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Abstract. We obtain an algorithm describing the Chern-Schwartz-MacPherson (CSM)
classes of Schubert cells in generalized flag manifolds G{B. In analogy to how the ordinary
divided di↵erence operators act on Schubert classes, each CSM class of a Schubert class
of a Schubert cell is obtained by applying certain Demazure-Lusztig type operators to
the CSM class of a cell of dimension one less. By functoriality, we deduce algorithmic
expressions for CSM classes of Schubert cells in any flag manifold G{P . We conjecture
that the CSM classes of Schubert cells are an e↵ective combination of (homology) Schubert
classes, and prove that this is the case in several classes of examples.

1. Introduction

A classical problem in Algebraic Geometry is to define characteristic classes of singular
algebraic varieties generalizing the notion of the total Chern class of the tangent bundle
of a non-singular variety. The existence of a functorial theory of Chern classes for pos-
sibly singular varieties was conjectured by Grothendieck and Deligne, and established by
R. MacPherson [Mac74]. This theory associates a class c˚p'q P H˚pXq with every con-
structible function ' on X, such that c˚p11Xq “ cpTXq X rXs if X is a smooth compact
complex variety. (The theory was later extended to arbitrary algebraically closed fields of
characteristic 0, with values in the Chow group [Ken90], [Alu06b].) The strong functorial-
ity properties satisfied by these classes determine them uniquely; we refer to §3 below for
details. If X is a compact complex variety, then the class c˚p11Xq coincides with a class
defined earlier by M. H. Schwartz [Sch65a, Sch65b] independently of the work mentioned
above. This class is commonly known as the Chern-Schwartz-MacPherson (CSM) class of
X. In general, we denote by cSMpW q the class c˚p11W q P H˚pXq for any constructible (e.g.,
locally closed) subset W Ñ X.

Let G be a complex simple Lie group and let B be a Borel subgroup. Denote by W the
Weyl group of G. The goal of this note is to provide an algorithm calculating the CSM
classes of the Schubert cells Xpwq˝ :“ BwB{B in the generalized flag manifold X :“ G{B,
as w varies in W . To describe the answer, we need to recall two well known families of
operators on the homology group H˚pXq; we refer to section 2 below for details.

Let s1, . . . , sr P W be the simple reflections corresponding respectively to the simple roots
↵1, . . . ,↵r of G, and let ` : W Ñ N be the length function. Denote by Xpwq :“ BwB{B the
Schubert variety corresponding to w; it is a subvariety of X of complex dimension `pwq. For
each 1 § k § r, the classical BGG operator [BGG73] is an operator Bk : H˚pXq Ñ H˚`2pXq
which sends the Schubert class rXpwqs to rXpwskqs if `pwskq ° `pwq and to 0 otherwise.
The Weyl group admits a right action on H˚pXq, which was originally used to define the
BGG operator Bk. For 1 § k § r define the non-homogeneous operator

Tk :“ Bk ´ sk : H˚pXq Ñ H˚pXq,
P. A. was supported in part by a Simons Collaboration Grant and NSA Award H98230-15-1-0027; L. C. M.

was supported in part by NSA Young Investigator Award H98230-13-1-0208.
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where sk denotes the (right) action of the simple reflection sk. The main result of this note
is the following.

Theorem 1.1. Let w P W be a Weyl group element and 1 § k § r. Then

TkpcSMpXpwq˝qq “ cSMpXpwskq˝q.
In the case w “ id, the Schubert cell Xpidq˝ is a point, and cSMprptsq “ rpts. More

generally, if w “ si1 . . . sik , then the theorem implies that the CSM class cSMpXpwq˝q is
obtained by composing the operators Tik ¨ ¨ ¨ Ti1 . This is reminiscent of the classical situation
in Schubert Calculus, where one generates all the Schubert classes by applying successively
the BGG operators Bk. To further the analogy, B2

k “ 0 and the BGG operators satisfy the
braid relations. We prove that T 2

k “ 1, and then Theorem 1.1 can be used to show that
the operators Tk also satisfy the braid relations (Proposition 4.1). In particular, there is a
well defined operator Tw associated with any w P W , and this yields a new representation
of the Weyl group on H˚pXq. The CSM classes of the Schubert cells Xpwq˝ are the values
obtained by applying to the class of a point rpts the operators Tw´1 in this representation.
Further, the action of each simple reflection Tk on Schubert classes can be written explicitly
using the Chevalley formula (Proposition 4.3). This gives an explicit algorithm to calculate
the CSM class of any Schubert cell.

We also note that Tk is related to a specialization of the Demazure-Lusztig operator

defined in [Gin98, §12], in relation to degenerate Hecke algebras. We plan on investigating
this connection further in a future paper.

Perhaps the most surprising feature of the CSM classes (and of the operators Tk) is a
positivity property. It follows from definition of CSM classes that

cSMpXpwq˝q “
ÿ

v§w

cpw; vqrXpvqs,

where § denotes the Bruhat ordering, and cpw;wq “ cpw; idq “ 1. Despite the fact that
Tk does not preserve the positivity of a combination of Schubert classes, we conjecture that
cpw; vq ° 0 for all v § w. We have checked this by explicit computations for thousands of
Schubert cells Xpwq in type A flag manifolds Flpnq for n § 8. We were also able to prove
that this positivity holds for several families of Schubert cells, across all Lie types; see §5
below.

Let P Ä G be a parabolic subgroup containing B, and let p : G{B Ñ G{P be the natural
projection. Then ppXpwq˝q “ XpwWP q˝, where WP is the subgroup of W generated by the
reflections in P . The functoriality of CSM classes can be used to prove that

p˚pcSMpXpwq˝qq “ cSMpXpwWP q˝q
(see Proposition 3.5 below). In particular, the (conjectured) positivity of CSM classes
of Schubert cells in G{B implies the positivity of classes in any G{P . In the case when
G{P is a Grassmann manifold this was proved in several cases by the authors of this note
[AM09, Mih15], B. Jones [Jon10], J. Stryker [Str11], and it was settled for all cases by
J. Huh [Huh]. Huh was able to realize the homogeneous components of CSM classes as a
class of an e↵ective cycle, but unfortunately his main technical requirements do not seem
to hold for arbitrary flag manifolds G{B.

Our calculation of CSM classes is based on a construction of these classes in terms of
bundles of logarithmic tangent fields. For every W Ñ X, the class cSMp11W q P H˚pXq may

be obtained by pushing forward to X the total Chern class of TÄW p´ logDq, where ÄW is a

resolution of W such that D :“ ÄW rW is a simple normal crossing (SNC) divisor ([Alu99],
[Alu06a]). We refer to §3 for details. This approach was used successfully in previous work



CSM CLASSES FOR SCHUBERT CELLS 3

by the authors [AM09] to compute CSM classes of Schubert cells in the Grassmann manifold
and prove partial positivity results. In that case one can use a resolution of a Schubert
variety which is a (smooth) Schubert variety, but in a partial flag manifold. B. Jones
[Jon10] gave an alternative computation of the classes, by means of a di↵erent (small)
resolution, and also obtained partial positivity results. The resolution used in [AM09] has
finitely many orbits of the Borel subgroup B, and this was a key fact in Huh’s full proof of
the positivity conjecture for CSM classes in that case [Huh].

For generalized flag manifolds G{B a resolution is given by Bott-Samelson varieties.
These are iterated P1-bundles, and they can be constructed from any (possibly non-reduced)
word consisting of simple reflections. Section 2.3 is devoted to the definition and cohomo-
logical properties of Bott-Samelson varieties. The key technical result in the paper is Theo-
rem 3.3, establishing the necessary cohomological formulas calculating the push-forward of
the Chern class of the logarithmic tangent bundle. The operators Bk and sk, and Tk “ Bk´sk,
appear naturally in these push-forward formulas.

Acknowledgements. We are grateful to Mark Shimozono for pointing out some algebraic
identities between the operators Bk and sk; and to Dave Anderson and Chanjiang Su for
useful discussions.

2. Preliminaries

The goal of this section is to recall some basic facts on the cohomology of flag manifolds
and on Bott-Samelson resolutions. We refer to [BK05], §2.1–§2.2, for more details and
references to the standard literature.

2.1. Flag manifolds and Schubert varieties. Let G be a complex simple Lie group and
let T Ñ B Ñ G be a maximal torus included in a Borel subgroup of G. Let h and g be
the Lie algebras of T and G, and let R Ñ h˚ be the associated root system with the set of
positive roots R` determined by B. Denote by � :“ t↵1, . . . ,↵ru Ñ R` the set of simple
roots. Let R_ denote the set of coroots ↵_ P h and x¨, ¨y : R b R_ Ñ Z the evaluation
pairing.

To each root ↵ P R one associates a reflection s↵ in the Weyl group W “ NGpT q{T .
The set of simple reflections si :“ s↵i generate W , thus each w P W can be written as
w “ si1 ¨ ¨ ¨ sik . The minimal such integer k is denoted by `pwq, the length of w. If k “ `pwq,
then the decomposition w “ si1 ¨ ¨ ¨ sik is said to be reduced. There is a partial order on W
called the Bruhat ordering, defined as follows: u † v if there exists a chain

u0 :“ u Ñ u1 :“ us�1 Ñ u2 :“ u1s�2 Ñ ¨ ¨ ¨ Ñ un :“ v “ un´1s�n

where the �i’s are roots in R such that `puiq ° `pui´1q. Let X :“ G{B be the generalized
flag variety. This is a homogeneous space for G (hence a non-singular variety) and it is
stratified by Schubert cells Xpwq˝ :“ BwB{B, where w P W , and each such cell Xpwq˝

is isomorphic to C`pwq. The closure Xpwq :“ BwB{B is called a Schubert variety. Each
Schubert variety Xpwq has a fundamental class rXpwqs P H2`pwqpXq, and these classes form
a Z-basis for the (co)homology. It may be verified that Xpvq Ñ Xpwq if and only if v § w in
the Bruhat order. In fact, Xpwq “ î

v§w Xpvq˝. It follows ([Ful98, Example 1.9.1]) that any
class in H˚pXpwqq may be written uniquely as an integer linear combination

∞
v§w cvrXpvqs.

Let h˚
Z be the integral weight lattice and let � P h˚

Z be an integral weight. Then one
constructs the G-equivariant line bundle over X

L� :“ G ˆB C´� “ pG ˆ Cq{B
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where B acts on G ˆ C by b.pg, uq “ pgb´1,�pbq´1uq (and the action of B “ UT on C
extends the action of T so that it is trivial over the unipotent group U).

The Chevalley formula states that

(1) c1pL�q ¨ rXpwqs “
ÿ

x�,�_yrXpws�qs,
where the sum is over all positive roots � such that `pws�q “ `pwq ´ 1. See e.g., [FW04,
Lemma 8.1].

2.2. Two operators acting H˚pG{Bq. For each simple root ↵k P � one can construct
the BGG operator Bk : H˚pXq Ñ H˚pXq defined in [BGG73] as follows. Let Pk Ñ G be the
minimal parabolic subgroup corresponding to ↵k. Then the natural projection ⇡ : G{B Ñ
G{Pk is a P1-bundle and there is a fibre square

G{B ˆG{Pk
G{B pr1 //

pr2
✏✏

G{B
pk
✏✏

G{B pk // G{Pk

The BGG operator is defined to be Bk “ p˚
kppkq˚. We record next two properties of this

operator; see e.g., [Knu, Proposition 2] or [Tym08] for simple proofs.

Proposition 2.1. The operator Bk satisfies the following properties:

(a) For all Weyl group elements w P W ,

(2) BkprXpwqsq “
#
0 if `pwskq † `pwq
rXpwskqs if `pwskq ° `pwq

In particular, B2
k “ 0 and the BGG operators satisfy the same braid relations as the

elements of the Weyl group.

(b) For all �1, �2 P H˚pG{Bq,
Bkp�1�2q “ Bkp�1q�2 ` �1Bkp�2q ´ c1pL↵kqBkp�1qBkp�2q

where c1pL↵kq denotes the Chern class of L↵k .

For each w P W there is a well defined map rw : G{T Ñ G{T obtained by multiplying on
the right with any lift of w in NGpT q. This induces a ring endomorphism r˚

w : H˚pG{T q Ñ
H˚pG{T q. Note that the projection G{T Ñ G{B is a U » B{T -bundle and because U is
contractible this implies that the cohomology rings H˚pG{Bq and H˚pG{T q are isomorphic.
This defines a right action of W on H˚pXq, denoted again by w; it will be clear from the
context whether we refer to the Weyl group element or to its action on H˚pXq. It is well
known (see e.g., [BGG73, §1]) that for w “ sk this operator satisfies

(3) sk “ id ´ c1pL↵kqBk
where the Chern class c1pL↵kq acts on H˚pXq by multiplication. Combining this with the
Chevalley formula we obtain an identity

(4) skrXpwqs “
#

rXpwqs if `pwskq † `pwq;
´rXpwqs ´ ∞x↵k,�

_yrXpwsks�qs if `pwskq ° `pwq.
where the sum is over all positive roots � ‰ ↵k such that `pwq “ `pwsks�q.

For use in §4 we also record the following commutation relation of the operators Bk and sk.
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Lemma 2.2. With notation as above,

skBk “ Bk , Bksk “ ´Bk.
In particular, Bksk ` skBk “ 0.

Proof. The first equality follows immediately from the definition of sk and the fact that
B2
k “ 0. The second equality is a consequence of Proposition 2.1(b):

Bksk “ Bk ´ Bkpc1pL↵kqBkq
“ Bk ´ Bkpc1pL↵kqqBk ´ c1pL↵kqB2

k ` c1pL↵kqBkpc1pL↵kqqB2
k

“ Bk ´ Bkpc1pL↵kqqBk
“ ´Bk,

where we used the fact that Bkpc1pL↵kqq “ x↵k,↵
_
k y “ 2 as may be checked using Proposi-

tion 2.1(a) and the Chevalley formula. ⇤
2.3. Bott-Samelson varieties. For each word si1si2 . . . sik for an element w P W one can
construct a tower of P1 bundles, the Bott-Samelson variety Z :“ Zi1,...,ik , endowed with
a map ✓ :“ ✓i1,...,ik : Z Ñ Xpwq. If the word is reduced, this map is birational, giving a
resolution of singularities for Xpwq (depending on the choice of the word for w). There are
several ways to do this, but for our purpose we present an inductive construction which can
be found e.g., in [BK05, §2.2].

If the word is empty, then define Z :“ pt. In general assume we have constructed
Z 1 :“ Zi1,...,ik´1 and the map ✓1 : Z 1 Ñ Xpw1q, for w1 “ si1 ¨ ¨ ¨ sik´1 . Define Z “ Zi1,...,ik so
that the left square in the diagram

(5) Z
✓1 //

⇡

✏✏

G{B ˆG{Pik
G{B pr1 //

pr2

✏✏

G{B
pik
✏✏

Z 1 ✓1
// G{B pik // G{Pik

is a fibre square; the morphisms pr1, pr2, pik are the natural projections. From this con-
struction it follows that Zi1,...,ik is a smooth, projective variety of dimension k.

The Bott-Samelson variety Z is equipped with a simple normal crossing (SNC) divi-
sor DZ . We recall next an explicit inductive construction of this divisor, which will be
needed later. If Z “ pt, then DZ “ H. In general, G{B is the projectivization PpEq of a
homogeneous rank-2 vector bundle E Ñ G{Pk, defined up to tensoring with a line bundle.
Define E :“ EbOEp1q, a vector bundle over G{B “ PpEq. Then we have the Euler sequence
of the projective bundle PpEq

0 // OPpEq // E // Q // 0

where Q is the relative tangent bundle Tpik
. Note that E is independent of the specific

choice of E, and pr2 : G{B ˆG{Pik
G{B Ñ G{B, that is, the pull-back of PpEq via pik , may

be identified with PpEq. Let E 1 :“ p✓1q˚E and Q1 :“ p✓1q˚Q, and pull-back the previous
sequence via ✓1 to get an exact sequence

(6) 0 // OZ1 // E 1 // Q1 // 0 .

The inclusion OZ1 ãÑ E 1 gives a section � : Z 1 Ñ Z of ⇡ and therefore a divisor Dk :“
�pZ 1q “ PpOZ1q in PpE 1q “ Z. The SNC divisor on Z is defined by

DZ “ ⇡´1pDZ1q Y Dk
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where DZ1 is the inductively constructed SNC divisor on Z 1. The following result is well
known, see e.g., [BK05, §2.2]:
Proposition 2.3. If w is a reduced word, then the image of the composition ✓ “ pr1 ˝ ✓1 :
Zi1,...,ik Ñ G{B is the Schubert variety Xpwq. Moreover, ✓´1pXpwqzXpwq˝q “ DZi1,...,ik

and the restriction map

✓ : Zi1,...,ikzDZi1,...,ik
Ñ Xpwq˝

is an isomorphism.

Let hk :“ c1pOE 1p1qq P H2pZq. For later use we record next the class of the divisor Dk

in Z, and the Chern classes of the relative tangent bundle T⇡ “ TPpE 1q|Z1 and of TZ .

Proposition 2.4. The following identities hold in H˚pZq:
(a) rDks “ c1p⇡˚pQ1q b OE 1p1qq P H˚pZq;
(b) hk ¨ rDks “ 0;
(c) cpT⇡q “ p1 ` rDksqp1 ` hkq, and therefore

cpTZq “ ⇡˚pcpTZ1qqp1 ` hkqp1 ` rDksq .
Proof. (a) follows from the definition of Dk and [Ful98, Ex. 3.2.17], since Q1 “ E 1{OZ1 .

(b) holds since hk|Dk “ c1pOOZ1 p1qq “ 0.
To prove (c), note that by (6) the Chern roots of E 1 are 0 and c1pQ1q; it follows from (a)

that the Chern roots of ⇡˚E 1 b OE 1p1q are hk and rDks. The Euler sequence

0 // OZ
// ⇡˚E 1 b OE 1p1q // T⇡

// 0

then implies cpT⇡q “ cp⇡˚E 1 bOE 1p1qq “ p1`hkqp1`rDksq. The last statement follows from
cpTZq “ ⇡˚pcpTZ1qqcpT⇡q. ⇤

3. Chern-Schwartz-MacPherson classes of Schubert cells in G{B
3.1. CSM classes. Let Y be an algebraic variety over C. Denote by FpY q the group of
constructible functions on Y : the elements of FpY q are finite sums

∞
ci11Wi where ci P Z,

Wi Ñ Y are locally closed subvarieties, and 11W denotes the characteristic function taking
value 1 on p P W and 0 otherwise. If f : Y Ñ X is a proper morphism of varieties, one can
define a push-forward f˚ : FpY q Ñ FpXq by setting

f˚p11W qppq “ �pf´1ppq X W q
forW Ñ Y a subvariety and p P X, and extending by linearity to every ' P FpY q; this makes
F into a covariant functor. Here � denotes the topological Euler characteristic. MacPherson
[Mac74] proved a conjecture of Deligne and Grothendieck stating that there exists a natural
transformation c˚ : F Ñ H˚ such that if Y is non-singular, then c˚p11Y q “ cpTY q X rY s.
The naturality of c˚ means that if f : Y Ñ X is a proper morphism, then the following
diagram commutes:

FpY q c˚ //

f˚
✏✏

H˚pY q
f˚
✏✏

FpXq c˚ // H˚pXq
That is,

(7) f˚pc˚p'qq “ c˚pf˚p'qq
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in H˚X, for all constructible functions '. Resolution of singularities and the normalization
requirement easily imply that c˚ is unique.

If Y is a compact complex variety, the class c˚p11Y q coincides with a class defined earlier
by M. H. Schwartz [Sch65a, Sch65b]; this class is the Chern-Schwartz-MacPherson (CSM)
class of Y . Taking f to be a constant map, the commutativity of the above diagram implies
that

≥
c˚p11Y q “ �pY q, so this class provides a natural generalization of the Poincaré-Hopf

theorem to possibly singular varieties. Abusing language a little, we denote by cSMpW q :“
c˚p1W q P H˚Y the CSM class of any constructible set W in a variety Y ; by additivity of
Euler characteristics,

≥
cSMpW q “ �pW q.

Our main tool will be the observation that if Z is a nonsingular variety and W Ñ Z is
an open subvariety such that Z rW is a SNC divisor with components Di, then

(8) cSMpW q “ cpTZq
p1 ` rD1sq ¨ ¨ ¨ p1 ` rDnsq P H˚Z

(cf. [GP02, Proposition 15.3], [Alu99, Théorème 1]).
In fact this observation may be used to extend the scope of the natural transformation c˚

to arbitrary algebraically closed fields of characteristic 0, with values in the Chow group A˚.
In this generality, c˚ may be constructed as follows. Every constructible function on Y can
be written as a linear combination of characteristic functions 11W for W locally closed and
non-singular in Y , so it su�ces to describe cSMpW q “ c˚p11W q for such W . By resolution
of singularities, there exists a desingularization ⇡ : Z Ñ W of the closure W of W in Y
such that D :“ ⇡´1pW rW q is a SNC divisor in Z. Then one may take the push-forward
of (8) to Y as the definition of c˚p11W q: one can show that over algebraically closed fields
of characteristic 0 the resulting c˚ is independent of the choices and satisfies the Deligne-
Grothendieck axioms mentioned above ([Alu06a, Alu06b]).

3.2. A recursive formula for CSM classes of Schubert cells. We will now apply
identity (8) to calculate the Chern-Schwartz-MacPherson class of a Schubert cell Xpwq˝ Ñ
X :“ G{B. This class may be viewed as an element of H˚pG{Bq, and in fact of H˚pXpwqq,
and hence it can be written as an integer linear combination of classes rXpvqs for v § w
in the Bruhat order, as we observed in §2.1. We will give an algorithm which yields this
linear combination. All the necessary ingredients were developed in §2.3 and we keep the
notation of that section. In particular we recall the fiber diagram (5):

Z
✓1 //

⇡

✏✏

G{B ˆG{Pik
G{B pr1 //

pr2

✏✏

G{B
pik
✏✏

Z 1 ✓1
// G{B pik // G{Pik

Let si1 ¨ ¨ ¨ sik be any word (reduced or otherwise), and let Z :“ Zi1,...,ik be the correspond-
ing Bott-Samelson variety. Recall from §2.3 that G{B ˆG{Pik

G{B “ PpEq for a canonically

defined vector rank-2 vector bundle E on G{B; thus Z “ PpE 1q is the projectivization of
the pull-back E 1 “ ✓1˚pEq. In H2pZi1,...,ikq we have the tautological class hk “ c1pOE 1p1qq,
as well as the pull-backs of hj from Zi1,...,ij for j † k; we will omit the pull-back notation.

Let DZ be the SNC divisor defined in §2.3, and denote by Z˝ “ Z˝
i1,...,ik

the complement
Z rDZ . By (8),

(9) cSMpZ˝q “ cpTZq
p1 ` rD1sq ¨ ¨ ¨ p1 ` rDksq

where D1, . . . , Dk are the components of DZ .
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Lemma 3.1. With notation as above, the following holds in H˚pZq:

cSMpZ˝q “ p1 ` hkq ¨ ⇡˚`
cSMpZ 1˝q˘ “

kπ

j“1

p1 ` hjq ¨ rZs.

Proof. The first formula follows from (9) and Proposition 2.4 (c), and the second formula
is an immediate consequence. ⇤

Now let Xpwq be the Schubert variety determined by w P W , that is, the closure of Xpwq˝

in X, and fix a reduced decomposition si1 ¨ ¨ ¨ sik of w and the corresponding Bott-Samelson
variety Z. As recalled in Proposition 2.3, the composition pr1 ˝ ✓1 gives a proper birational
morphism (hence a desingularization) ✓ : Z Ñ Xpwq, restricting to an isomorphism on
✓´1pXpwq˝q “ Z˝.

Lemma 3.2. The CSM class of the Schubert cell Xpwq˝
is given by

cSMpXpwq˝q “ ✓˚
`p1 ` hkq ¨ ⇡˚pcSMpZ 1˝qq˘

.

Proof. By construction, ✓˚p11Z˝q “ 11Xpwq˝ ; therefore, the functoriality of CSM classes (7)

implies cSMpXpwq˝q “ ✓˚
`
cSMpZ˝q˘

, and the stated formula then follows from Lemma 3.1.
⇤

Lemma 3.2 motivates the study of the quantity ✓˚
`p1 ` hkq ¨ ⇡˚p�q˘

for � P H˚pZ 1q.
The next theorem gives the key formulas needed for explicit calculations, in terms of the
operators introduced in §2.2.
Theorem 3.3. Let � P H˚pZ 1q. Then the following holds in H˚pXq:

(a) ✓˚p⇡˚p�qq “ Bikp✓1
˚p�qq;

(b) ✓˚phk ¨ ⇡˚p�qq “ ´sikp✓1
˚p�qq.

Therefore,

✓˚pp1 ` hkq ¨ ⇡˚p�qq “ Tikp✓1
˚p�qq

where Ti : H˚pXq Ñ H˚pXq is the operator given by Ti “ Bi ´ si.

Before proving the theorem, we note that if � “ cSMpZ 1˝q, then ✓1
˚p�q “ cSMpXpw1q˝q

where w1 “ si1 ¨ ¨ ¨ sik´1 “ wsik . Therefore Theorem 3.3 gives a recursive formula to calculate
the CSM classes:

Corollary 3.4. Let w P W be a non-identity element and let sk be a simple reflection such

that `pwskq † `pwq. Then the following recursive identity holds:

cSMpXpwq˝q “ TkpcSMpXpwskq˝qq,
with the initial condition that cSMpXpidq˝q “ cSMpptq “ rpts.

The explicit action of the operator Tk on Schubert classes rXpuqs is obtained by combining
identities (2) and (4) above. The resulting formula together with other properties of the
operator Tk will be presented in §4 below.

Proof of Theorem 3.3. Both the left and right squares in (5) are fiber squares, and pik is
flat and ✓ “ pr1✓1 is proper, so

✓˚⇡˚p�q “ p˚
ikppikq˚✓1

˚p�q “ Bikp✓1
˚p�qq

by [Ful98, Proposition 1.7] and the definition of Bik given in §2.2. This proves (a).
For (b), let � :“ ✓1

˚p�q P H˚pG{Bq and

h̃k “ c1pOEp1qq P H2pG{B ˆG{Pik
G{Bq,
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so that hk “ ✓˚
1 ph̃kq. Then

✓˚phk ¨ ⇡˚p�qq “ ppr1q˚p✓1q˚p✓˚
1 ph̃kq ¨ ⇡˚p�qq

“ ppr1q˚ph̃k ¨ p✓1q˚⇡˚p�qq
“ ppr1q˚ph̃k ¨ pr˚

2 p✓1q˚p�qq
“ ppr1q˚ph̃k ¨ pr˚

2 p�qq.
In the second equality we used the projection formula, and in the third we used the fact that
the left square in (5) is a fibre square and that pr2 is flat and ✓1 is proper. Now recall that
G{B is the projectivization PpEq of a vector bundle E over G{Pik , and E is p˚

ik
pEq bOEp1q

as a bundle over G{B. We can compute the tautological subbundle OEp´1q of pr˚
2 pEq, a

bundle over G{B ˆG{Pik
G{B, by using [Ful98, Appendix B.5.5]:

OEp´1q “ Op˚
ik

pEqbOEp1qp´1q “ pr˚
2Op˚

ik
pEqp´1q b pr˚

2OEp1q “ pr˚
1OEp´1q b pr˚

2OEp1q.
Letting ⌘ “ c1pOEp1qq, this implies

h̃k “ c1ppr˚
1OEp1qq ` c1ppr˚

2OEp´1qq “ pr˚
1 p⌘q ´ pr˚

2 p⌘q,
and the projection formula gives

ppr1q˚ph̃k ¨ pr˚
2 p�qq “ ppr1q˚

`ppr˚
1 p⌘q ´ pr˚

2 p⌘qq ¨ pr˚
2 p�q˘

“ ⌘ ¨ ppr1q˚pr˚
2 p�q ´ ppr1q˚pr˚

2 p⌘ ¨ �q
“ ⌘ ¨ p˚

ikppikq˚p�q ´ p˚
ikppikq˚p⌘ ¨ �q

where the last equality follows since the second square in (5) is also a fiber square and pik
is both flat and proper. By definition, Bik “ p˚

ik
ppikq˚. Putting all together, we have shown

that
✓˚phk ¨ ⇡˚�q “ ⌘ ¨ Bikp�q ´ Bikp⌘ ¨ �q.

Since OEp1q has degree 1 on the fibres of pik , and pik has relative dimension 1, we have

Bikp⌘q “ p˚
ikppikq˚p⌘q “ rG{Bs.

We use this and part (b) of Proposition 2.1 to get

Bikp⌘ ¨ �q “ Bikp⌘q ¨ � ` ⌘ ¨ Bikp�q ´ c1pL↵ik
q ¨ Bikp⌘q ¨ Bikp�q

“ � ` ⌘ ¨ Bikp�q ´ c1pL↵ik
q ¨ Bikp�q

and finally

✓˚phk ¨ ⇡˚�q “ ´� ` c1pL↵ik
q ¨ Bikp�q “ p´id ` c1pL↵ik

qqp�q “ ´sikp�q
by (3), concluding the proof of (b). ⇤
3.3. Chern classes of Schubert cells in G{P . Fix a parabolic subgroup P Ä G con-
taining the Borel subgroup B. Let WP Ñ W be the subgroup generated by the simple
reflections in P . It is known (see e.g., [Hum90, §1.10]) that each coset in W {WP has a
unique minimal length representative; we denote by WP the set of these representatives. If
w P W , then one can define a length function ` : W {WP Ñ N by `pwWP q :“ `pw1q where
w1 P WP is in the coset of w.

The space G{P is a projective manifold of dimension `pw0WP q, where w0 is the longest
element in W . For each w P WP there is a Schubert cell XpwWP q˝ :“ BwP {P of dimension
`pwWP q, and the corresponding Schubert variety XpwWP q :“ BwP {P ; see e.g., [BL00,
§2.6]. The fundamental classes rXpwWP qs P H2`pwWP qpG{P q (w P WP ) form a Z-basis
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for the homology H˚pG{P q. The natural projection p : G{B Ñ G{P satisfies ppXpwqq “
XpwWP q and the induced map in homology is given by

(10) p˚rXpwqs “
#

rXpwWP qs if `pwq “ `pwWP q;
0 otherwise .

Proposition 3.5. With notation as above,

(11) cSMpXpwWP q˝q “ p˚pcSMpXpwq˝qq P H˚pG{P q
for all w P W . Further, if u § w and `puq “ `puWP q, then the coe�cient of rXpuqs in

cSMpXpwq˝q equals the coe�cient of rXpuWP qs in cSMpXpwWP q˝q.
Proof. The topological Euler characteristic � of the fibers of the restriction of p to Xpwq˝ is
constant, hence the push-forward p˚p11Xpwq˝q equals � ¨ 11XpwWP q˝ . By functoriality of CSM
classes (7) this implies that p˚pcSMpXpwq˝qq “ � ¨ cSMpXpwWP q˝q. Since the coe�cient of
rpts in both CSM classes equals 1, it follows that � “ 1. The last claim follows from (10). ⇤

Thus the CSM classes of Schubert cells in G{P are determined by the corresponding
classes in G{B. For example, the CSM classes of Schubert cells in the ordinary Grassman-
nian, determined explicitly in [AM09], can also be computed in principle using the recursive
formula obtained in Corollary 3.4; see Example 4.4 for a concrete example. Further, the
push-forward formula (10) implies that if the positivity conjecture discussed in §5 is true
for the CSM classes of Schubert cells in G{B, then the analogous conjecture must be true
for CSM classes of Schubert cells in G{P for any parabolic P containing B.

4. The operators Tk and a Weyl group representation on H˚pG{Bq
In this section we analyze the operator Tk “ Bk ´ sk : H˚pXq fiÑ H˚pXq which gives

the recursion for CSM classes of Schubert cells as proven in Corollary 3.4. We start by
recording the main algebraic properties of the operators Tk.
Proposition 4.1. The following identities hold:

(a) T 2
k “ 1.

(b) The operators Tk satisfy the braid relations, i.e., pTiTjqmi,j “ 1 where mi,j is the

order of the element sisj P W . Also, if w “ si1 ¨ ¨ ¨ sik is a representation of an

element w P W as a word in simple reflections, then the operator Tw :“ Ti1 ¨ ¨ ¨ Tik
is independent of the choice of the word representing w.

(c) For any u, v P W , Tu ¨ Tv “ Tuv.
Proof. First we note that

T 2
k “ pBk ´ skq2 “ s2k “ 1

since B2
k “ 0 and Bksk ` skBk “ 0 by Lemma 2.2. This proves part (a). To prove the

first part of (b), it su�ces to show that the relations hold after applying the operators to
the classes cSMpXpwq˝q, since these form a basis for H˚pXq. These relations follow then
immediately from the fact that for all w P W and all simple reflections sk,

(12) TkpcSMpXpwq˝qq “ cSMpXpwskq˝q
as a consequence of Corollary 3.4 and part (a). The independence of Tw on the specific word
for w is also an immediate consequence of (12). Finally, (c) follows from the independence
of Tw on the word representing w. ⇤
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The proposition implies that the operators Tw define a representation of the Weyl group
W on H˚pG{Bq. We record an immediate consequence of the identity (12) from the proof
of Proposition 4.1.

Corollary 4.2. Let u,w be two Weyl group elements. Then the identity

TupcSMpXpwq˝qq “ cSMpXpwu´1q˝q
holds in H˚pG{Bq. In particular, cSMpXpwq˝q “ Tw´1prptsq.

Combining the actions of Bk and sk on Schubert classes found in the identities (2) and
(3) from §2.2 we obtain the following explicit formula for Tk:
Proposition 4.3.

TkprXpwqsq “
#

´rXpwqs if `pwskq † `pwq
rXpwskqs ` rXpwqs ` ∞x↵k,�

_yrXpwsks�qs if `pwskq ° `pwq
where the sum is over all positive roots � ‰ ↵k such that `pwq “ `pwsks�q.
Example 4.4. Using Corollary 4.2 and Proposition 4.3 it is straightforward to implement
computations of CSM classes of Schubert cells in symbolic manipulation packages such as
Maple. For instance, we obtain that the CSM class for the open cell in the flag manifold
Flp4q (in type A) is:

cSMpXp4321q˝q “ rXp4321qs ` rXp4312qs ` rXp4231qs ` rXp3421qs ` 2rXp4213qs ` 2rXp4132qs
` rXp3412qs ` 2rXp3241qs ` 2rXp2431qs ` rXp4123qs ` 5rXp3214qs ` 5rXp3142qs

` 3rXp2413qs ` rXp2341qs ` 5rXp1432qs ` 3rXp3124qs ` 4rXp2314qs ` 6rXp2143qs
` 4rXp1423qs ` 3rXp1342qs ` 3rXp2134qs ` 4rXp1324qs ` 3rXp1243qs ` rXp1234qs

where we use the standard identification of the elements ofW with permutations in indexing
the 4! Schubert classes.

Note that the terms corresponding to the ‘Grassmannian permutations’ pa1a2b1b2q with
a1 † a2 and b1 † b2 are

rXp3412qs ` 3rXp2413qs ` 4rXp1423qs ` 4rXp2314qs ` 4rXp1324qs ` rXp1234qs
and push-forward as prescribed by identity (11) in §3.3 to the CSM class for the open cell

in Gp2, 4q (cf. the row corresponding to in [AM09, Example 1.2]). {

Remark 4.5. Even if `pwskq ° `pwq, TkprXpwqsq is in general not a positive combination
of Schubert classes. For example, let G “ SL4pCq, and let w “ w0s3, where w0 is the
longest element in W “ S4, the symmetric group with 4 letters. Using again the standard
identification of the elements of W with permutations, so that w0 “ p4321q and s3 “ p1243q,
then w “ p4312q and

T3prXp4312qsq “ rXp4312qs ` rXp4321qs ´ rXp4231qs.
Nevertheless, substantial evidence suggests that the classes Tkp�q, and hence all classes

Twp�q, are positive linear combinations of Schubert classes if � is a positive combination of
CSM classes cSMpXpuq˝q; see §5. {
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5. Positivity of CSM classes

Fix w P W and consider the CSM class cSMpXpwq˝q. As we have shown, if si1 ¨ ¨ ¨ sik is a
reduced decomposition for w, then

(13) cSMpXpwq˝q “ ✓˚pcSMpZ˝qq “ ✓˚

˜
kπ

j“1

p1 ` hjq ¨ rZs
¸

where ✓ : Z :“ Zi1,...,ik Ñ XpW q is the Bott-Samelson resolution (Lemma 3.1). We have
also shown that

cSMpXpwq˝q “ Tik ¨ ¨ ¨ Ti1prptsq
(Corollary 3.4). Since cSMpXpwq˝q P H˚pXpwqq, we have

(14) cSMpXpwq˝q “
ÿ

u§w

cpw;uqrXpuqs

where cpu;wq are well-defined integers. In fact, cpw;wq “ 1 since the map ✓ is birational,
and cpw; idq “ 1 since Xpwq˝ – A`pwq and �pA`pwqq “ 1.

The operator Tk does not preserve positivity: TkprXpskq˝sq “ ´rXpskq˝s by Proposi-
tion 4.3, and in fact TkprXpwq˝sq may have negative contributions from Schubert classes
even if `pwskq ° `pwq (Remark 4.5). Examples also show that cSMpZ˝q is not necessarily
a positive combination of strata of the normal crossing divisor DZ :“ Z r Z˝ (Z˝

12321 is
the smallest such example). So one should not expect any positivity properties of the CSM
class a priori. Nevertheless, we conjecture that these classes are positive:

Conjecture 1. For all u § w, the coe�cient cpw;uq from the expansion (14) is strictly

positive.

Note that with notation as above, the class of the Schubert variety Xpwq is given by

(15) cSMpXpwqq “
ÿ

u§w

˜
ÿ

u§v§w

cpv;uq
¸

rXpuqs;

indeed, 11Xpwq “ ∞
v§w 11Xpvq˝ . So Conjecture 1 would imply that these classes are also

necessarily e↵ective.
A positivity result analogous to Conjecture 1 was conjectured by the authors in [AM09]

for Schubert cells in the Grassmannian Grpp, nq of subspaces of dimension p in Cn. This
conjecture was proved in [AM09] in the case p “ 2, in [Mih15] for p “ 3, and several classes
of coe�cients were proved to be positive by B. Jones [Jon10] and J. Stryker [Str11]. The
full conjecture has recently been proven by June Huh [Huh]. By Proposition 3.5, the CSM
classes of Schubert cells in any homogeneous space G{P are in fact push-forwards of CSM
classes of Schubert cells in G{B; therefore Conjecture 1 would simultaneously imply the
positivity of all CSM classes of Schubert cells in all G{P , and in particular it would yield
an alternative proof of Huh’s theorem.

By the same token, Huh’s theorem provides some evidence for Conjecture 1, since it
implies that cpw;uq ° 0 in type A when u and w are both Grassmannian permutations
(cf. Example 4.4). In fact, Conjecture 1 in type A is also supported by explicit computations
of several thousand cases. At the time of this writing, we have verified that the CSM classes
of all Schubert cells Flpnq are positive for n § 6; for all words of length § 17 in Flp7q; and
for all words of length § 14 in Flp8q.

In the rest of this section we discuss more evidence for Conjecture 1 in all types. We
prove positivity in the following cases:



CSM CLASSES FOR SCHUBERT CELLS 13

‚ cpw;uq ° 0 if u † w and `pwq ´ `puq “ 1 (Corollary 5.2);
‚ cpw;uq ° 0 for all u § w if w admits a decomposition into distinct simple reflections
(Corollary 5.4).

These two results will follow from more general considerations which seem independently
interesting: the first one is an explicit computation of the codimension 1 term in the CSM
class of a Schubert cell (Proposition 5.1), and the second one highlights one case in which
the operator Tk does preserve positivity (Proposition 5.3).

Proposition 5.1. Let ⇢ “ !1 ` ¨ ¨ ¨ ` !r be the sum of the fundamental weights, and let

w P W . Then

cSMpXpwq˝q “ rXpwqs ` c1pL⇢q ¨ rXpwqs ` lower dimensional terms.

Proof. Let w “ si1 ¨ ¨ ¨ sik be a reduced decomposition, and let Z :“ Zi1,...,ik with SNC
divisor DZ , as in §2.3. By [BK05, Prop. 2.2.2],

KZ “ OZp´DZq b ✓˚pc1pL´⇢qq
and hence c1pTZq “ rDZs ` ✓˚pc1pL⇢qq. On the other hand, c1pTZq “ rDZs ` ∞k

i“1 hi by
Proposition 2.4 (c). Therefore h1 ` ¨ ¨ ¨ ` hk “ ✓˚pc1pL⇢qq, and the stated identity follows
from (13) and the projection formula. ⇤
Corollary 5.2. The coe�cient cpw;uq ° 0 if u † w with `puq “ `pwq ´ 1.

Proof. Recall that x!i,↵
_
j y “ �ij (the Kronecker symbol) and in particular x⇢,↵_

j y ° 0 for
all simple roots ↵j . Consider u † w such that `puq “ `pwq ´ 1. Then u “ ws� for some
positive root � P R` (see e.g. [Hum90, §5.11]). By the Chevalley formula (1), the coe�cient
of rXpws�qs in c1pL⇢q X rXpwqs equals x⇢,�_y ° 0, concluding the proof. ⇤
Proposition 5.3. Let w P W be a Weyl group element, and assume w admits a decompo-

sition into simple reflections other than sk.

(a) The homology class TkprXpvqsq is a non-negative linear combination of Schubert

classes rXpuqs with u § vsk. In fact,

TkprXpvqsq “ rXpvskqs ` rXpvqs `
ÿ

u†vsk,u‰v

dkpv;uqrXpuqs

with dkpv;uq • 0 for all u † vsk.
(b) Assume in addition that sk commutes with all simple reflections in a decomposition

of v. Then dkpv;uq “ 0 for u † vsk, u ‰ v, that is:

TkprXpvqsq “ rXpvskqs ` rXpvqs.
Proof. Let Sv :“ tsi1 , . . . , situ be the set of reflections appearing in a reduced decomposition
of v; this set is independent of the choice of reduced decomposition, since it is preserved by
the braid relations inW (see e.g., [Hum90, §5.1]). Since every decomposition of v into simple
reflections can be reduced to a reduced decomposition, the hypothesis of the proposition
implies that sk R Sv in part (a), and that further sk commutes with all sij P S in part (b).

Since vsk ° v, by Proposition 4.3 we have

(16) TkprXpvqsq “ rXpvskqs ` rXpvqs `
ÿ

x↵k,�
_yrXpvsks�qs

where the sum is over all positive roots � ‰ ↵k such that `pvq “ `pvsks�q. We have to
prove that, under the hypothesis of the proposition, x↵k,�

_y • 0 for all � in the range of
summation. In fact, all the � in this range satisfy vsks� † vsk, and we will verify that
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x↵k,�
_y • 0 for all such reflections �. By [Hum90, §5.7] the condition vsk ° v implies that

vp↵kq ° 0, and vsks� † vsk implies that vskp�q † 0, i.e.,

(17) vp� ´ x�,↵_
k y↵kq “ vp�q ´ x�,↵_

k yvp↵kq † 0.

If vp�q ° 0, then we are done, because vp↵kq ° 0. So we assume vp�q † 0, which is
equivalent to vs� † v, and it follows that vs� admits a reduced expression only using
reflections in Sv. We deduce that sk does not appear in a reduced expression for s� , and
hence that the simple root ↵k does not appear in the support of the positive root �. Since
s↵k R Sv, it follows that ↵k does not appear in the support of vp�q; and ↵k appears with
coe�cient `1 in vp↵kq. Then (17) forces x�,↵_

k y • 0 as claimed. This proves part (a).
To prove part (b) we use a similar argument. By (16), it su�ces to show that x↵k,�

_y “ 0
for all reflections s� such that vsks� † vsk. This relation implies that s� has a reduced
decomposition containing only simple reflections in an expression for vsk. But � ‰ ↵k, and
no simple reflections s↵j with ↵j adjacent to ↵k in the Dynkin diagram for G can appear in
the decomposition of s� : otherwise such reflections would appear in Sv, contradicting the
commutativity hypothesis. This implies that the support of � does not contain any simple
root adjacent to ↵k, thus x↵k,�

_y “ 0, concluding the proof. ⇤
Corollary 5.4. Let w P W be a Weyl group element, and assume w admits a decomposition

into simple reflections other than sk. If cpw; vq ° 0 for all v § w, then cpwsk;uq ° 0 for all

u § wsk.
In particular, if w P W admits a decomposition into distinct simple reflections, then

cpw;uq ° 0 for all u § w.

Proof. The second statement follows from the first by an immediate induction. To prove the
first statement, note that if sk does not appear in a decomposition for w, then it does not
appear in a reduced decomposition for w, and hence it does not appear in a decomposition
for v. Thus the hypothesis of Proposition 5.3 applies to all v § w. By Corollary 3.4 we
have

cSMpXpwskq˝q “ TkpcSMpwq˝q “ Tk
ÿ

v§w

cpw; vqrXpvqs

“
ÿ

v§w

cpw; vq
¨

˝rXpvskqs ` rXpvqs `
ÿ

u1†vsk,u1‰v

dkpv;u1qrXpu1qs
˛

‚

with cpw; vq ° 0 by hypothesis and dkpv;u1q • 0 by Proposition 5.3. The statement is
immediate from this expression, since u § wsk implies that u has a reduced expression
which is a subexpression of one for wsk, thus either u “ v § w or u “ vsk with v § w. ⇤

A particular case of Corollary 5.4 is particularly vivid: if w “ si1 ¨ ¨ ¨ sik is a reduced
decomposition and the simple reflections si1 , . . . , sik commute with one another, then an
induction argument based on Proposition 5.3(b) implies that

(18) cSMpXpwq˝q “
ÿ

u§w

rXpuqs.

Notice that if w satisfies this condition, then so does every v preceding it in the Bruhat
order. Then (15) and (18) give the CSM class of the Schubert variety

cSMpXpwqq “
ÿ

u§w

2`pwq´`puqrXpuqs,

for every w P W decomposing into commuting simple reflections.
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[GP02] Mark Goresky and William Pardon. Chern classes of automorphic vector bundles. Invent. Math.,
147(3):561–612, 2002.

[Huh] June Huh. Positivity of Chern classes of Schubert cells and varieties. to appear in J. of Algebraic
Geometry, available at: ar�iv: 1302.5852.

[Hum90] James E. Humphreys. Reflection groups and Coxeter groups, volume 29 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 1990.

[Jon10] Benjamin F. Jones. Singular Chern classes of Schubert varieties via small resolution. Int. Math.
Res. Not. IMRN, (8):1371–1416, 2010.

[Ken90] Gary Kennedy. MacPherson’s Chern classes of singular algebraic varieties. Comm. Algebra,
18(9):2821–2839, 1990.

[Knu] A. Knutson. A Schubert Calculus recurrence from the noncomplex W -action on G{B.
arXiv.math/0306304v1.

[Mac74] R. D. MacPherson. Chern classes for singular algebraic varieties. Ann. of Math. (2), 100:423–432,
1974.

[Mih15] Leonardo Constantin Mihalcea. Binomial determinants and positivity of Chern-Schwartz-
MacPherson classes. Australasian Journal of Combinatorics., 62(2):155–171, 2015.
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