified hyperplane arrangement A, then F = MR(A) is equal to

the complement in Rd of the real parts of the hyperplanes. In this case, Theorem 2.3 says that the equivariant

Orlik-Solomon algebra of A is a deformation of the ordinary Orlik-Solomon algebra with coefficients in Z2

into the Varchenko-Gelfand ring

V G(A; Z2) := Maps
(

MR(A); Z2

)

= H∗(MR(A); Z2).

In the following example we take X to be C∗, the simplest instance of the complement of a hyperplane

arrangement.

Example 2.5 Let X = C∗, with Z2 acting by complex conjugation. Since X deformation-retracts equiv-

ariantly onto the compact space S1, Theorem 2.3 applies. The image of x under the standard map

Z2[x] = H∗

Z2
(pt, Z2) → H∗

Z2
(X ; Z2) is the Z2-equivariant Euler class of the topologically trivial real line

bundle with a nontrivial Z2 action. This bundle has a Z2-equivariant section, transverse to the zero section,

vanishing exactly on the real points of X , and is therefore represented by the submanifold R
∗ ⊆ C

∗. Let

e = [R+] ∈ H∗

Z2
(X ; Z2). Then x − e is represented by R−, therefore e(x − e) = 0. Theorem 2.3 tells us that

we have found all of the generators and relations.

The equivariant KO-ring of a G-space X is easier to define than the equivariant cohomology, because it

does not require passage to the Borel space.

Definition 2.6 The equivariant KO-ring KOG(X) is the Grothendieck ring of G-equivariant real vector

bundles on X .

Let A be a complexified arrangement. This ring KOZ2

(

M(A)
)

has the advantage over the equivariant

Orlik-Solomon algebra that it is well behaved even with coefficients in the integers, rather than Z2. It is,

however, much more difficult to calculate. For this reason, we consider the subring Line(A) ⊆ KOZ2

(

M(A)
)

generated by the classes of line bundles, which we will compute in Theorem 3.5.

3 The results

A celebrated theorem of Salvetti [Sa] states that if A is a complex hyperplane arrangement defined over the

real numbers, then the homotopy type of M(A) is determined by the pointed oriented matroid of A. More

precisely, one may use the pointed oriented matroid to construct a poset Sal(A), and the order complex of

this poset is homotopy equivalent to M(A). Our first result is an extension of this theorem to the equivariant

setting.

Theorem 3.1 [P1, 4.1] The poset Sal(A) admits a combinatorially defined Z2 action, such that its order

complex is Z2-equivariantly homotopy equivalent to M(A).

Remark 3.2 Theorem 3.1 provides an explanation for the recent discovery of Huisman that the equivariant

fundamental group of a line arrangement is determined by its pointed oriented matroid [Hu].

Theorem 3.1 tells us in particular that the rings A2(A; Z2) and Line(A) are combinatorially determined.

They may be explicitly described as follows.2

2A special case of this presentation first appeared in [HP, 5.5], using the geometry of hypertoric varieties.
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Theorem 3.3 [P1, 3.1] The equivariant Orlik-Solomon algebra A2(A; Z2) = H∗

Z2

(

M(A); Z2

)

is isomorphic

to Z2[e1, . . . , en, x]
/

J , where J is generated by the following three families of relations: 3

1) ei(x − ei) for i ∈ {1, . . . , n}

2)
∏

i∈S+

ei ×
∏

j∈S−

(x − ej) if
⋂

i∈S+

H+

i ∩
⋂

j∈S−

H−

j = ∅

3) x−1





∏

i∈S+

ei ×
∏

j∈S−

(x − ej) −
∏

i∈S+

(x − ei) ×
∏

j∈S−

ej





if
⋂

i∈S+

H+

i ∩
⋂

j∈S−

H−

j is nonempty and contained in some hyperplane Hk.

Remark 3.4 By setting x = 0, we obtain the presentation of A(A; Z2) given in Theorem 1.2. By setting

x = 1, we recover the interesting presentation of the boring ring V G(A; Z2) studied in [VG]. In particular, we

explain topologically the fact, observed in [VG], that V G(A; Z2) admits a filtration with associated graded

A(A; Z2).

Theorem 3.5 [P2, 3.1] The subring Line(A) ⊆ KOZ2

(

M(A)
)

generated by line bundles is isomorphic to

Z[e1, . . . , en, x]
/

J , where J is generated by the following five families of relations:

1) x2 − 2x

2) e2
i − 2ei for i ∈ {1, . . . , n}

3) ei(x − ei) for i ∈ {1, . . . , n}

4)
∏

i∈S+

ei ×
∏

j∈S−

(x − ej) if
⋂

i∈S+

H+

i ∩
⋂

j∈S−

H−

j = ∅

5) x−1





∏

i∈S+

ei ×
∏

j∈S−

(x − ej) −
∏

i∈S+

(x − ei) ×
∏

j∈S−

ej





if
⋂

i∈S+

H+

i ∩
⋂

j∈S−

H−

j is nonempty and contained in some hyperplane.

Remark 3.6 Note that A2(A; Z2) is almost identical to the associated graded of Line(A); only the degree

zero parts are different.

We conclude with an example of two arrangements A and A′ such that M(A) is homotopy equivalent

to M(A′), but not equivariantly. We demonstrate this fact by showing that their equivariant Orlik-Solomon

algebras are not isomorphic.

Example 3.7 Consider the two line arrangements shown in Figure 1.4 These two arrangements are related

by a flip (parallel translation of a hyperplane), hence they have homotopy equivalent complements [Fa]. We

3Note that all of these relations are polynomial; the x
−1 in the third relation cancels.

4This example appeared first in [HP].
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Figure 1: Two arrangements whose complements are homotopy equivalent only nonequivariantly.

have

A2(A; Z2) ∼= Z2[~e, x]

/

〈 e1(x − e1), e2(x − e2), e3(x − e3), e4(x − e4),

e5(x − e5), e2e3, (x − e1)e5, e1(x − e2)e4,

e1e3e4, (x − e2)e4e5, e3e4e5

〉

and

A2(A
′; Z2) ∼= Z2[~e, x]

/

〈 e1(x − e1), e2(x − e2), e3(x − e3), e4(x − e4),

e5(x − e5), e2e3, (x − e1)e5, (x − e1)e2(x − e4),

e1e3e4, (x − e2)e4e5, e3e4e5

〉

.

Using Macaulay 2 [M2], we find that the annihilator of the element e2 ∈ A2(A; Z2) is generated by two linear

elements (namely e3 and x−e2) and nothing else, while none of the (finitely many) elements of A2(A′; Z2) has

this property. Hence the two rings are not isomorphic, and M(A) is not equivariantly homotopy equivalent

to M(A′). From this example we conclude that the equivariant Orlik-Solomon algebra of an arrangement is

not determined by the pointed unoriented matroid.
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