- 1. Compute all the c_{SM} classes of Schubert cells for $G = GL_3$, both in terms of the monomial basis and the Schubert basis.
- 2. Consider $w = 3412 \in S_4$.
 - (a) Describe the linear algebra conditions on the flag to belong to X_w° and X_w . (Optional: Figure out what the minimal set of conditions are for belonging to X_w .)
 - (b) Find a reduced decomposition for w.
 - (c) List all $v \leq w$ in Bruhat order.
 - (d) Calculate the class $[X_w]$ in terms of the x_i 's.
 - (e) Draw the diagram of the Bott-Samelson resolution for w
 - (f) Describe the fiber (including what the choice for the extra subspaces must be in linear algebraic terms) for an arbitrary point in the Schubert cell.
 - (g) Describe the fiber over the point corresponding to a flag of the form $E_1 \subseteq F_2 \subseteq E_3$, where E_1 and E_3 are the standard subspaces and F_2 is any two dimensional subspace containing E_1 and contained in E_3 .
 - (h) Describe the *B*-orbits of the Bott-Samelson. (Hint: There was a reason for the last part.)
 - (i) Describe the *T*-fixed points of the Bott-Samelson. Let $U_t = \text{diag}(1, t, t^2, t^3)$, and for each *T* fixed point *p*, describe the set $\{x \mid \lim_{t\to 0} U_t \cdot x = p\}$.
- 3. Consider the Schubert variety in the Grassmannian G(3,5) given by the partition (2,1,1) or the maximal coset representative w = 53241 or minimal coset representative w = 23514. Describe the two Zelevinsky resolutions. Find their *B*-orbits. Find their fibers.
- 4. Prove that the Bott-Samelson resolution is bijective over the Schubert cell. (Hint: You might want to induct on the length of your reduced expression.) For extra challenge, try doing this without explicitly using the fact that the Bott-Samelson resolution is *B*-equivariant.