PROBLEM SET FOR DAY 2 NOTES FOR THE OREGON SUMMER SCHOOL 2013

ALLEN KNUTSON

Topics:

- The Hilbert manifold $\Omega K = Map_{\bullet}(S^1, K)$ of smooth based loops into a compact group, and its Kahler structure.
- Morse-Bott theory of the energy functional.
- Presentation of the homology groups.
- The lattice model of the affine Grassmannian for U(k).
- The affine flag manifold and its finite-dimensional and finite-codimensional Schubert varieties.
- Affine Bruhat order.
- k-double Schur functions.

(*) = preferred problems

Consider ΩK as LK/K. Figure out what the left-invariant symplectic structures are.

Show that the symplectic gradient of the energy functional generates the loop rotation.

(*) If K = U(1), describe the Morse-Bott strata as explicitly as possible, and why their union isn't all of ΩK .

(*) Show that each Schubert variety on the affine Grassmannian for U(n) can be identified with a Springer variety on a finite-dimensional Grassmannian (i.e. a component of the fixed points of a nilpotent).

(*) Let $\lambda = (\lambda_1 \ge \ldots \ge \lambda_n) \in \mathbb{N}^n$ be a partition of n, and \mathcal{O}_{λ} the corresponding nilpotent orbit in $\mathfrak{gl}(n)$ (the matrices with that JCF). Show that the Schubert variety X^{λ} in Gr for U(n) contains an open set isomorphic to \mathcal{O}_{λ} [Lusztig].

Compute the minimal representative in the coset $t_{\lambda}W \in W_{aff}/W$, where λ is a coweight.

Show that for any element $v \in W_{aff}$, there is an antidominant coweight μ such that vt_{μ} is a minimal coset representative.

Compute the k-double Schur functions for SL(2).