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Chapter 1

Ordinary linear differential
equations

1.1 Differential equations and systems of equa-

tions

A differential field K is a field equipped with a derivation, that is, a map ∂ :
K → K which has the following properties,

For all a, b ∈ K we have ∂(a + b) = ∂a + ∂b.

For all a, b ∈ K we have ∂(ab) = a∂b + b∂a.

The subset C := {a ∈ K|∂a = 0} is a subfield of K and is called the field of
constants. We shall assume that C is algebraically closed and has characteristic
zero. We shall also assume that ∂ is non-trivial that is, there exist a ∈ K such
that ∂a 6= 0.
Standard examples which will be used in later chapters are C(z), C((z)), C((z))an.
They are the field of rational functions, formal Laurent series at z = 0 and Lau-
rent series which converge in a punctured disk 0 < |z| < ρ for some ρ > 0. As
derivation in these examples we have differentiation with respect to z and the
field of constants is C.
An ordinary differential equation over K is an equation of the form

∂ny + p1∂
n−1y + · · ·+ pn−1∂y + pny = 0, p1, . . . , pn ∈ K.

A system of n first order equations over K has the form

∂y = Ay

in the unknown column vector y = (y1, . . . , yn)t and where A is an n× n-matrix
with entries in K.

3



4 CHAPTER 1. ORDINARY LINEAR DIFFERENTIAL EQUATIONS

Note that if we replace y by Sy in the system, where S ∈ GL(n,K), we obtain
a new system for the new y,

∂y = (S−1AS + S−1∂S)y.

Two n× n-systems with coefficient matrices A,B are called equivalent over K if
there exists S ∈ GL(n,K) such that B = S−1AS + S−1∂S.
It is well known that a differential system can be rewritten as a system by
putting y1 = y, y2 = ∂y, . . . , yn = ∂n−1y. We then note that ∂y1 = y2, ∂y2 =
y3, . . . , ∂yn−1 = yn and finally, ∂yn = −p1yn − p2yn−1 − . . . ,−pny1. This can be
rewritten as

∂




y1

y2
...

yn


 =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
−pn −pn−1 −pn−2 · · · −p1







y1

y2
...

yn




There is also a converse statement.

Theorem 1.1.1 (Cyclic vector Lemma) Any system of linear first order dif-
ferential equations over K is equivalent over K to a system which comes from a
differential equation.

Proof. Let ∂y = Ay be our n× n system. Consider the linear form y = r1y1 +
· · · + rnyn with r1, . . . , rn ∈ K. Using the differential system for the yi we see
that ∂y = s1y1 + · · ·+ snyn, where the si are obtained via

(s1, . . . , sn) = ∂(r1, . . . , rn) + (r1, . . . , rn)A.

By repeated application of ∂ we find for each i elements ri1, . . . , rin ∈ K such
that ∂iy = ri1y1 + · · · + rinyn. Denote the matrix (rij)i=0,...,n−1;j=1,...,n by R. If
R is invertible, then (rn1, . . . , rnn) is a K-linear combination of the (ri1, . . . , rin)
for i = 0, 1, . . . , n − 1. Hence ∂ny is a K-linear combination of the ∂iy (i =
0, . . . , n− 1). Moreover, when R is invertible, our system is equivalent, via R, to
a system coming from a differential equation.
So it suffices to show that there exist r1, . . . , rn such that the corresponding
matrix R is invertible. Since ∂ is non-trivial we can find x ∈ K such that ∂x 6= 0.
Note that the new derivation ∂ := (x/∂x)∂ has the property that ∂x = x, which
we may now assume without loss of generality. Let µ be the smallest index such
that the matrix (rij)i=0,...,µ;j=1,...,n has K-linear dependent rows for every choice
of r1, . . . , rn. We must show that µ = n.
Suppose that µ < n. Denote ri = (ri1, . . . , rin). Choose s0 ∈ Kn such that
s0, . . . , sµ−1 are independent. Let t ∈ Kn be arbitrary. By r0∧ · · ·∧ rµ we denote
the vector consisting of the determinants of all (µ + 1)× (µ + 1) submatrices of
the matrix with rows r0, . . . , rµ. For any λ ∈ C we have now

F.Beukers: Hypergeometric Functions, preliminary notes



1.1. DIFFERENTIAL EQUATIONS AND SYSTEMS OF EQUATIONS 5

(s0 + λt0) ∧ · · · ∧ (sµ + λtµ) = 0.

Expand this with respect to powers of λ. Since we have infinitely many choices
for λ the coefficient of every power of λ must be zero. In particular the coefficient
of λ. Hence

µ∑
i=0

s0 ∧ · · · ∧ ti ∧ · · · ∧ sµ = 0. (1.1)

Now put t = xmu with m ∈ Z and u ∈ Kn. Notice that ti = xm
∑i

j=0

(
m
j

)
mi−juj.

Substitute this in (1.1), divide by xm, and collect equal powers of m. Since m
can be chosen in infinitely many ways the coefficient of each power of m must be
zero. In particular the coefficient of mµ is zero. Hence

s0 ∧ · · · ∧ sµ−1 ∧ u0 = 0.

Since u0 can be chosen arbitrarily this implies s0∧· · ·∧sµ−1 = 0 which contradicts
the minimality of µ. 2

We must also say a few words about the solutions of differential equations. It
must be pointed out that in general the solutions lie in a bigger field than K. To
this end we shall consider differential field extensions L of K with the property
that the field of constants is the same as that of K. A fundamental lemma is the
following one.

Lemma 1.1.2 (Wronski) Let f1, . . . , fm ∈ K. There exists a C-linear relation
between these function if and only if W (f1, . . . , fm) = 0, where

W (f1, . . . , fm) =

∣∣∣∣∣∣∣∣

f1 . . . fm

∂f1 . . . ∂fm
...

...
∂m−1f1 . . . ∂m−1fm

∣∣∣∣∣∣∣∣

is the Wronskian determinant of f1, . . . , fm.

Proof. If the fi are C-linear dependent, then the same holds for the columns of
W (f1, . . . , fm). Hence this determinant vanishes.
Before we prove the converse statement we need some observations. First notice
that

W (vu1, . . . , vum) = vmW (u1, . . . , um)

for any v, ui ∈ K. In particular, if we take v = 1/um (assuming um 6= 0) we find

W (u1, . . . , ur)/u
m
m = W (u1/um, . . . , um−1/um, 1) = (−1)m−1W (∂(u1/um), . . . , ∂(um−1/um)).

F.Beukers: Hypergeometric Functions, preliminary notes



6 CHAPTER 1. ORDINARY LINEAR DIFFERENTIAL EQUATIONS

Now suppose that W (f1, . . . , fm) vanishes. By induction on m we show that
f1, . . . , fm are C-linear dependent. For m = 1 the statement is obvious. So
assume m > 1. If fm = 0 we are done, so we can now assume that fm is not zero.
By the remarks made above, the vanishing of W (f1, . . . , fm) implies the vanishing
of W (∂(f1/fm), . . . , ∂(fm−1/fm)). Hence, by the induction hypothesis, there exist
a1, . . . , am−1 such that a1∂(f1/fm) + · · · + am−1∂(fm−1/fm) = 0. After taking
primitives and multiplication by fm on both sides we obtain a linear dependence
relation between f1, . . . , fm. 2

Lemma 1.1.3 Let L be a differential extension of K with C as field of constants.
Then the solution space in L of a linear equation of order n is a C-vector space
of dimension at most n.

Proof. It is clear that the solutions form a C-vector space. Consider n + 1
solutions y1, . . . , yn+1 and let W be their Wronskian determinant. Note that the
columns of this determinant all satisfy the same K-linear relation given by the
differential equation. Hence W ≡ 0. According to Wronski’s lemma this implies
that y1, . . . , yn+1 are C-linear dependent. 2

Combination of this Lemma with the Cyclic vector Lemma yields

Lemma 1.1.4 Let L be a differential extension of K with C as field of constants.
Then the solution space in Ln of an n × n-system of equation ∂y = Ay is a C-
vector space of dimension at most n.

It is allways possible to find differential extensions which have a maximal set of
solutions. Without proof we quote the following theorem.

Theorem 1.1.5 (Picard-Vessiot) To any n × n-system of linear differential
equations over K there exists a differential extension L of K with the following
properties

1. The field of constants of L is C.

2. There is an n-dimensional C-vector space of solutions to the system in Ln.

Moreover, if L is minimal with respect to these properties then it is uniquely
determined up to differential isomorphism.

Let y1, . . . ,yn be an independent set of solutions to an n × n-system ∂y = Ay.
The matrix Y obtained by concatenation of all columns yi is called a fundamental
solution matrix. The Wronskian lemma together with the Cyclic vector Lemma
imply that det(Y ) 6= 0.

Exercise 1.1.6 Let Y be the fundamental solution matrix of an n × n-system
∂y = Ay. Prove that det(Y ) satisfies the first order differential equation ∂y =
trace(A)y. Show also that the columns of Y −1 satisfy the system of equations
∂y = −Aty, where At denotes the transpose of A.

F.Beukers: Hypergeometric Functions, preliminary notes



1.2. LOCAL THEORY 7

1.2 Local theory

In this section our differential field will be C((z)). We shall denote the derivation
d
dz

by D and the derivation z d
dz

by θ.

Exercise 1.2.1 Prove by induction on r the following operator identity. For any
r ∈ N

zrDr = θ(θ − 1) · · · (θ − r + 1).

Prove for any m,

θ(zmf(z)) = zm(θ + m)f(z).

Consider the linear differential equation of order n,

Dny + p1(z)D(n−1)y + · · ·+ pn−1(z)Dy + pn(z)y = 0, (1.2)

with pi ∈ C((z)). If z = 0 is not a pole of any pi it is called a regular point of
(1.2), otherwise it is called a singular point of (1.2). The point z = 0 is called a
regular singularity if pi has a pole of order at most i for i = 1, . . . , n.
Another way of characterising a regular singularity is by rewriting (1.2) with
respect to the derivation θ. Multiply (1.2) with zn and use zrDr = θ(θ − 1)(θ −
r + 1) to obtain an equation of the form

θny + q1(z)θn−1y + · · ·+ qn−1(z)θy + qn(z)y = 0. (1.3)

The condition for z = 0 to be a regular singularity comes down to qi ∈ C[[z]] for
all i.
Similarly we can consider a system of first order equations over C((z)), ∂y = Ay
where A has now entries in C((z)). Again we call the point z = 0 regular if
all entries of A are in C[[z]] and singular otherwise. We call z = 0 a regular
singularity if the entries of A have a pole of order at most one. Again, when we
write the system with respect to the operator θ, i.e. θy = zAy, the condition
that z = 0 is a regular singularity comes down to zA having entries in C[[z]].
One also verifies that a differential equation with a regular point can be rewritten
as a system with a regular point and that an equation with a regular singularity
can be written as a system with a regular singularity by starting from (1.3).

Theorem 1.2.2 (Cauchy) Suppose 0 is a regular point of (1.2). Then there
exist n C-linear independent Taylor series solutions f1, . . . , fn ∈ C[[z]]. More-
over, any Taylor series solution of (1.2) is a C-linear combination of f1, . . . , fn.
Moreover, if the coefficients of (1.2) all have positive radius of convergence, the
same holds for f1, . . . , fn.

This theorem is a consequence of the following statement

F.Beukers: Hypergeometric Functions, preliminary notes



8 CHAPTER 1. ORDINARY LINEAR DIFFERENTIAL EQUATIONS

Theorem 1.2.3 (Cauchy) Consider the system of equations d
dz

y = Ay and
suppose that the entries of A are in C[[z]]. Then the system has a fundamental
solution matrix Y with entries in C[[z]] and Y (0) = Id. Here Id is the n × n
identity matrix. Moreover, if the entries of A have positive radius of convergence,
the same holds for the entries of Y .

Clearly the columns of Y form an independent set of n vector solutions of the
system. Since the dimension of the solution space is at most n this means that
the columns of Y form a basis of solutions in C[[z]].
There is also a converse statement.

Theorem 1.2.4 Suppose that the n×n matrix A has entries in C((z)). Suppose
there is a fundamental solution matrix Y ∈ GL(n,C[[z]]) of d

dz
Y = AY . In

particular we have that Y (0) is invertible. Then z = 0 is a regular point of the
system.

Proof. The proof consists of the observation that d
dz

Y · Y −1 has entries in
C[[z]]. 2

For differential equations this theorem implies that if we have a basis of solutions
of the form fi = zi(1 + O(z)), i = 0, . . . , n− 1 then z = 0 is a regular point. The
extra condition on the shape of the fi is really necessary since the mere existence
a basis of holomorphic solutions does not always imply that z = 0 is regular. For
example, the equation D2y − 1

z
Dy = 0 has 1, z2 as basis of solutions, but z = 0

is not a regular point.
Note that in the case of systems the condition Y (0) invertible is essential. For

example, the system Dy = 1
z2

(
z − 1 1
−1 1 + z

)
y has

(
1 1 + z

1− z 1

)
as funda-

mental solution matrix.
If a differential equation or a system of equations with a singular point at z = 0
has a basis of solutions with components in C[[z]] we call z = 0 an apparent
singularity.
The proof of Cauchy’s theorems follows from the following lemma.

Lemma 1.2.5 Consider the system θy = Ay where A is an n × n-matrix with
entries in C[[z]]. So z = 0 is a regular singularity. Let ρ be an eigenvalue of
A(0) such that none of ρ + 1, ρ + 2, . . . is eigenvalue of A(0). Let (g0, . . . , gn)t be
an eigenvector of A(0) with eigenvalue ρ. Then the system has a solution of the
form zρ(G1, . . . , Gn)t with Gi ∈ C[[z]] and Gi(0) = gi for all i. Moreover, if the
entries of A have positive radius of convergence, the same holds for the Gi(z).

Proof. Write A =
∑

i≥0 Aiz
i. We look for a solution y of the form y =

zρ
∑

i≥0 yiz
i, where the yi have constant entries and y0 6= 0. Substitution of

y in the differential equation yields the recursion

(k + ρ)yk − A0yk = A1yk−1 + · · ·+ Aky0

F.Beukers: Hypergeometric Functions, preliminary notes



1.2. LOCAL THEORY 9

for k = 0, 1, 2, . . .. When k = 0 we see that the recursion implies that y0 is an
eigenvector of A0 with eigenvalue ρ. Choose y0 to be such an eigenvector. Since
ρ+k is not an eigenvalue of A0 for k = 1, 2, . . ., The matrix k+ρ−A0 is invertible
for all k ≥ 1 and our recursion gives the yk.
Now suppose that the entries of A have positive radius of convergence. This
means that there exist C, σ ∈ R>1 such that ||Ai|| ≤ Cσi. Here ||B|| denotes the
norm of an n× n matrix B defined by the supremum of all |Bv| as v runs over
all vectors in Cn of length 1. It is not hard to show that there exist k0 ∈ Z≥0

and λ ∈ R>0 such that ||(k + ρ − A0)
−1|| ≤ (k − λ)−1 whenever k > k0. For

future use we also see to it that k0 ≥ λ + 2C. Let M be the maximum of |yi|
for i = 0, . . . , k0. Then, by using the recursion and induction on k one can show
that |yk| ≤ M(2σ)k for all k ≥ 0. 2

If we have a system where z = 0 is a regular point, this means that A(0) of
Lemma 1.2.5 is identically zero. Hence ρ = 0 and any non-trivial vector is an
eigenvector. So we take the standard basis in Cn and obtain Cauchy’s theorems.
In the following theorem we shall consider expressions of the form zA where A is
a constant n× n matrix. This is short hand for

zA = exp(A log z) =
∑

k≥0

1

k!
Ak(log z)k.

In particular zA is an n × n matrix of multivalued functions around z = 0.
Examples are,

z

Ã
1/2 0

0 −1/2

!

=

(
z1/2 0
0 z−1/2

)
, z

Ã
0 1

0 0

!

=

(
1 log z
0 1

)
.

Theorem 1.2.6 (Fuchs) Suppose that the n×n matrix A has entries in C[[z]].
Then the system of equations θy = Ay has a fundamental matrix solution of the
form S · zB, where S is an n× matrix with entries in C[[z]] and B is a constant
upper triangular matrix. Any eigenvalue ρ of B is the minimum of all eigenvalues
of A(0) of the form ρ, ρ + 1, ρ + 2, . . .. In particular, if the eigenvalues of A(0)
are all distinct modulo 1, the eigenvalues of B and A(0) coincide and S(0) is
invertible.
Moreover, if the entries of A have positive radius of convergence, the same holds
for the entries of S.

Notice that the existence of the fundamental solution matrix S · zB implies that
the system is equivalent over C((z)) to θy = By, which has zB as fundamental
solution matrix.

Proof. We shall prove our theorem by induction on n. When n = 1, Lemma
1.2.5 gives a solution of the form zρG(z), as desired.

F.Beukers: Hypergeometric Functions, preliminary notes



10 CHAPTER 1. ORDINARY LINEAR DIFFERENTIAL EQUATIONS

Suppose now that n > 1. Let ρ be an eigenvalue of A(0) such that none of
ρ + 1, ρ + 2, . . . is an eigenvalue of A(0). Then there exists a solution of the form
zρg where g has entries in C[[z]] and at least one of the entries has a non-zero
constant term. Without loss of generality we can assume g1(0) 6= 0. Replace y
by 



g1(z) 0 · · · 0
g2(z) 1 . . . 0

...
...

gn(z) 0 · · · 1


y.

Our new equation will have zρ(1, 0, . . . , 0)t as solution hence it has the form

θy =




ρ l2 · · · ln
0 a22 · · · a2n
...

...
0 an2 · · · ann


y

With l2, . . . , ln ∈ C[[z]]. According to our induction hypothesis the (n−1)× (n−
1) system with coefficient matrix (aij)i,j=2,...,n is equivalent to a system with a
constant upper triangular coefficient matrix, say C We can use this to bring our
n× n-system in the form with coefficient matrix




ρ l2 · · · ln
0
... C
0




Now replace y1 by y1 + m2y2 + · · · + mnyn. One verifies that we obtain a new
system of the same form as above, except that the li have changed into l̃2, . . . , l̃n
where

(l̃2, . . . , l̃n) = (l2, . . . , ln)− θ(m2, . . . ,mn) + (m2, . . . , mn)(ρ− C).

When ρ− r is not an eigenvalue of C we see that the equation

0 = (λ2, . . . , λn)zr − θ(m2, . . . , mn) + (m2, . . . , mn)(ρ− C)

has (λ2, . . . , λn)(r− ρ + C)−1zr as a solution. We can apply this principle to the
terms of the power series expansion of (l2, . . . , ln). When none of the numbers
ρ, ρ− 1, ρ− 2, . . . is an eigenvalue of C we can thus find m2, . . . , mn ∈ C[[z]] such
that the l̃i all become zero. Our theorem is proved in this case.
Suppose now that C has an eigenvalue of the form ρ − k for some k ∈ Z≥0.
By our induction hypothesis there is only one such k. Using our remarks above
we can now choose m2, . . . ,mn ∈ C[[z]] such that l̃i = λiz

k with λi ∈ C for
i = 2, . . . , n. Now replace y1 by zky1. The top row of the coefficient matrix of the

F.Beukers: Hypergeometric Functions, preliminary notes



1.2. LOCAL THEORY 11

new equation now reads (ρ − k, λ2, . . . , λn), while the other rows stay the same.
Consequently the coefficient matrix now contains only elements from C and it is
upper triangular. This proves our theorem. 2

The converse of Theorem 1.2.6 need not hold, so a system with a fundamental
matrix solution of the form S · zB need not have a regular singularity at z = 0.

Consider for example the fundamental solution matrix Y =

(
1 1 + z

1− z 1

)
.

However, if the system comes directly from a differential equation we do have a
positive statement.

Theorem 1.2.7 Suppose the differential equation (1.2) has a basis of solutions
of the form

(g1(z), . . . , gn(z))zB, g1(z), . . . , gn(z) ∈ C[[z]]

where B is a constant matrix. Then (1.2) has a regular singularity at z = 0.

Proof. Under construction.

Corollary 1.2.8 Suppose that the coefficients of (1.2) converge in a region D =
{z|0 < |z| < σ}. Suppose that in every sector of D with 0 as vertex we have a
basis of solutions f1, . . . , fn of (1.2) and λ ∈ R such that zλfi(z) tends to 0 as
z → 0. Then z = 0 is a regular singularity of (1.2)

The condition that in every sector the solutions are polynomially bounded by
1/|z| is called the condition of moderate growth.

Proof. Choose a sector S in D with a basis of solutions f1, . . . , fn. Let γ be a
simple closed path which goes around zero once. Now continue f1, . . . , fn ana-
lytically along γ until we return to our sector S. The continuations f̃1, . . . , f̃n

are still solutions of (1.2). Hence there exists a constant matrix M such that
(f̃1, . . . , f̃n) = (f1, . . . , fn)M in S. We call M the monodromy matrix. corre-
sponding to the fi and γ. Choose a constant matrix B such that e2π

√−1B = M .
Then the n-tuple of functions (f1, . . . , fn)z−B has trivial monodromy around
z = 0, and hence these functions can be continued to the punctured disc D.
The moderate growth condition now implies that the entries of (f1, . . . , fn)z−B

are in fact meromorphic functions. We can now apply our previous theorem. 2

Let A be as in Theorem 1.2.6. The eigenvalues of A(0) are called the local
exponents at z = 0 of the system. If we have a differential equation where
z = 0 is a regular singularity, we first write it in the form (1.3) and then as a
system. One verifies that the local exponents of the system are the solutions of
the equation xn+q1(0)xn−1+ · · ·+qn−1(0)x+qn(0) = 0. We call this equation the
indicial equation and its solutions the local exponents of the equation at z = 0.
Note that if we choose a different local parameter t via t = c1z+c2z

2+· · · , c1 6= 0

F.Beukers: Hypergeometric Functions, preliminary notes



12 CHAPTER 1. ORDINARY LINEAR DIFFERENTIAL EQUATIONS

and rewrite our equation or system with respect to t, then the local exponents at
t = 0 are the same as the original exponents. This is worked out in the following
exercise.

Exercise 1.2.9 Show that there exists a powerseries g(t) in t with constant
coefficient 1, such that Dz = g(t)Dt. Now show by induction on n that for
every n there exist powerseries g1, . . . , gn−1 with vanishing constant term such
that Dn

z = g(t)nDn
t + g1(t)D

n−1
t + · · · + gn−1(t)Dt. Show that q̃i(0) = qi(0) for

i = 1, . . . , n.

Remark 1.2.10 Notice that if we replace y by zµw, the differential equation for
w reads

(D + µ)nw + q1(z)(D + µ)n−1w + · · ·+ qn−1(z)(D + µ)w + qn(z)w = 0.

In particular, the local exponents have all decreased by µ.

Exercise 1.2.11 Show that the local exponents at a regular point read 0, 1, . . . , n−
1.

Exercise 1.2.12 Consider the linear differential equation

(z3 + 11z2 − z)y′′ + (3z2 + 22z − 1)y′ + (z + 3)y = 0

. Show that the local exponents at z = 0 are 0, 0 and determine the recursion
relation for the holomorphic solution near z = 0. Determine also the first few
terms of the expansions of a basis of solutions near z = 0.

1.3 Fuchsian equations

In this section our differential field will be C(z), the field of rational functions
in z and we shall consider our differential equations and n× n-systems over this
field.
Consider the linear differential equation

y(n) + p1(z)y(n−1) + · · ·+ pn−1(z)y′ + pn(z)y = 0, pi(z) ∈ C(z) (1.4)

To study this differential equation near any point P ∈ P1 we choose a local
parameter t ∈ C(z) at this point (usually t = z − P if P ∈ C and t = 1/z if
P = ∞), and rewrite the equation with respect to the new variable t. We call the
point P a regular point or a regular singularity if this is so for the equation in t at
t = 0. It is not difficult to verify that a point P ∈ C is regular if and only if the
pi have no pole at P . It is a regular singularity if and only if limz→P (z−P )ipi(z)
exists for i = 1, . . . , n. The point ∞ is regular or a regular singularity if and only
if limz→∞ zipi(z) exists for i = 1, . . . , n.

F.Beukers: Hypergeometric Functions, preliminary notes



1.3. FUCHSIAN EQUATIONS 13

Definition 1.3.1 A differential equation over C(z) or a system of first order
equations over C(z) is called Fuchsian if all points on P1 are regular or a regular
singularity.

The form of Fuchsian systems is particularly simple. Let our n × n-system be
given by

Dy = Ay

where the entries of A are in C(z). Let S = {p1, . . . , pr} be the set of finite
singular points. If we have a Fuchsian system of equations then there exist
constant matrices A1, . . . , Ar such that

A(z) =
A1

z − p1

+ · · ·+ Ar

z − pr

.

The point ∞ is regular if and only if
∑r

i=1 Ai = 0.
Let P ∈ P1 be any point which is regular or a regular singularity. Let t be a
local parameter around this point and rewrite the equation (1.4) with respect
to the variable t. The corresponding indicial equation will be called the indicial
equation of (1.4) at P . The roots of the indicial equation at P are called the local
exponents of (1.4) at P .
This procedure can be cumbersome and as a shortcut we use the following lemma
to compute indicial equations.

Lemma 1.3.2 Let P ∈ C be a regular point or regular singularity of (1.4). Let
ai = limz→P (z − P )ipi(z) for i = 1, . . . , n. The indicial equation at P is given by

X(X − 1) · · · (X − n + 1) + a1X(X − 1) · · · (X − n + 2) + · · ·+ an−1X + an = 0.

When ∞ is regular or a regular singularity, let ai = limz→∞ zipi(z) for i =
1, . . . , n. The indicial equation at ∞ is given by

X(X + 1) · · · (X + n− 1)− a1X(X + 1) · · · (X + n− 2) + · · ·
+(−1)n−1an−1X + (−1)nan = 0.

Proof. Exercise

Theorem 1.3.3 (Fuchs’ relation) Suppose (1.4) is a Fuchsian equation. Let
ρ1(P ), . . . , ρn(P ) the set of local exponents at any P ∈ P1. Then,

∑

P∈P1

(ρ1(P ) + · · ·+ ρn(P )−
(

n

2

)
) = −2

(
n

2

)

Since the local exponents at a regular point are always 0, 1, . . . , n− 1 the terms
in the summation are zero when P is a regular point. So, in fact, the summation
in this theorem is a finite sum.

F.Beukers: Hypergeometric Functions, preliminary notes



14 CHAPTER 1. ORDINARY LINEAR DIFFERENTIAL EQUATIONS

Proof. From the explicit shape of the indicial equations, given in the Lemma
above, we infer that for P ∈ C,

ρ1(P ) + · · ·+ ρn(P ) =

(
n

2

)
− resP (p1(z)dz)

and

ρ1(∞) + · · ·+ ρn(∞) = −
(

n

2

)
− res∞(p1(z)dz).

Substract
(

n
2

)
on both sides and add over all P ∈ P1. Using the fact that∑

P∈P1 resP (p1(z)dz) = 0 yields our theorem. 2

Exercise 1.3.4 Let a, b, c ∈ C. Determine all singularities and their local expo-
nents of the so-called hypergeometric differential equation

z(z − 1)F ′′ + ((a + b + 1)z − c)F ′ + abF = 0.

For non-integral c write the recurrence relation for the coefficients of the power
series expansions of the solutions around z = 0.

From Cauchy’s theorem of the previous section follows automatically

Theorem 1.3.5 (Cauchy) Suppose P ∈ C is a regular point of the system of
equations Dy = Ay. Then there exist n C-linear independent vector solutions
y1, . . . ,yn with Taylor series entries in z−P with positive radius of convergence.
Moreover, any Taylor series solution of the system is a C-linear combination of
y1, . . . ,yn.

Corollary 1.3.6 Any analytic solution of Dy = Ay near a regular point can be
continued analytically along any path in C not meeting any singularity.

Let S be the set of singularities of Dy = Ay and let z0 ∈ P1 \ S. Let vy1, . . . ,yn

be an independent set of analytic solutions around z0. They are the columns
of the fundamental solution matrix Y . Let γ ∈ π1(P1 \ S, z0). After analytic
continuation of Y along γ we obtain a new fundamental solution matrix Ỹ . Hence
there exists a square matrix M(γ) ∈ GL(n,C) such that Ỹ = Y ·M . The map
ρ : π1(P1 \S) → GL(n,C) given by ρ : γ 7→ M(γ) is a group homomorphism and
its image is called the monodromy group of the system.

1.4 Riemann-Hilbert correspondence

Suppose we are given an n×n Fuchsian system of first order equations, Dy = Ay,
where A has entries in C(z). Let S ⊂ P1 be the set of singular points and write
S = {s1, s2, . . . , sm}. Without loss of generality we can assume that ∞ 6∈ S.

F.Beukers: Hypergeometric Functions, preliminary notes



1.4. RIEMANN-HILBERT CORRESPONDENCE 15

Fix a base point z0 6∈ S and let γi be a simple closed beginning and ending in
z0 and which contains only the point si as singularity in its interior. Choose a
fundamental solution matrix of the system near z0. Corresponding to this choice
we can associate to each loop γi the monodromy matrix Mi. The monodromy
representation is determined by these matrices. If we order the si such that
γ1 · · · γm = 1 in π1(P1 \ S, z0) we have moreover that M1 · · ·Mm = Id.
We have the following question.

Question 1.4.1 (Riemann-Hilbert problem) Suppose S = {s1, . . . , sm} is a
finite subset of P1. Again we assign a simple loop γi to each si and order them
in such a way that γ1 · · · γm = 1 in π1(P1 \ S, z0). To each si ∈ S we assign a
matrix Mi ∈ GL(n,C) such that M1 · · ·Mm = Id. Does there exist a Fuchsian
system with singularities only in S whose monodromy representation ρ is (up to
conjugation) given by ρ : γi 7→ Mi for i = 1, . . . , n ?

The answer is as follows,

Theorem 1.4.2 (Plemelj, 1906) Let notations be as in the above problem. Then
there exists an n×n Fuchsian system Dy = Ay whose monodromy representation
is given by the matrices Mi. Moreover, the system can be chosen in such a way
that the singular set is given by S ∪ {a}, where a is an arbitrary point in P1 \ S
and forms an apparent singularity of the system.

So we see that the answer to our question is almost affirmative. It may be
necessary to have an extra singularity in the Fuchsian system. It was recently
shown by Bolibruch that there are examples of representations of the fundamental
group π1(P1 \ S) where any corresponding Fuchsian system requires an extra
singularity. It is also known that we do not need an extra singularity if the
representation is irreducible or if one of the matrices Mi is semi-simple.
To prove Plemelj’s theorem we shall use the following theorem.

Theorem 1.4.3 (Birkhoff, Grothendieck) Any holomorphic vector bundle on
P1 of rank n is of the form O(m1)⊕ · · · ⊕ O(mn) where the mi are integers and
where O(m) is the line bundle on P1 corresponding to the divisor m∞.

More particularly we shall need the following Corollary which says that any rank
n holomorphic vector bundle over P1 has n meromorphic sections which form a
basis of the fiber above every point in C.

Corollary 1.4.4 We cover P1 with C and an open disc U around ∞. For any
holomorphic vector bundle E over P1 there exist integers m1, . . . ,mn and a local
trivialisation f : C×Cn → E with the property that for any local trivialisation hU :
U×Cn → E the map h−1

U ◦f of U∗×Cn to itself has the form Z ·diag(zm1 , . . . , zmn),
where Z : U → GL(n,C) is holomorphic.

F.Beukers: Hypergeometric Functions, preliminary notes



16 CHAPTER 1. ORDINARY LINEAR DIFFERENTIAL EQUATIONS

Proof of Plemelj’s theorem. Without loss of generality we can assume that
a = ∞. Choose z0 in such a way that it does not lie on any line connecting two
points of S. For each i we now draw the line connecting z0 and si and denote the
half line connecting starting at si and not containing z0 by li. Denote the open
set C \ (∪k

i=1li) by U0. Now choose ε > 0. To each i we associate the open set
Di ⊂ C given by all points z ∈ C whose distance to li is less than ε. By choosing
ε sufficiently small we can see to it that the Di are disjoint. Choose R such that
|si| < R for all i and denote by U∞ the set z : |z| > R together with the point
at infinity. So the open sets U0, U∞, D1, . . . , Dk form an open cover of P1. Using
this cover we construct a vector bundle of rank r.
For each i we choose a matrix Gi such that e2π

√−1Gi = Mi. Note there is some
ambiguity in the choice of Gi. We define the holomorphic map fi : Di ∩ U0 →
GL(n,C) by some choice of (z − si)

Gi . Note that U0 ∩ U∞ consists of m open
sectors around the point ∞. We call these sectors T1, . . . , Tm and order them so
that Ti lies between li and li+1 (indices considered modulo m + 1). We define
the map h : U0 ∩ U∞ → GL(n,C) by h(z) = M1 · · ·Mi if z ∈ Ti. We define
the holomorphic map gi : Di ∩ U∞ → GL(n,C) by the function which coincides
with M1 · · ·Mifi on Ti. Note that by analytic continuation this implies that gi

coincides with M1 · · ·Mi−1fi on Ti−1. As a consequence we have for each i that
gi = hfi on U0 ∩ U∞ ∩Di.
Construct a vector bundle as follows. Glue U0×Cn to Di×Cn via the equivalence
relation

(z, v) ∼ (zi, vi) ⇐⇒ z = zi ∈ U0 ∩Di and vi = f−1
i v.

Glue U∞ × Cn to Di × Cn via the equivalence relation

(z, v) ∼ (zi, vi) ⇐⇒ z = zi ∈ U∞ ∩Di and vi = g−1
i v.

Finally glue U0 × Cn to U∞ × Cn via the relation

(z0, v0) ∼ (z∞, v∞) ⇐⇒ z = zi ∈ U0 ∩ U∞ and v∞ = hv0.

Because of the relation gi = hfi for all i this can be done in a compatible way. We
thus obtain a holomorphic vector bundle E over P1. According to the Corollary
of the Birkhoff-Grothendieck theorem there is a meromorphic local trivialisation
f : C × Cn → E. This implies that there exist holomorphic functions t0 :
U0 → GL(n,C) and ti : Di → GL(n,C) and t∞ : U∞ → GL(n,C) with the
property that t−1

0 ti = f−1
i for i = 1, . . . , m and t−1

0 t∞zG∞ = h, where G∞ =
diag(m1, . . . , mn).
Now observe that t0 is a fundamental solution matrix of the system of equations
Dy = Ay where A = (Dt0)t

−1
0 . Note that A has holomorphic entries on U0. The

continuation of t0 to Di is given by tifi. Hence the continuation of A to Di has
the form

(D(t∞(z − si)
Gi)(z − si)

−Git−1
i = (Dti)t

−1
i +

tiGit
−1
i

z − si

.
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1.5. FUCHSIAN EQUATIONS OF ORDER TWO 17

Similarly the continuation of A to U∞ has the form

(D(t∞zG∞h−1)hz−G∞t−1
∞ = (Dt∞)t−1

∞ +
t∞G∞t−1

∞
z

.

Note that limz→∞ A = 0. Hence our system is Fuchsian. Since t0 = ti(z−si)
Gi in

every Di, the functions t0 have the correct local monodromy behaviour at every
point si. We have thus found our desired Fuchsian system of equations. 2

1.5 Fuchsian equations of order two

It is an interesting exercise to write down all Fuchsian differential equations with
a given number of singular points. Let us start with first order Fuchsian equations

Exercise 1.5.1 Show that any Fuchsian equation of order one can be written in
the form

dy

dz
+

(
A1

z − a1

+ . . . +
Ak

z − ak

)
y = 0

for suitable ai, Ai ∈ C. Solve this equation.

Let us now turn to higher order Fuchsian equations

Exercise 1.5.2 Show that any Fuchsian equation having only ∞ as singular
point is of the form dny

dzn = 0.

More generally, Fuchsian equations having only one singularity are not very inter-
esting since, by a fractional linear transformation, the singularity can be moved
to ∞.

Exercise 1.5.3 Show that any Fuchsian equation having only 0 and ∞ as sin-
gular points is of the form

zny(n) + a1z
n−1y(n−1) + · · ·+ an−1zy

′ + any = 0

for suitable a1, . . . , an ∈ C. Verify that the indicial equation has the form

X(X − 1) · · · (X − n + 1) + a1X · · · (X − n + 2) + · · ·+ an−1X + an = 0.

Equations such as these are known as Euler equations. Suppose that the local
exponents at z = 0 are all distinct. Then write down a basis of solutions.

More generally, any Fuchsian equation with two singularities can be transformed
into an Euler equation.
The underlying reason why Fuchsian equations with one or two singularities are
not very exciting is that the fundamental groups of P1 \ ∞ and P1 \ {0,∞} are
trivial and Z respectively, i.e. they are both abelian groups. Interesting equations
can be expected when there are three or more singular points.
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18 CHAPTER 1. ORDINARY LINEAR DIFFERENTIAL EQUATIONS

Exercise 1.5.4 Suppose we have a second order Fuchsian equation with singu-
larities 0, 1,∞ and suppose the local exponents at these points are given by the
following scheme,

0 1 ∞
0 0 a

1− c c− a− b b

The second exponent at 1 is chosen to satisfy Fuchs’s relation for exponents. Show
that the corresponding second order equation is uniquely determined and reads,

z(z − 1)F ′′ + ((a + b + 1)z − c)F ′ + abF = 0.

This is the hypergeometric equation with parameters a, b, c.

Suppose we have a second order equation with three singularities, say A,B, C.
To eqach singularity we have local exponents which we put in the following (Rie-
mann) scheme,

A B C
α β γ
α′ β′ γ′

Via a Möbius transformation we can map A,B, C to any three distinct points of
P1. Let us take the mapping A,B, C → 0, 1,∞. So we have to deal with the
Fuchsian equation having Riemann scheme

0 1 ∞
α β γ
α′ β′ γ′

If we multiply the solutions of the latter equation by zµ we obtain a set of func-
tions that satisfy the Fuchsian equation with Riemann scheme

0 1 ∞
α + µ β γ − µ
α′ + µ β′ γ′ − µ

A fortiori, after multiplication of the solutions with z−α′(1 − z)−β′ we obtain a
Fuchsian equation with a scheme of the form

0 1 ∞
α′′ β′′ γ′′

0 0 1− α′′ − β′′ − γ′′

Hence any second order Fuchsian equation with three singularities can be trans-
formed into a hypergeometric equation. Any hypergeometric equation is uniquely
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1.5. FUCHSIAN EQUATIONS OF ORDER TWO 19

determined by its local exponents and, a fortiori, any second order Fuchsian equa-
tion is uniquely determined by the location of its singularities and their local
exponents.
Here are some remarks on the solutions of the hypergeometric equation. When c
is not integral a basis of solutions is given by

F (a, b, c|z) :=
∑ (a)n(b)n

(c)nn!
zn. (1.5)

and
z1−cF (a + 1− c, b + 1− c, 2− c|z)

The Pochhammer symbol (x)n is defined by (x)0 = 1 and (x)n = x(x + 1) · · · (x +
n− 1). The function F (a, b, c|z) is known as Gauss’ hypergeometric function.

Exercise 1.5.5 Show directly that the power series (1.5) satisfies the differential
equation

z(D + a)(D + b)F = D(D + c− 1)F, D = z
d

dz

Using the above theory it is very simple to prove some quadratic relations between
hypergeometric functions, such as

F (a, b, a + b + 1/2|4t− 4t2) = F (2a, 2b, a + b + 1/2|t)

and
F (a, b, a + b + 1/2|t2/(4t− 4)) = (1− t)aF (2a, a + b, 2a + 2b|t).

they were discovered by E.Kummer. Let us prove for example the quadratic
relation

F (a, b, a + b + 1/2|t2/(4t− 4)) = (1− t)aF (2a, a + b, 2a + 2b|t).
Substitute z = t2/(4t−4) in the hypergeometric equation with parameters a, b, a+
b+1/2. We obtain a new Fuchsian equation. The map t → z = t2/(4t−4) ramifies
above 0, 1 in t = 0, 2 respectively. Above z = 1 we have the point t = 2, above
z = 0 the point t = 0 and above z = ∞ the two points t = 1,∞. Notice that our
equation has local exponents 0, 1/2 in z = 1. Hence the new equation has local
exponents 0, 1 in t = 2, with regular solutions, and t = 2 turns out to be a regular
point. At t = 0 we get the local exponents 0, 2(1/2− a− b) and in t = 1,∞, the
points above z = ∞, we have the local exponents a, b and a, b. Thus our equation
in t has again three singular points and Riemann scheme

0 1 ∞
0 a a

1− 2a− 2b b b
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20 CHAPTER 1. ORDINARY LINEAR DIFFERENTIAL EQUATIONS

By the method sketched above, one easily sees that (1−t)aF (2a, a+b, 2a+2b|t) is
a solution of this equation. Moreover, this is the unique (up to a constant factor)
solution holomorphic near t = 0. At the same time F (a, b, a+ b+1/2|t2/(4t−4))
is a solution, and by the uniquess equality follows.

Exercise 1.5.6 Prove in a similar way the equality

F (a, b, a + b + 1/2|4z − 4z2) = F (2a, 2b, a + b + 1/2|z).

F.Beukers: Hypergeometric Functions, preliminary notes



Chapter 2

Gauss hypergeometric functions

2.1 Definition, first properties

Let a, b, c ∈ R and c 6∈ Z≤0. Define Gauss’ hypergeometric function by

F (a, b, c|z) =
∑ (a)n(b)n

(c)nn!
zn. (2.1)

The Pochhammer symbol (x)n is defined by (x)0 = 1 and (x)n = x(x + 1) · · · (x +
n − 1). The radius of convergence of (2.1) is 1 unless a or b is a non-positive
integer, in which cases we have a polynomial.

Examples.

(1− z)−a = F (a, 1, 1|z)

log
1 + z

1− z
= 2zF (1/2, 1, 3/2|z2)

arcsin z = zF (1/2, 1/2, 3/2|z2)

K(z) =
π

2
F (1/2, 1/2, 1, z2)

Pn(z) = 2nF (−n, n + 1, 1|(1 + z)/2)

Tn(z) = (−1)nF (−n, n, 1/2|(1 + z)/2)

Here K(z) is the Jacobi’s elliptic integral of the first kind given by

K(z) =

∫ 1

0

dx√
(1− x2)(1− z2x2)

.

The polynomials Pn, Tn given by Pn = (1/n!)(d/dz)n(1 − z2)n and Tn(cos z) =
cos(nz) are known as the Legendre and Chebyshev polynomials respectively. They
are examples of orthogonal polynomials.

21



22 CHAPTER 2. GAUSS HYPERGEOMETRIC FUNCTIONS

One easily verifies that (2.1) satisfies the linear differential equation

z(D + a)(D + b)F = D(D + c− 1)F, D = z
d

dz
.

Written more explicitly,

z(z − 1)F ′′ + ((a + b + 1)z − c)F ′ + abF = 0. (2.2)

There exist various ways to study the analytic continuation of (2.1), via Eu-
ler integrals, Kummer’s solutions and Riemann’s approach. The latter will be
discussed in later sections. The Euler integral reads

F (a, b, c|z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt (c > b > 0)

and allows choices of z with |z| > 1. The restriction c > b > 0 is included to
ensure convergence of the integral at 0 and 1. We can drop this condition if we
take the Pochhammer contour γ given by

0 1

X

Y

as integration path. Notice that the integrand acquires the same value after
analytic continuation along γ.
It is a straightforward exercise to show that for any b, c− b 6∈ Z we have

F (a, b, c|z) =
Γ(c)

Γ(b)Γ(c− b)

1

(1− e2πib)(1− e2πi(c−b))

∫

γ

tb−1(1− t)c−b−1(1− tz)−adt

Kummer gave the following 24 solutions to (4.1)

F (a, b, c|z)

= (1− z)c−a−bF (c− a, c− b, c|z)

= (1− z)−aF (a, c− b, c|z/(z − 1))

= (1− z)−bF (a− c, b, c|z/(z − 1))

z1−cF (a− c + 1, b− c + 1, 2− c|z)

= z1−c(1− z)c−a−bF (1− a, 1− b, 2− c|z)

= z1−c(1− z)c−a−1F (a− c + 1, 1− b, 2− c|z/(z − 1))

= z1−c(1− z)c−b−1F (1− a, b− c + 1, 2− c|z/(z − 1))
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F (a, b, a + b− c + 1|1− z)

= x1−cF (a− c + 1, b− c + 1, a + b− c + 1|1− z)

= z−aF (a, a− c + 1, a + b− c + 1|1− 1/z)

= z−bF (b− c + 1, b, a + b− c + 1|1− 1/z)

(1− z)c−a−bF (c− a, c− b, c− a− b + 1|1− z)

= (1− z)c−a−bz1−cF (1− a, 1− b, c− a− b + 1|1− z)

= (1− z)c−a−bza−cF (1− a, c− a, c− a− b + 1|1− 1/z)

= (1− z)c−a−bzb−cF (c− b, 1− b, c− a− b + 1|1− 1/z)

z−aF (a, a− c + 1, a− b + 1|1/z)

= z−a(1− 1/z)c−a−bF (1− b, c− b, a− b + 1|1/z)

= z−a(1− 1/z)c−a−1F (a− c + 1, 1− b, 2− c|1/(1− z))

= z−a(1− 1/z)−aF (a, c− b, a− b + 1|1/(1− z))

z−bF (b, b− c + 1, b− a + 1|1/z)

= z−b(1− 1/z)c−a−bF (1− a, c− a, b− a + 1|1/z)

= z−b(1− 1/z)c−b−1F (b− c + 1, 1− a, 2− c|1/(1− z))

= z−b(1− 1/z)−bF (b, c− a, b− a + 1|1/(1− z))

Strictly speaking, the above six 4-tuples of functions are only distinct when c, c−
a − b, a − b 6∈ Z. If one of these numbers is an integer we find that there are
other solutions containing logarithms. For example, when c = 1 we find that
z1−c becomes log z and a second solution near z = 0 reads

(log z)F (a, b, 1|z) +
∞∑

n=1

(a)n(bn)

(n!)2
zn

[
n∑

k=1

(
1

a + k − 1
+

1

b + k − 1
− 2

k

)]
.

Notice that this solution can be obtained by taking the difference of solutions
z1−cF (a− c + 1, b− c + 1, 2− c|z)− F (a, b, c|z), divide it by c− 1 and take the
limit as c → 1.
Later it will turn out that Riemann’s approach to hypergeometric functions gives
a remarkably transparent insight into these formulas as well as the quadratic
transformations of Kummer and Goursat.
Examples of such transformations are

F (a, b, a + b + 1/2|4z − 4z2) = F (2a, 2b, a + b + 1/2|z)

and

F (a, b, a + b + 1/2|z2/(4z − 4)) = (1− z)aF (2a, a + b, 2a + 2b|z).
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Finally we mention the 6 contiguous functions

F (a± 1, b, c|z), F (a, b± 1, c|z), F (a, b, c± 1|z).

Gauss found that F (a, b, c|z) and any two contiguous functions satisfy a linear
relation with coefficients which are linear polynomials in z or constants, for ex-
ample,

(c−a)F (a− 1, b, c|z)+ (2a− c−az + bz)F (a, b, c|z)+a(z− 1)F (a+1, b, c|z) = 0.

Notice also that F ′(a, b, c|z) = (ab/c)F (a + 1, b + 1, c + 1|z). These observations
are part of the following theorem.

Theorem 2.1.1 Suppose a, b 6≡ 0, c(mod Z) and c 6∈ Z. Then any function
F (a + k, b + l, c + m|z) with k, l,m ∈ Z equals a linear combination of F, F ′ with
rational functions as coefficients.

Proof. One easily verifies that

F (a + 1, b, c|z) =
1

a
(z

d

dz
+ a)F (a, b, c|z)

F (a− 1, b, c|z) =
1

c− a
(z(1− z)

d

dz
− bz + c− a)F (a, b, c|z)

and similarly for F (a, b + 1, c|z), F (a, b− 1, c|z). Furthermore,

F (a, b, c + 1|z) =
c

(c− a)(c− b)
(z(1− z)

d

dz
+ c− a− b)F (a, b, c|z)

F (a, b, c− 1|z) =
1

c− 1
(z

d

dz
+ c− 1)F (a, b, c|z)

Hence there exists a linear differential operator Lk,l,m ∈ C(z)[ d
dz

] such that
F (a + k, b + l, c + m|z) = Lk,l,mF (a, b, c|z). Since F satifies a second order linear
differential equation, Lk,l,mF can be written as a C(z)-linear combination of F
and F ′. 2

In general we shall call any function F (a + k, b + l, c + m|z) with k, l, m ∈ Z
contiguous with F (a, b, c|z). Thus we see that, under the assumptions of Theorem
2.1.1, any three contiguous functions satisfy a C(z)-linear relation.
For many more identities and formulas we refer to [AS] and [E].

2.2 Monodromy of the hypergeometric function

Let us now turn to the monodromy of the hypergeometric equation. Consider
the three loops g0, g1, g∞ which satisfy the relation g0g1g∞ = 1.
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0 1

z0

X

Y

We denote the corresponding monodromy matrices by M0,M1,M∞. They also
satisfy M0M1M∞ = 1 and M0,M∞ generate the monodromy group. Since the
local exponents at 0, 1,∞ are 0, 1 − c, 0, c − a − b and a, b respectively, the
eigenvalues of the matrices M0,M1 and M∞ are 1, exp(2πi(1− c)), 1, exp(2πi(c−
a − b)) and exp(2πia), exp(2πib) respectively. The monodromy group can be
considered as being generated by M0,M∞ and we know that M∞M0 = M−1

1 has
eigenvalue 1. This scant information already suffices to draw some important
conclusions.

Lemma 2.2.1 Let A,B ∈ GL(2,C). Suppose that AB−1 has eigenvalue 1. Then
there exists a common eigenvector of A,B if and only if A,B have a common
eigenvalue.

Proof. Notice that ker(A− B) has dimension at least 1. If the dimension were
2 we would have A = B and our lemma would be trivial. So we can assume
dim(ker(A−B)) = 1. In this proof we let v ∈ ker(A−B), v 6= 0.
Suppose there exists a common eigenvector, w say, of A,B with eigenvalues
λA, λB. If these eigenvalues are equal, we are done. Suppose they are not equal.
Then w, v span C2. Choose α, β such that Av = αv + βw. Since Av = Bv we
also have Bv = αv + βw. Hence with respect to the basis v, w the matrices of
A,B read (

α β
0 λA

) (
α β
0 λB

)

Hence they have the common eigenvalue α.
Suppose A,B have a common eigenvalue λ. If v is an eigenvectore of A we are
done, since Av = Bv implies that it is also an eigenvector of B. So suppose v
is not an eigenvector of A. Consider the vector w = (A − λ)v. Since A − λ has
non-trivial kernel we have < w >C= (A − λ)C2. In particular, (A − λ)w is a
scalar multiple of w, i.e. w is an eigenvector of A. We also have w = (B − λ)v
and a similar argument shows that w is an eigenvector of B. Hence A,B have a
common eigenvector. 2

F.Beukers: Hypergeometric Functions, preliminary notes



26 CHAPTER 2. GAUSS HYPERGEOMETRIC FUNCTIONS

Corollary 2.2.2 The monodromy group of (4.1) acts reducibly on the space of
solutions if and only if at least one of the numbers a, b, c− a, c− b is integral.

Proof. This follows by application of the previous lemma to the case A =
M∞, B = M−1

0 . Since M−1
1 = M∞M0 the condition that AB−1 has eigenvalue 1

is fullfilled. Knowing the eigenvalues of M0,M∞ one easily checks that equality
of eigenvalues comes down to the non-empty intersection of the sets {0, c} and
{a, b} considered modulo Z.

Definition 2.2.3 A hypergeometric equation is called reducible if its monodromy
group is reducible. A hypergeometric equation is called abelian if its monodromy
group is abelian.

Typical examples of abelian equations are (4.1) with a = c = 0 having solutions
1, (1− z)−(b+1) and a = b = 1, c = 2 having solutions 1/z, log(1− z)/z. Here is a
simple necessary condition for abelian equations, which has the pleasant property
that it depends only on a, b, c(mod Z).

Lemma 2.2.4 If (4.1) is abelian then at least two of the numbers a, b, c−a, c− b
are integral.

Proof. Abelian monodromy implies reducibility of the monodromy, hence at
least one of the four numbers is integral. Let us say a ∈ Z, the other cases can be
dealt with similarly. It suffices to show that in at least one of the points 0, 1,∞
the local exponent difference of (4.1) is integral. Then clearly, 1− c ∈ Z implies
c− a ∈ Z, c− a− b ∈ Z implies c− b ∈ Z and a− b ∈ Z implies b ∈ Z.
Suppose that all local exponent differences are non-integral. In particular the
eigenvalues of each of the generating monodromy elements M0,M1,M∞ are dis-
tinct. Then abelian monodromy implies that the monodromy group acts on the
solution space in a completely reducible way as a sum of two one-dimensional rep-
resentations. In particular the generators of these representations are functions
of the form

zλ(1− z)µq(z) zλ′(1− z)µ′p(z)

where p(z), q(z) are polynomials with the property that they do not vanish at
z = 0 or 1. The local exponents can be read off immediately, λ, λ′ at 0, µ, µ′ at
1 and −λ− µ− deg(q),−λ′ − µ′ − deg(p) at ∞. The sum of the local exponents
must be 1, hence − deg(p)− deg(q) = 1. Clearly this is a contradiction. 2

Lemma 2.2.5 Suppose that A, B ∈ GL(2,C) have disjoint sets of eigenvalues
and suppose that AB−1 has eigenvalue 1. Then, letting X2 + a1X + a2 and
X2 + b1X + b2 be the characteristic polynomials of A, B, we have up to common
conjugation,

A =

(
0 −a2

1 −a1

)
, B =

(
0 −b2

1 −b1

)
.
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Proof. Choose v ∈ ker(A − B) and w = Av = Bv. Since A,B have disjoint
eigenvalue sets, v is not an eigenvector of A and B. Hence w, v form a basis of
C2. With respect to this basis A,B automatically obtain the form given in our
Lemma. 2

Corollary 2.2.6 Suppose that (4.1) is irreducible. Then, up to conjugation, the
monodromy group depends only on the values of a, b, c modulo Z.

Let us now assume that a, b, c ∈ R, which is the case most frequently studied.
The eigenvalues of M0,M1,M∞ then lie on the unit circle.

Definition 2.2.7 Let R,S be two disjoint finite subsets of the unit circle of equal
cardinality. The sets R,S are said to interlace if every segment on the unit circle,
connecting two points of R, contains a point of S.

Lemma 2.2.8 Let A,B be non-commuting elements of GL(2,C). Suppose that
the eigenvalues of A,B have absolute value 1 and that AB−1 has eigenvalue 1. Let
G be the group generated by A,B. Then there exists a unique (up to a constant
factor) non-trivial hermitian form F on C2 such that F (g(x), g(y)) = F (x, y) for
every g ∈ G and every pair x, y ∈ C2. Moreover,

F degenerate ⇐⇒ A,B have common eigenvalues

Supposing A,B have disjoint eigenvalue sets, we have in addition,

F definite ⇐⇒ eigenvalues of A,B interlace

F indefinite ⇐⇒ eigenvalues of A,B do not interlace

We call these three cases the euclidean, spherical and hyperbolic case respectively.

Proof. Let v ∈ ker(A−B) and w = Av. Suppose first that v, w form a basis of
C2. Of course, with respect to this basis A and B have the form given in the pre-
vious lemma. In particular we see that A,B cannot have the same characteristic
equation, since this would imply that A = B.
We have to find a hermitean form F such that

F (gv, gv) = F (v, v) F (gv, gw) = F (v, w)

F (gw, gv) = F (w, v), F (gw, gw) = F (w,w)

for every g ∈ G. It suffices to take g = A,B. Let X2+a1X+a2 and X2+b1X+b2

be the characteristic polynomials of A,B. Since the roots are on the unit circle
we have a2ā2 = 1, a2ā1 = a1 and similarly for b1, b2.
Let us first take g = A. Then F (Av,Av) = F (v, v) implies

F (w, w) = F (v, v).
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The conditions F (Av, Aw) = F (v, w) and F (Aw, Av) = F (w, v) imply F (w, A2v) =
F (v, w) and F (A2v, w) = F (w, v). Hence, using A2 = −a1A− a2,

−ā1F (w, w)− ā2F (w, v) = F (v, w) (2.3)

−a1F (w, w)− a2F (v, w) = F (w, v) (2.4)

Because of the relations a2 = ā−1
2 and a2ā1 = a1 these equations are actually the

same. The condition F (Aw,Aw) = F (w,w) yields F (A2v, A2v) = F (w, w) and
hence

|a1|2F (w,w) + a1ā2F (w, v) + ā1a2F (v, w) + |a2|2F (v, v) = F (w, w).

Using |a2|2 = 1, a2ā1 = a1 and F (w, w) = F (v, v) this is equivalent to

a1ā1F (w, w) + a1ā2F (w, v) + a1F (v, w) = 0

which is precisely (2.3) times a1. Hence A-invariance of F is equivalent to

F (v, v) = F (w,w), F (w, v) + a1F (w, w) + a2F (v, w) = 0.

Invariance of F with respect to B yields the additional condition

F (w, v) + b1F (w,w) + b2F (v, w) = 0.

Since A and B do not have the same characteristic equation the solutionspace
for F is one-dimensional. When a2 = b2 a solution is given by

F (w,w) = F (v, v) = 0, F (w, v) = (−a2)
1/2, F (v, w) = (−a2)

−1/2,

when a2 6= b2 a solution is given by

F (w,w) = F (v, v) = 1, F (w, v) = ε, F (v, w) = ε̄, ε =
a1 − b1

b2 − a2

.

We formally take ε = ∞ if a2 = b2. In both cases cases we see that F is definite,
degenerate, indefinite according to the conditions |ε| < 1, |ε| = 1, |ε| > 1. It now a
straightforward excercise to see that these inequalities correspond to interlacing,
coinciding or non-interlacing of the eigenvalues of A and B.
We are left with the case when v is an eigenvector of A and B. Let α be the
eigenvalue. If both A and B have only eigenvalues α they automatically commute,
which case is excluded. So either A or B has an eigenvalue different from α.
Let us say that A has the distinct eigenvalues α, α′. Let w be an eigenvector
corresponding to α′. Then, with respect to v, w the matrix of B must have the
form (

α b12

0 β

)
.

with b12 6= 0. It is now straightforward to verify that

(
0 0
0 1

)
is the unique

invariant hermitean matrix. Moreover it is degenerate, which it should be as
A,B have a common eigenvector. 2
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Definition 2.2.9 With the assumptions as in the previous lemma let G be the
group generated by A and B. Then G is called hyperbolic, euclidean, spheric if F
is indefinite, degenerate, definite respectively.

Corollary 2.2.10 Let {x} denote the fractional part of x (x minus largest integer
≤ x). Suppose that (4.1) is irreducible. Let F be the invariant hermitean form for
the monodromy group. In particular, the sets {{a}, {b}} and {0, {c}} are disjoint.
If {c} is between {a} and {b} then F is positive definite (spherical case). If {c}
is not between {a} and {b} then F is indefinite (hyperbolic case).

The most pittoresque way to describe the monodromy group is by using Schwarz’
triangles.
First a little geometry.

Definition 2.2.11 A curvilinear triangle is a connected open subset of C∪∞ =
P1 whose boundary is the union of three open segments of a circle or straight line
and three points. The segments are called the edges of the triangles, the points
are called the vertices.

It is an exercise to prove that, given the vertices and the corresponding angles
(< π), a curvilinear triangle exists and is uniquely determined This can be seen
best by taking the vertices to be 0, 1,∞. Then the edges connected to ∞ are
actually straight lines.
More generally, a curvilinear triangle in C ∪∞ = P1 is determined by its angles
(in clockwise ordering) up to a Möbius transformation.
Let z0 be a point in the upper half plane H = {z ∈ C|=(z) > 0} and let f, g be
two independent solutions of the hypergeometric equation near z0. The quotient
D(z) = f/g, considered as a map from H to P1, is called the Schwarz map and
we have the following picture and theorem.

1 ∝0 D(0)

D(1)

D(∝)

 D(z)  

Theorem 2.2.12 (Schwarz) Let λ = |1 − c|, µ = |c − a − b|, ν = |a − b| and
Suppose 0 ≤ λ, µ, ν < 1. Then the map D(z) = f/g maps H∪R one-to-one onto
a curvilinear triangle. The vertices correspond to the points D(0), D(1), D(∞)
and the corresponding angles are λπ, µπ, νπ.
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As to the proof of Schwarz’ theorem, the following three ingredients are impor-
tant.

– The map D(z) is locally bijective in every point of H. Notice that D′(z) =
(f ′g− fg′)/g2. The determinant f ′g− fg′ is the Wronskian determinant of
our equation and equals z−c(1 − z)c−a−b−1. In particular it is non-zero in
H. When g has a zero at some point z1 we simply consider 1/D(z) instead.
Since f and g cannot vanish at the same time in a regular point, we have
f(z1) 6= 0.

– The map D(z) maps the segments (∞, 0), (0, 1), (1,∞) to segments of circles
or straight lines. For example, since a, b, c ∈ R we have two real solutions
on (0, 1) (see Kummer’s solutions). Call them f̃ , g̃. Clearly, the function
D̃(z) = f̃/g̃ maps (0, 1) on a segment of R. Since f, g are C-linear com-
binations of f̃ , g̃ we see that D(z) is a Möbius transform of D̃(z). Hence
D(z) maps (0, 1) to a segment of a circle or a straight line.

– The map D(z) maps a small neighbourhood of 0 to a sector with angle
|1−c| = λ and similarly for 1,∞. This follows from the fact that near z = 0
the functions f, g are C-linear combinations of F (a, b, c|z) and z1−cF (a −
c + 1, b− c + 1, 2− c|z).

For the exact determination of the image of the Schwarz map we need the fol-
lowing additional result.

Proposition 2.2.13 (Gauss) Suppose that a, b, c ∈ R, c 6∈ Z≤0 and c > a + b.
Prove that

F (a, b, c|1) =
Γ(c− a)Γ(c− b)

Γ(c)Γ(c− a− b)
.

This can be proven by evaluation of Euler’s integral using the Euler Beta-function.
To study the analytic continuation of D(z) we use Schwarz’ reflection principle.
Hopefully, the following picture illustrates how this works.

1 ∝0

D(0)

D(1)

D(∝)

 D(z)  
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The monodromy group modulo scalars arises as follows. Let W be the group gen-
erated by the reflections in the edges of the curvilinear triangle. The monodromy
group is the subgroup of W consisting of all elements which are product of an
even number of reflections. In the following section we shall study precisely such
groups.

2.3 Triangle groups

In this section we let S be either the Poincaré disk {z ∈ C| |z| < 1}, C or P1.
equipped with the hyperbolic, euclidean and spherical metric respectively.

Definition 2.3.1 A (geodesic) triangle is an connected open subset of S, of finite
volume, whose boundary in S is a union of three open segments of a geodesic and
at most three points. The segments are called the edges of the triangles, the points
are called the vertices.

We first point out that under very mild conditions any curvilinear triangle can
be thought of as a geodesic triangle.

Lemma 2.3.2 Let λ, µ, ν be real numbers in the interval [0, 1). There exists a
geodesic triangle with angles λπ, µπ, νπ if and only if λ+µ+ν < 1+2 min(λ, µ, ν).

Proof. Suppose first that λ+µ+ν < 1. Our condition is then trivially satisfied.
For any such curvilinear triangle we can take the common orthogonal circle of
the three edges, which will become the boundary of a Poincaré disk. The edges
are then automatically geodesics.
Suppose that λ + µ + ν = 1. Our condition is equivalent to saying that all angles
are positive. In this case geodesic triangles are planar triangles in the euclidean
geometry with finite area. The latter property is equivalent to positivity of all
angles.
Suppose that λ + µ + ν > 1. From spherical geometry it follows that a spherical
triangle exists if and only if our condition is satisfied.

We let W (∆) be the group of isometries of S generated by the 3 reflections
through the edges of a geodesic triangle ∆. First we look at subgroups generated
by reflection in two intersecting geodesics.

Lemma 2.3.3 Let ρ, σ be two geodesics intersecting in a point P with an angle
πλ. Let r, s be the reflections in ρ, σ respectively. Then the group D generated by
r, s is a dihedral group consisting of rotations (rs)n around P with angles 2nπλ,
n ∈ Z and reflections in the lines (rs)n(ρ), (rs)n(σ). In particular D is finite of
order 2m if and only if λ = q/m for some q ∈ Z with q 6= 0 and gcd(m, q) = 1.
Furthermore, D is discrete if and only if λ is either zero or a rational number.
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Theorem 2.3.4 For any geodesic triangle ∆ we have S = ∪γ∈W (∆)γ(∆), where
∆ denotes the closure of ∆ in S.

Proof. First of all we note that there exists a positive d0 with the following
property. For any point P whose distance to ∆ is less than d0 there exists
γ ∈ W (∆) such that P ∈ γ(∆). For γ we can simply take a suitable element
from one of the dihedral reflection groups around the vertices.
A fortiori, any point P with distance less than d0 from ∪γ∈W (∆)γ(∆) belongs to
this set.
As a consequence the set ∪γ∈W (∆)γ(∆) is open and closed in S, hence our theorem
follows. 2

Definition 2.3.5 An elementary triangle is a geodesic triangle whose vertex an-
gles are all of the form π/n, n ∈ Z≥2 ∪∞.

Theorem 2.3.6 Let ∆ be an elementary triangle. Then, for any γ ∈ W (∆), γ 6=
Id we have γ(∆) ∩∆ = ∅.

Proof. This is a special case of the theorem of Coxeter-Tits on representations of
Coxeter groups. See Humphreys book on Reflection groups and Coxeter groups
[H].

A group G of isometries acting on S is said to act discretely if there exists a
point P ∈ S and a positive d0 such that distance(P, g(P ))> d0 whenever g 6= Id.
In particular it follows from the previous theorem that triangle groups generated
by elementary triangles act discretely. The following theorem characterises all
groups W (∆) which act discretely on the symmetric space S.

Theorem 2.3.7 Suppose W = W (∆) acts discretely. Then there exists an ele-
mentary triangle ∆el such that W (∆) = W (∆el). Moreover, ∆ is a finite union
of copies of ∆el under elements of W .

Proof. First of all note that the vertex angles must be either 0 or rational mul-
tiples of π, otherwise the corresponding dihedral group is not discrete.
We shall show that if ∆ is not elementary, then there exists a geodesic triangle ∆′

such that W (∆) = W (∆′) and Vol(∆′) ≤ Vol(∆)/2. If ∆′ is not elementary we
repeat the process and so on. However, there is a limit to these processes since,
by discreteness, there is a positive lower bound to Vol(∆′′) for any ∆′′ satisfying
W (∆) = W (∆′′). Hence we must hit upon an elementary triangle ∆el such that
W (∆) = W (∆el).
Let α, β, γ be the edges of ∆ and rα, rβ, rγ the corresponding reflections. Suppose
that the vertex angle between α and β is of the form mπ/n with gcd(m,n) = 1,
but m > 1. Let δ be the geodesic between α and β whose angle with α is π/n. Let
rδ be the reflection in δ. Then the dihedral group generated by rα and rβ is the
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same as the one generated by rα and rδ. Let ∆′ be the triangle with edges α, δ, γ.
Then, clearly, W (∆) = W (∆′). If the volume of ∆′ is larger than half the volume
of ∆ we simply perform the above construction with α and β interchanged. 2

Below we give a list of non-elementary triangles ∆ = (λ, µ, ν) with vertex an-
gles λπ, µπ, νπ which allow a dissection with elementary triangles ∆el such that
W (∆) = W (∆el). In the spherical case discreteness of W (∆) implies finiteness.
The list of spherical cases was already found by H.A.Schwarz and F.Klein (see
[Kl]). In the following table N denotes the number of congruent elementary
triangles needed to cover ∆.

λ µ ν N elementary
2/n 1/m 1/m 2 × (1/2, 1/n, 1/m) n odd
1/2 2/n 1/n 3 × (1/2, 1/3, 1/n) n odd
1/3 3/n 1/n 4 × (1/2, 1/3, 1/n) n 6≡ 0 mod 3
2/n 2/n 2/n 6 × (1/2, 1/3, 1/n) n odd
4/n 1/n 1/n 6 × (1/2, 1/3, 1/n) n odd
2/3 1/3 1/5 6 × (1/2, 1/3, 1/5)
1/2 2/3 1/5 7 × (1/2, 1/3, 1/5)
3/5 2/5 1/3 10 × (1/2, 1/3, 1/5)
1/3 2/7 1/7 10 × (1/2, 1/3, 1/7)

As an application we construct a hypergeometric function which is algebraic over
C(z). Take the triangle (4/5, 1/5, 1/5), which is spherical. Corresponding values
for a, b, c can be taken to be 1/10,−1/10, 1/5. Hence the quotient of any two
solutions f, g of the corresponding hypergeometric is algebraic. Its derivative
(f ′g − fg′)/g2 is algebraic and so is the Wronskian determinant f ′g − fg′ =
z−c(1 − z)c−a−b−1. Hence g and, a fortiori, f are algebraic. In particular,
F (1/10,−1/10, 1/5|z) is an algebraic function.

In many cases it is also possible to find elementary triangles ∆el which can
be dissected into isometric copies of a smaller elementary triangle ∆′

el. Hence
W (∆el) ⊂ W (∆′

el). The most spectacular example is the dissection of the trian-
gle (1/7, 1/7, 1/7) into 24 copies of (1/2, 1/3, 1/7). As a corollary of this dissection
we find the remarkable identity

2F1

(
2

7
,
3

7
,
6

7

∣∣∣∣ z

)
= b(z)−1/28

2F1

(
1

84
,
29

84
,
6

7

∣∣∣∣ 123 z(z − 1)(z3 − 8z2 + 5 ∗ z + 1)

b(z)3

)

where b(z) = 1− 236z + 1666z2 − 3360z3 + 3395z4 − 1736z5 + 42z6 + 228z7 + z8.
For a complete list of such dissections and the corresponding identities we refer
to [V].
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2.4 Some loose ends

In the Schwarz map we have assumed that the parameters a, b, c are such that
λ = |1− c|, µ = |c− a− b|, ν = |a− b| are all less than 1. It turns out that in the
irreducible case this is no restriction, since we can shift a, b, c by integers without
affecting the monodromy group. In fact,

Lemma 2.4.1 Assume that none of the numbers a, b, c−a, c−b is integral. There
exist a′ ∈ a(mod Z), b′ ∈ b(mod Z), c′ ∈ c(mod Z) such that

0 ≤ λ, µ, ν < 1 λ + µ + ν < 1 + 2 min(λ, µ, ν)

where λ = |1− c′|, µ = |c′ − a′ − b′|, ν = |a′ − b′|. In the case λ + µ + ν < 1 there
exists only one choice for a′, b′, c′ and in the case λ + µ + ν > 1 there exist four
possible choices.

Proof. First of all let us suppose that 0 ≤ a, b, c < 1. Without loss of generality
we can assume that a ≤ b. We consider the following cases.
Case i) 0 < a < c < b < 1. We take a′ = a, b′ = b, c′ = c. Then, λ =
1 − c, µ = a + b − c, ν = b − a and the inequalities are satisfied. Moreover,
λ + µ + ν = 1 + 2b− 2c > 1.
Case ii) 0 < a ≤ b < c < 1. We take a′ = a, b′ = b, c′ = c. When c ≥ a + b
we get λ = 1 − c, µ = c − a − b, ν = b − a and the inequalities hold. Moreover,
λ+µ+ ν = 1− 2a < 1. When c ≤ a+ b we get λ = 1− c, µ = a+ b− c, ν = b− a
and the inequalities hold. Moreover, λ + µ + ν = 1 + 2b− 2c < 1.
Case iii) 0 ≤ c < a ≤ b < 1. We take a′ = a, b′ = b, c′ = c + 1. Then,
λ = c, µ = c + 1 − a − b, ν = b − a and the inequalities are readily verified.
Moreover, λ + µ + ν = 1 + 2c− 2a < 1.
As to uniqueness we note that an integral shift in the a, b, c such that the cor-
responding values of λ, µ, ν stay below 1 necessarily gives the substitutions of
the form λ → 1 − λ, µ → 1 − µ, ν → ν and similar ones where two of the pa-
rameters are replaced by 1 minus their value. In casethe condition λ + µ + ν <
1 + 2 min(λ, µ, ν) is violated by such a substitution. For example, λ + µ + ν ≤ 1
implies 1− λ + 1− µ + ν = 2− (λ + µ + ν) + 2ν ≥ 1 + 2ν. In the spherical case
the condition is not violated.

When we have obtained a geodesic Schwarz triangle in our construction we au-
tomatically have a metric which is invariant under the projective monodromy
group. This closely reflects the nature of the natural hermitian form on the
monodromy group itself.

Theorem 2.4.2 Let a, b, c ∈ R be such that

0 ≤ λ, µ, ν < 1 λ + µ + ν < 1 + 2 min(λ, µ, ν)
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where λ = |1− c|, µ = |c− a− b|, ν = |a− b|. Let M be the monodromy group of
(4.1). Then,

M is spheric ⇐⇒ λ + µ + ν > 1

M is euclidean ⇐⇒ λ + µ + ν = 1

M is hyperbolic ⇐⇒ λ + µ + ν < 1.

Proof. In the case when none of the numbers a, b, c − a, c − b is integral, this
statement can already be inferred from the proof of the previous lemma (we get
only the hyperbolic and spheric case). It remains to show that if one of the
numbers a, b, c − a, c − b is integral, we have λ + µ + ν = 1. Let us suppose for
example that a ∈ Z. Notice that |a − b| < 1 and |a + b| < |c| + 1 < 3. Hence
|a| ≤ |a− b|/2 + |a + b|/2 < 2. So, a = 0,±1. A case by case analysis using the
inequalities for λ, µ, ν yields our statement. 2
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Chapter 3

Generalised hypergeometric
functions nFn−1

3.1 Definition, first properties

Let α1, . . . , αn; β1, . . . , βn be any complex numbers and consider the generalised
hypergeometric equation in one variable,

z(D + α1) · · · (D + αn)F = (D + β1 − 1) · · · (D + βn − 1)F, D = z
d

dz
(3.1)

This is a Fuchsian equation of order n with singularities at 0, 1,∞. The local
exponents read,

1− β1, . . . , 1− βn at z = 0
α1, . . . , αn at z = ∞
0, 1, . . . , n− 2, −1 +

∑n
1 (βi − αi) at z = 1

When the βi are distinct modulo 1 a basis of solutions at z = 0 is given by the
functions

z1−βi
nFn−1

(
α1 − βi + 1, . . . , αn − βi + 1

β1 − βi + 1, ..∨.., βn − βi + 1

∣∣∣∣ z

)
(i = 1, . . . , n).

Here ..∨.. denotes suppression of the term βi − βi + 1 and nFn−1 stands for the
generalised hypergeometric function in one variable

nFn−1

(
α1, . . . , αn

β1, . . . , βn−1

∣∣∣∣ z

)
=

∞∑

k=0

(α1)k · · · (αn)k

(β1)k · · · (βn−1)kk!
zk.

At z = 1 we have the following interesting situation.

Theorem 3.1.1 (Pochhammer) The equation (4.1) has n−1 independent holo-
morphic solutions near z = 1.

36



3.2. MONODROMY 37

The proof of this result follows from the observation that the coefficient of
(

d
dz

)n

in (4.1) equals zn+1 − zn and the following theorem.

Theorem 3.1.2 Consider the linear differential equation

pn(z)y(n) + pn−1(z)y(n−1) + · · ·+ p1(z)y′ + p0(z)y = 0

where the pi(z) are analytic around a point z = a. Suppose that pn(z) has a
zero of order one at z = a. The the differential equations has n− 1 independent
holomorphic solutions around z = a.

Proof. Without loss of generality we can assume that a = 0. Write pi(z) =∑
j≥0 pijz

j for every j. Then, in particular, pn0 = 0 and pn1 6= 0. we determine a

power series solution
∑

k≥0 fkz
k by substituting it into the equation. We obtain

the recursion relations,

2

Finally we mention the Euler integral for nFn−1(α1, . . . , αn; β1, . . . , βn−1|z),

n−1∏
i=1

Γ(βi)

Γ(αi)Γ(βi − αi)

∫ 1

0

· · ·
∫ 1

0

∏n−1
i=1 tαi−1

i (1− ti)
βi−αi−1

(1− zt1 · · · tn−1)αn
dt1 · · · dtn−1

for all <βi > <αi > 0 (i = 1, . . . , n− 1).

3.2 Monodromy

Fix a base point z0 ∈ P1−{0, 1,∞}, say z0 = 1/2. Denote by G the fundamental
group π1(P1 − {0, 1,∞}). Clearly G is generated by the simple loops g0, g1, g∞
around the corresponding points together with the relation g0g1g∞ = 1. Let
V (α, β) = V (α1, . . . , αn; β1, . . . , βn) be the local solution space of (4.1) around
z0. Denote by

M(α, β) : G → GL(V (α, β))

the monodromy representation of (4.1). Write

h0 = M(α, β)g0 h1 = M(α, β)g1 h∞ = M(α, β)g∞.

The eigenvalues of h0 and h∞ read exp(−2πiβj) and exp(2πiαj) respectively.
Since there are n−1 independent holomorphic solutions near z = 1 the element h1

has n−1 eigenvalues 1 together with n−1 independent eigenvectors. Equivalently,
rank(h1 − Id) ≤ 1. An element h ∈ GL(V ) such that rank(h − Id) = 1 will be
called a (pseudo)-reflection. The determinant of a reflection will be called the
special eigenvalue. From the relation between the generators of the fundamental
group it follows that h−1

1 = h∞h0 is a (pseudo)reflection.

F.Beukers: Hypergeometric Functions, preliminary notes



38 CHAPTER 3. HYPERGEOMETRIC FUNCTIONS NFN−1

Theorem 3.2.1 Let H ⊂ GL(n,C) be a subgroup generated by two matrices
A,B such that AB−1 is a reflection. Then H acts irreducibly on Cn if and only
if A and B have disjoint sets of eigenvalues.

Proof. Suppose that H acts reducibly. Let V1 be a nontrivial invariant subspace
and let V2 = Cn/V1. Since A − B has rank 1, A and B coincide on either V1 or
V2. Hence they have a common eigenvalue.
Suppose conversely that A and B have a common eigenvalue λ. Let W = ker(A−
B). Since AB−1− Id has rank one, the same holds for A−B. Hence dim(W ) =
n − 1. If any eigenvector of A belongs to W , it must also be an eigenvector of
B, since A and B coincide on W . Hence there is a one-dimensional invariant
subspace. Suppose W does not contain any eigenvector of A or B. We show
that the subspace U = (A − λ)Cn is invariant under H. Note that A − λId
has a non-trivial kernel which has trivial intersection with W . Hence U has
dimension n − 1 and U = (A − λ)W . Since A − λ and B − λ coincide on W
we conclude that also U = (B − λ)W and hence, by a similar argument as for
A, U = (B − λ)Cn. Notice that U is stable under A, as follows trivially from
A(A− λ)Cn = (A− λ)ACn = (A− λ)Cn. For a similar reason U is stable under
B. Hence H has the invariant subspace U . 2

Corollary 3.2.2 The monodromy group of (4.1) acts irreducibly if and only if
all differences αi − βj are non-integral.

This Corollary follows by application of our Theorem with A = h∞ and B = h−1
0 .

From now on we shall be interested in the irreducible case only.

Theorem 3.2.3 (Levelt) Let a1, . . . , an; b1, . . . , bn ∈ C∗ be such that ai 6= bj

for all i, j. Then there exist A,B ∈ GL(n,C) with eigenvalues a1, . . . , an and
b1, . . . , bn respectively such that AB−1 is a reflection. Moreover, the pair A,B is
uniquely determined up to conjugation.

Proof. First we show the existence. Let
∏

i

(X − ai) = Xn + A1X
n−1 + · · ·+ An

∏
i

(X − bi) = Xn + B1X
n−1 + · · ·+ Bn

and

A =




0 0 . . . 0 −An

1 0 . . . 0 −An−1

0 1 . . . 0 −An−2
...

...
0 0 . . . 1 −A1




B =




0 0 . . . 0 −Bn

1 0 . . . 0 −Bn−1

0 1 . . . 0 −Bn−2
...

...
0 0 . . . 1 −B1
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Then rank(A−B) = 1, hence rank(AB−1 − Id) = 1 and AB−1 is a reflection.
To prove uniqueness of A, B we let W = ker(A−B). Note that dim W = n− 1.
Let V = W ∩ A−1W ∩ · · · ∩ A−(n−2)W . Then dim V ≥ 1. Suppose dim V > 1.
Choose v ∈ V ∩ A−(n−1)W . Then Aiv ∈ W for i = 0, 1, . . . , n − 1. Hence
U =< Aiv >i∈Z⊂ W is A-stable. In particular, W contains an eigenvector of A.
Since B = A on W this is also an eigenvector of B with the same eigenvalue,
contradicting our assumption on A,B. Hence dim V = 1. Letting v ∈ V we take
v, Av, . . . , An−1v as basis of Cn. Since A = B on W we have that Aiv = Biv for
i = 0, 1, . . . , n− 2 and with respect to this basis A and B have automatically the
form given above. 2

Corollary 3.2.4 With the same hypotheses and Ai, Bj as in the proof of the
previous theorem we have that < A,B > can be described by matrices having
elements in Z[Ai, Bj, 1/An, 1/Bn].

Levelt’s theorem is a special case of a general rigidity theorem which has recently
been proved by N.M.Katz. In the last section we shall give an elementary proof
of Katz’s theorem.

3.3 Hypergeometric groups

Definition 3.3.1 Let a1, . . . , an; b1, . . . , bn ∈ C∗. such that ai 6= bj for every
i, j. The group generated by A,B such that A and B have eigenvalues a1, . . . , an

and b1, . . . , bn respectively and such that AB−1 is a pseudoreflection, will be
called a hypergeometric group with parameters ai and bj. Notation: H(a, b) =
a1, . . . , an; b1, . . . , bn.

In particular, the monodromy group of (4.1) is a hypergeometric group with
ak = e2πiαk and bk = e2πiβk .

Theorem 3.3.2 Let H be a hypergeometric group with parameters a1, . . . , an and
b1, . . . , bn. Suppose that these parameters lie on the unit circle in C. Then there
exists a non-degenerate hermitean form F (x, y) =

∑
Fijxiyj on Cn such that

F (hx, hy) = F (x, y) for all h ∈ H and all x, y ∈ Cn.
Denote by ≺,¹ the total ordering on the unit circle corresponding to increasing
argument. Assume that the a1 ¹ . . . ¹ an and b1 ¹ . . . ¹ bn. Let mj = #{k|bk ≺
aj} for j = 1, . . . , n. Then the signature (p, q) of the hermitean form F is given
by

|p− q| =
∣∣∣∣∣

n∑
j=1

(−1)j+mj

∣∣∣∣∣ .
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Definition 3.3.3 Let a1, . . . , an and b1, . . . , bn be sets on the unit circle. We say
that these sets interlace on the unit circle if and only if either

a1 ≺ b1 ≺ a2 ≺ b2 · · · ≺ an ≺ bn

or

b1 ≺ a1 ≺ b2 ≺ a2 · · · ≺ bn ≺ an.

Corollary 3.3.4 Let the hypergeometric group H have all of its parameters on
the unit circle. Then H is contained in U(n,C) if and only if the parametersets
interlace on the unit circle.

Theorem 3.3.5 Suppose the parameters {a1, . . . , an} and {b1, . . . , bn} are roots
of unity, let us say h-th roots of unity for some h ∈ Z≥2. Then the hypergeometric
group H(a, b) is finite if and only if for each k ∈ Z with (h, k) = 1 the sets
{ak

1, . . . , a
k
n} and {bk

1, . . . , b
k
n} interlace on the unit circle.

Proof. The Galois group of Q(exp(2πi/h)) over Q is given by elements of the
form

σk : exp(2πi/h) → exp(2πik/h)

for any k, (k, h) = 1. The group H(a, b) can be represented by matrices with en-
tries in the ring of cyclotomic integers Z[exp(2πi/h)]. The Galois automorphsim
σk establishes an isomorphism between H(a, b) and the hypergeometric group Hk

with parameters ak
1, . . . , a

k
n, bk

1, . . . , b
k
n. Each group Hk has an invariant hermitian

form Fk for (k, h) = 1.

Suppose H(a, b) is finite. Then each Fk is definite, hence every pair of sets
{ak

1, . . . , a
k
n} and {bk

1, . . . , b
k
n} interlace on the unit circle.

Suppose conversely that {ak
1, . . . , a

k
n} and {bk

1, . . . , b
k
n} interlace for every k, (k, h) =

1. Then each group Hk is subgroup of a unitary group with definite form Fk.
In particular the entries of each element are bounded in absolute value by some
constant, C say. This implies that any entry of any element of H(a, b) has conju-
gates which are all bounded by C. Since there exist only finitely many elements
of Z[exp(2πi/h)] having this property, we conclude the finiteness of H(a, b). 2

An immediate consequence of this theorem is that, for example, the hypergeo-
metric function

8F7

(
1/30, 7/30, 11/30, 13/30, 17/30, 19/30, 23/30, 29/30

1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8

∣∣∣∣ z

)

is an algebraic function.
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3.4 Rigidity

In this section we formulate and prove Katz’s result on rigidity, see [Ka]. Let k be
a field and g1, g2, . . . , gr ∈ GL(n, k) Let G be the group generated by g1, . . . , gr.
We say that the r-tuple is irreducible if the group G acts irreducibly on kn.
We call the r-tuple g1, . . . , gr linearly rigid if for any conjugates g̃1, . . . , h̃r of
g1, . . . , gr with g̃1g̃2 · · · g̃r = Id there exists u ∈ GL(n, k) such that g̃i = ugiu

−1

for i = 1, 2, . . . , r.

For example, it follows from Levelt’s theorem that the generators g1 = A, g2 =
B−1, g3 = BA−1 of a hypergeometric group form a linearly rigid system.

Theorem 3.4.1 (Katz) Let g1, g2, . . . , gr ∈ GL(n, k) be an irreducible r-tuple
with g1g2 . . . gr = Id. Let, for each i, δi be the codimension of the linear space
{A ∈ Mn(k)|giA = Agi} (centralizer of gi). Then,

i) δ1 + · · ·+ δr ≥ 2(n2 − 1)

ii) If δ1 + · · ·+ δr = 2(n2 − 1), the system is linearly rigid.

iii) If k is algebraically closed, then the converse of part ii) holds

We note that the centraliser of g ∈ GL(n, k) depends only on the Jordan normal
form of g. If g is diagonalisable, the dimension of the centraliser is the sum
of the squares of the dimensions of the eigenspaces of g. When g has distinct
eigenvalues this dimension is n, when g is a (pseudo)reflection this dimension is
(n−1)2 +1 = n2−2n+2. The corresponding codimensions are n2−n and 2n−2
respectively.

By way of example consider a hypergeometric group generated by g1 = A, g2 =
B−1, g3 = BA−1. In general A and B each have distinct eigenvalues, so δ1 =
δ2 = n2 − n. Since g3 is a (pseudo)reflection we have δ3 = 2n − 2. Notice that
δ1 +δ2 +δ3 = 2n2−2. Hence the triple A,B−1, BA−1 is linearly rigid. As a bonus
we get that the eigenspaces of A and B all have dimension one. Hence to each
eigenvalue there is precisely one Jordan block in the Jordan normal form.

Another example comes from the Jordan-Pochhammer equation, which is an n-
th order Fuchsian equation with n + 1 singular points and around each singular
point the local monodromy is (up to a scalar) a pseudo-reflection. So for each
singularity we have δi = 2n− 2. The sum of these delta’s is of course 2(n2 − 1).
So if the monodromy is irreducible we have again a rigid system. This case has
been elaborated by [Ha].

The proof of Katz’s theorem is based on the following Theorem from linear alge-
bra. In this Theorem we consider a group G acting on a finite dimensional linear
space V . For every X ⊂ G we denote by d(X) resp. d∗(X) the codimension of
the common fixed point space in V resp. V ∗, the dual of V , of all elements of X.
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Theorem 3.4.2 (L.L.Scott) Let H ∈ GL(V ) be the group generated by h1, h2, . . . , hr

with h1h2 · · ·hr = Id. Then

d(h1) + d(h2) + · · ·+ d(hr) ≥ d(H) + d∗(H).

Proof. Let W be the direct sum⊕r
i=1(1−hi)V . Define the linear map β : V → W

by
β : v 7→ ((1− h1)v, . . . , (1− hr)v).

Define the linear map δ : W → V by

δ : (v1, . . . , vr) 7→ v1 + h1v2 + h1h2v3 + · · ·+ h1 · · ·hr−1vr

Because of the identity

1− h1h2 · · ·hr = (1− h1) + h1(1− h2) + · · ·+ h1 · · ·hr−1(1− hr)

we see that the image of β is contained in the kernel of δ. Hence dim(=β) ≤
dim(ker δ). Moreover, the kernel of β is precisely ∩r

i=1 ker(1−hi). The dimension
of the latter space equals n− d(H). Hence dim(=β) = n− (n− d(H)) = d(H).
The image of δ is

(1− h1)V + h1(1− h2)V + · · ·+ h1 · · ·hr−1(1− hr)V

which is equal to (1 − h1)V + (1 − h2)V + · · · + (1 − hr)V . Note that any w ∈
∩r

i=1 ker(1−h∗i ) in the dual space V ∗ we vanishes on =δ. Hence dim(=δ) ≥ d∗(H).
Finally notice that dim(W ) =

∑r
i=1 d(hi). Putting everything together we get

r∑
i=1

d(hi) = dim(W ) = dim(ker δ) + dim(=δ)

≥ dim(=β) + dim(=δ)

≥ d(H) + d∗(H)

This is precisely the desired inequality. 2

Proof of Katz’s theorem. We follow the approach of Völklein-Strambach [VS].
For the first part of Katz’s theorem we apply Scott’s Theorem to the vector space
of n × n-matrices and the group generated by the maps hi : A 7→ g−1

i Agi. No-
tice that d(hi) is now precisely the codimension of the centraliser of gi, hence
d(hi) = δi for all i. The number d(H) is precisely the codimension of the space
{A ∈ Mn(k)|gA = Ag for all g ∈ G}. By Schur’s Lemma the irreducibility
of the action of G implies that the dimension of this space is 1 and the codi-
mension n2 − 1. So d(H) = n2 − 1. To determine d∗(H) we note that the
matrix space V = Mn(k) is isomorphic to its dual via the map V → V ∗ given
by A 7→ (X 7→ Trace(AX). Let us identify V with V ∗ in this way. Since
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Trace(Ag−1Xg) = Trace(gAg−1X) we see that the action of g on the dual space
is given by A 7→ gAg−1. hence d∗(H) = n2 − 1. Application of Scott’s Theorem
now shows that

δ1 + · · ·+ δ2 ≥ d(H) + d∗(H) = 2(n2 − 1)

To prove the second part of the theorem we apply Scott’s Theorem with V =
Mn(k) again, but now with the maps hi : A 7→ g−1

i Ag̃i. For each i choose
ui ∈ GL(n, k) such that g̃i = uigiu

−1
i . Now note that

d(hi) = codim{A|g−1
i Ag̃i = A}

= codim{A|Ag̃i = giA}
= codim{A|Auigiu

−1
i = giA}

= codim{A|(Aui)gi = gi(Aui)}
= codim{A|Agi = giA} = δi

The sum of the δi is given to be 2(n2 − 1). Together with Scott’s Theorem
this implies d(H) + d∗(H) ≤ 2(n2 − 1). This means that either d(H) < n2 or
d∗(H) < n2 or both. Let us assume d(H) < n2, the other case being similar.
Then there is a non-trivial n × n matrix A such that Ag̃i = giA for all i. From
these inequalities we see in particular that the image of A is stable under the
group generated by the gi. Since the r-tuple g1, . . . , gr is irreducible this means
that A(kn) is either trivial or kn itself. Because A is non-trivial we conclude that
A(kn) = kn and A is invertible. We thus conclude that g̃i = A−1giA for all i. In
other words, our system g1, . . . , gr is rigid.
The proof of part iii) uses a dimension argument. Let Ci be the conjugacy class
of gi i = 1, 2, . . . , r. Consider the multiplication map Π : C1 × C2 × · · · × Cr →
GL(n, k) given by (c1, c− 2, . . . , cr) 7→ c1c2 · · · cr. We have

dim(C1 × · · · × Cr) ≤ dim(Π−1(Id) + dim(=Π)

First of all note that dim(C1 × · · · × Cr) =
∑r

i=1 dim(Ci) =
∑r

i=1 δi. Secondly,
by the rigidity and irreducibility assumptions we have dim(Π−1(Id)) = n2 − 1.
Finally, =Π is contained in the hypersuface of all matrices whose determinant is
det(g1g2 · · · gr) = 1. Hence dim(=Π) ≤ n2 − 1.
These three facts imply that

∑r
i=1 δi ≤ 2(n2 − 1). Together with part i) this

implies the desired equality. 2

In many practical situations the local monodromies of differential equations have
eigenvalues which are complex numbers with absolute value 1. In that case there
exists also a monodromy invariant Hermitian form on the solution space. We
formulate this as a Lemma.

Lemma 3.4.3 Let g1, g2, . . . , gr ∈ GL(n,C) be a rigid, irreducible system with
g1g2 · · · gr = Id. Suppose that for each i the matrices gi and g̃i = (gt

i)
−1 are
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conjugate. Then there exists a non-trivial matrix H ∈ Mn(C) such that gt
iHgi =

H for each i and H
t
= H.

Proof. Notice that, g̃1 · · · g̃r = Id. Moreover, the gi and g̃i are conjugate so by
rigidity there exists a matrix H ∈ GL(n,C) such that g̃i = HgiH

−1 for all i.
Hence H = gt

iHgi for all i. Moreover, since the system g1, . . . , gr is irreducible,

the matrix H is uniquely determined up to a scalar factor. Since H
t

is also a

solution we see that H
t

= λH for some λ ∈ C. Moreover |λ| = 1 and writing
λ = µ/µ we see that µH is a Hermitian matrix. Now take H := µH. 2
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Chapter 4

Explicit monodromy for
hypergeometric equations

4.1 Introduction

Notice that the proof of Levelt’s Theorem 3.2.3 provides us a very explicit con-
struction of the monodromy matrices of the hypergeometric equation. However,
the basis with respect to which these monodromy matrices occur do appear in
the proof. So Levelt’s Theorem gives us only a determination of the monodromy
group up to conjugation. In many applications it is desirable to have the explicit
matrices with respect to an explicitly given basis of solutions. This is precisely
the purpose of this chapter.
We consider the hypergeometric equation

z(D + α1) · · · (D + αn)F = (D + β1 − 1) · · · (D + βn − 1)F, D = z
d

dz
. (4.1)

We consider it in the complex plane with the positive real axis deleted. That
is, all complex z with | arg(−z)| < π. We fix a basis of local solutions at z = 0
and at z = ∞. We continue the local solutions around 0 analytically in C−R≥0

to ∞ and compare the continued solutions with the local solutions at ∞. The
coefficients that occur enable us to compute the desired monodromy matrices.
To simplify matters we assume that the local bases of solutions do not contain
logarithms, that is the parameters αi are distinct modulo 1 and the parameters
βi are distinct modulo 1. A solution basis around z = 0 can then be given by

(−z)1−βi
nFn−1

(
α1 − βi + 1, . . . , αn − βi + 1

β1 − βi + 1, ..∨.., βn − βi + 1

∣∣∣∣ z

)
(i = 1, . . . , n)

where the sign ∨ denotes suppression of βi − βi + 1. To make the final formulas
more elegant we multiply this solution with the constant

Γ(α1 − βi + 1) · · ·Γ(αn − βi + 1)

Γ(β1 − βi + 1) · · ·Γ(βn − βi + 1)

45



46 CHAPTER 4. EXPLICIT MONODROMY

and get the solution

Fi := (εz)1−βi

∑

k≥0

Γ(α1 − βi + k + 1) · · ·Γ(αn − βi + k + 1)

Γ(β1 − βi + k + 1) · · ·Γ(βn − βi + k + 1)
zk

where we introduced the extra factor ε = (−1)n−1 for reasons that will become
clear later. We also agree that for the determination of (εz)1−βi we choose −(n+
2)π < arg(εz) < −nπ. Similarly, around z = ∞ a basis can be given by

Gi = (εz)−αi

∑

k≥0

Γ(αi − β1 + k + 1) · · ·Γ(αi − βn + k + 1)

Γ(αi − α1 + k + 1) · · ·Γ(αi − αn + k + 1)
(1/z)k

In order to determine the connection between these solution sets we propose to
use the technique of Mellin-Barnes integrals.

4.2 Mellin-Barnes integrals

In [GM] Golyshev anf Mellit describe a way to determine explicit monodromy of
hypergeometric functions by studying Fourier transforms of products of factors of
the form 1/Γ(γ ± s). In this section we adopt an approach inspired by them and
which gives precisely the same formulas, namely Mellin-Branes type integrals of
products of factors Γ(γ ± s).
Let αi, βj ∈ C for i, j = 1, 2, . . . , n and suppose from now on that the αi, βj

are all distinct modulo 1. This means we can write explicit solution bases for
the hypergeometric equations as in the previous section and, by Corollary 3.2.2,
the monodromy representation is irreducible. Let Γ be a path in the complex
plane from i∞ to −i∞ and which bends in such a way that all points −αi − k
(i = 1, . . . , n, k ∈ Z≥0) are on the left of Γ and all points −βi+k+1 (i = 1, . . . , n,
k ∈ Z≥0) are on the right of Γ. Let i ∈ {1, . . . , n} and consider the integral

I =
1

2πi

∫

Γ

Γ(α1 + s) · · ·Γ(αn + s)Γ(1− β1 − s) · · ·Γ(1− βn − s) (εz)sds

where ε = (−1)n−1.
From Stirling’s formula (see [AAR, p21]) it follows that when s = a + bi and
a1 < a < a2 and |b| → ∞ that

|Γ(a + bi)| =
√

2π|b|a−1/2e−π|b|/2[1 + O(1/|b|)].
Notice also that |(−z)a+bi| = |(εz)a|e−b arg(εz)| for all a, b ∈ R. Putting these
estimates together we see that the integral converges absolutely for all z ∈ C
with | arg(εz)| < nπ. The interval (−nπ, nπ) can be subdivided into n intervals
of the form ((2r−n−2)π, (2r−n)π). So, depending on the choice of determination
of (εz)s the integral I represents n functions Ir on C\R≥0 indexed by r. We now
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compute Ir as a power series in z. So we assume |z| < 1 and (2r − n − 2)π <
arg(εz) < (2r−n)π. For any real a we denote by Γa the vertical path from a+i∞
to a− i∞. Let a0 be larger than all real parts of the −αi. We deform the contour
Γ to Γa0 such that all points −αi − k with k ∈ Z≥0 stay on the left. Then we
continue to shift Γa0 to the right via the paths Γa with a → ∞. In the process
the deformed paths may pass through a pole of Γ(1 − β1 − s) · · ·Γ(1 − βn − s)
and no others. That is, the points 1− βi, 2− βi, . . . for i = 1, . . . , n. The residue
of the integrand of Ir at the pole s = k + 1− βi equals

(εz)k(εz)1−βiΓ(α1−βi+k+1) · · ·Γ(αn−βi+k+1)Γ(−β1+βi−k) · · ·Γ(−βn+βi−k)

where the factor Γ(−βi + βi − k) is to be read as 1/k!. Once again we apply the
identity Γ(x)Γ(1− x) = sin πx to obtain

(εz)k(εz)1−βi

n∏

l=1

Γ(αl − βi + k + 1)

Γ(βl − βi + k + 1)

∏

l 6=i

π

sin π(−βl + βi − k)

where the factor sin π(−βi + βi − k) is omitted. So we get

Ir = Ii,a +
n∑

i=1

(εz)1−βi

∏

l 6=i

π

sin π(−βl + βi)

∑

k

n∏

l=1

Γ(αl − βi + k + 1)

Γ(βl − βi + k + 1)
zk

where the summation is over k = 0, 1, 2, . . . ba+<(βi)c and Ii,a denotes integration
over Γa. Finally we note that |Ii,a| → 0 as a → ∞, simply because |z| < 1 and
so |(−z)a+bi| decreases exponentially in a as a →∞. Therefore we conclude that

Ir = πn−1

n∑
i=1

e−2πirβi
Fi∏

l 6=i sin π(−βl + βi)
r = 1, 2, . . . , n.

We now compute Ir as a power zeries in 1/z. So we assume |z| > 1 and (2r −
n − 2)π < arg(εz) < (2r − n)π. Let a0 be a real number smaller than all real
parts of the −βi. We now deform the contour Γ to Γa0 while keeping all points
−βi +k +1 with k ∈ Z≥0 on the right. From then on we shift Γa0 to Γa where we
let a → −∞. In the process the deformed paths may pass through the poles of
Γ(s + α1) · · ·Γ(s + αn) and no others. That is, the points −αj − k with k ∈ Z≥0.
Use the fact that the residue of Γ(x) at x = k with k ≤ 0 is given by (−1)k/k!.
We obtain that the residue of the integrand equals

(εz)−k(εz)−αjΓ(α1−αj−k) · · ·Γ(αn−αj−k)Γ(−β1+αj+k+1) · · ·Γ(−βn+αj+k+1)

where the factor Γ(αj − αj − k) is to be read as 1/k!. We use the identity
Γ(x)Γ(1− x) = π/ sin πx once again. We get

(ε)−k(εz)−αj

n∏

l=1

Γ(αj − β1 + k + 1)

Γ(αj − α1 + k + 1)

∏

l 6=i

π

sin(π(αl − αj − k))
.
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The integral over Γa tends to zero as a → −∞ because |z| > 1 and |(−z)a+bi|
tends exponentially to 0 as a → −∞. Hence we conclude that for |z| > 1 we have

Ir = πn−1

n∑
j=1

e−2πirαj
Gj∏

l 6=j sin(π(αl − αj))
, r = 1, 2, . . . , n.

There is an interesting consequence.

Corollary 4.2.1 Let notation be as above. With respect to the basis of solutions
I1, . . . , In the monodromy matrix around z = 0 reads




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

0 0 0 · · · 1
−Bn −Bn−1 Bn−2 · · · −B1




where Xn +B1X
n−1 + · · ·+Bn−1X +Bn is the polynomial with zeros e−2πiβk , k =

1, . . . , n. Similarly, around the point z = ∞ the monodromy matrix with respect
to I reads 



0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

0 0 0 · · · 1
−An −An−1 An−2 · · · −A1




where Xn +A1X
n−1 + · · ·+An−1X +An is the polynomial with zeros e−2πiαk , k =

1, . . . , n.

So we see that we have found an explicit basis of solutions of the hypergeometric
equation with respect to which the monodromy has the shape given in Levelt’s
Theorem 3.2.3.

Proof. Let us denote I = (I1, . . . , In)t and denote by F the vector with coordi-
nates

πn−1Fi∏
l 6=i sin π(−βl + βi)

.

We have seen above that I = MβF where Mβ is the VanderMonde type matrix



e−2πiβ1 e−2πiβ2 · · · e−2πiβn

e−4πiβ1 e−4πiβ2 · · · e−4πiβn

...
...

...
e−2nπiβ1 e−2nπiβ2 · · · e−2nπiβn


 .

A closed loop around z = 0 in positive direction gievs the local monodromy
F → DβF where Dβ is the diagonal matrix with entries e−2πiβj . Hence the
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solutions I goes over into MβIβF = MβIβM−1
β I. The local monodromy matrix

with respect to I reads

MβIβM−1
β =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

0 0 0 · · · 1
−Bn −Bn−1 Bn−2 · · · −B1




.

The calculation around z = ∞ runs similarly.

References

[AAR ] G.E.Andrews,R.Askey,R.Roy, Special Functions, Encyclopedia of Math
and its applications 71, CUP 1999.

[AS ], M.Abramowitz, I.Stegun, Handbook of Mathematical Functions, Dover
1970.

[BH ] Beukers,F. Heckman,G. Monodromy for the hypergeometric function nFn−1,
Inv. Math. 95 (1989), 325-354.
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