Tutte polynomials in combinatorics and geometry

Federico Ardila

San Francisco State University
Universidad de Los Andes, Bogotá, Colombia.

Modern Math Workshop
SACNAS National Conference

San Antonio, Texas, 2 de octubre de 2013

Outline

1. Motivating examples
2. Matroids
3. Corte de comerciales.
4. Tutte polynomials
5. Hyperplane arrangements
6. Computing Tutte polynomials

MOTIVATING EXAMPLES: 1. Graph Theory.
Goal: Build internet connections that will connect the 4 cities.
To lower costs, build the minimum number of connections.

Solutions: \{abc, abd, abe, acd, ace\}
(The spanning trees of the graph.)

MOTIVATING EXAMPLES: 2. Linear Algebra.
Goal: Choose a minimal set of vectors that spans \mathbb{R}^{3}.
No 3 on a plane, no 2 on a line, no 1 at the origin.

Solutions: \{abc, abd, abe, acd, ace\}
(The bases of the vector configuration.)

MOTIVATING EXAMPLES: 3. Matching Theory.
Goal: Marry as many people as possible.
No gay marriage in Texas.(!) No poligamy.

Possible married men: $\{a b c, a b d$, abe, acd, ace $\}$
(The systems of distinct representatives.)

MOTIVATING EXAMPLES: 4. Field Extensions.

Goal: Choose a transcendence basis for $\mathbb{C}[x, y, z]$ over \mathbb{C}.
Maximal set with no algebraic relations with coeffs. in \mathbb{C}.

$$
\begin{aligned}
a & =z^{3} \\
b & =x+y \\
c & =x-y \\
d & =x y \\
e & =x^{2} y^{2} \\
f & =1
\end{aligned}
$$

Solutions: $\{a b c, a b d$, abe, acd, ace \}
(The transcendence bases of the field extension.)

MOTIVATING EXAMPLES: 5. Catalan combinatorics.
Goal: Choose up-steps to get to $(6,0)$ staying above the x-axis.
Never cross the x-axis.

d

a b

Solutions: $\{a b c, a b d$, abe, acd, ace\}
(The Dyck paths of length 6.)

MATROIDS.

Definition. [MacLane / Nakasawa / Whitney 1930s]
A matroid (E, \mathcal{B}) consists of:

- A ground set E, and
- A collection \mathcal{B} of subsets of E called bases such that:

If A and B are bases and $a \in A \backslash B$, then there exists $b \in B \backslash A$ such that $A \backslash\{a\} \cup\{b\}$ is a basis.

Example. $E=\{a, b, c, d, e, f\} \quad \mathcal{B}=\{a b c, a b d, a b e, a c d, a c e\}$
Proposition. The 5 examples above give 5 families of matroids.
Proof. This "basis exchange axiom" holds in graph theory, linear algebra, matching theory, field extension theory, Catalan theory.

So a theorem in matroid theory gives us theorems in ≥ 5 areas!
For example:
Theorem. All the bases of a matroid have the same size.
Corollaries.

- All spanning trees of a graph have = number of edges. (V-1)
- All bases of a vector space have = size. (Dimension)
- All maxl sets of marriable men have = size. (Matching \#)
- All transcendence bases of L / K have = size. (Transc. deg.)
- All Dyck paths of length $2 n$ have = number of up-steps. (n)

A theorem in matroid theory gives us theorems in ≥ 5 areas!
Theorem. If $M=(E, \mathcal{B})$ is a matroid, then $M^{*}=\left(E, \mathcal{B}^{*}\right)$ is the dual matroid, where

$$
\mathcal{B}^{*}=\{E \backslash B: B \text { is a basis of } M\}
$$

Examples.

If $E=\{a, b, c, d, e, f\}$
and $\mathcal{B}=\{a b c, a b d$, abe, acd, ace $\}$.
then $\mathcal{B}^{*}=\{$ def, cef, cdf, bef, bdf $\}$.

A theorem in matroid theory gives us theorems in ≥ 5 areas!
Theorem. If $M=(E, \mathcal{B})$ is a matroid, then $M^{*}=\left(E, \mathcal{B}^{*}\right)$ is the dual matroid, where

$$
\mathcal{B}^{*}=\{E \backslash B: B \text { is a basis of } M\}
$$

Examples. GRAPHS.

- If M is the matroid of a planar graph G, then M^{*} is the matroid of the dual graph G^{*}.

$$
\mathcal{B}^{*}=\{d e f, c e f, c d f, \text { bef, bdf }\} .
$$

So a theorem in matroid theory gives us theorems in ≥ 5 areas!
Theorem. If $M=(E, \mathcal{B})$ is a matroid, then $M^{*}=\left(E, \mathcal{B}^{*}\right)$ is the dual matroid, where

$$
\mathcal{B}^{*}=\{E \backslash B: B \text { is a basis of } M\}
$$

Examples. VECTORS.

Say M is the matroid of vectors $\left\{a_{1}, \ldots, a_{n}\right\}$.
Write them as column vectors in \mathbb{R}^{d} and let

$$
A=\operatorname{rowspace}\left[a_{1} a_{2} \ldots a_{n}\right]
$$

and choose b_{1}, \ldots, b_{n} in \mathbb{R}^{n-d} so that

$$
A^{\perp}=\operatorname{rowspace}\left[b_{1} b_{2} \ldots b_{n}\right]
$$

Then M^{*} is the matroid of $\left\{b_{1}, \ldots, b_{n}\right\}$.

So a theorem in matroid theory gives us theorems in ≥ 5 areas!
Theorem. If $M=(E, \mathcal{B})$ is a matroid, then $M^{*}=\left(E, \mathcal{B}^{*}\right)$ is the dual matroid, where

$$
\mathcal{B}^{*}=\{E \backslash B: B \text { is a basis of } M\}
$$

Examples. MATCHINGS.

Unfortunately, if M is the matroid of a matching problem, M^{*} is not necessarily the matroid of a matching problem!
Fortunately,
M^{*} is the matroid of a routing problem - a 6 th kind of matroid.

So a theorem in matroid theory gives us theorems in ≥ 5 areas!
Theorem. If $M=(E, \mathcal{B})$ is a matroid, then $M^{*}=\left(E, \mathcal{B}^{*}\right)$ is the dual matroid, where

$$
\mathcal{B}^{*}=\{E \backslash B: B \text { is a basis of } M\}
$$

Examples. FIELD EXTENSIONS.

If M is a matroid coming from elements of a field extension, noone knows whether M^{*} also comes from a field extension.

This problem is wide open!

So a theorem in matroid theory gives us theorems in ≥ 5 areas!
Theorem. If $M=(E, \mathcal{B})$ is a matroid, then $M^{*}=\left(E, \mathcal{B}^{*}\right)$ is the dual matroid, where

$$
\mathcal{B}^{*}=\{E \backslash B: B \text { is a basis of } M\}
$$

Examples. CATALAN.
If M is the Catalan matroid, then $M^{*} \cong M$:

$$
\mathcal{B}^{*}=\{d e f, \text { cef, cdf, bef, bdf }\} .
$$

Corte de comerciales.

San Francisco State University - Colombia Combinatorics Initiative
For more information on:

- enumerative combinatorics
- matroids,
- polytopes,
- Coxeter groups,
- combinatorial commutative algebra, and
- Hopf algebras in combinatorics
you may see the (200+) videos and lecture notes of my courses at San Francisco State University and the U. de Los Andes:

```
http://math.sfsu.edu/federico/
http://youtube.com/user/federicoelmatematico
```

THE TUTTE POLYNOMIAL.
Let $M=(E, \mathcal{B})$ be a matroid.
(If you prefer, think that E is a set of vectors in \mathbb{R}^{d}.)
The rank of $A \subseteq E$ is

$$
\mathrm{r}(A)=\max _{B \text { basis }}|A \cap B|
$$

that is, the size of the largest "independent" set in A.
Definition. [Tutte, 1967] The Tutte polynomial of \mathcal{A} is

$$
T_{\mathcal{A}}(x, y)=\sum_{\mathcal{B} \subseteq \mathcal{A}}(x-1)^{r(\mathcal{A})-r(\mathcal{B})}(y-1)^{|\mathcal{B}|-r(\mathcal{B})}
$$

S	$\|S\|$	$r(S)$	$(x-1)^{r-r(S)}(y-1)^{\|S\|-r(S)}$
\emptyset	0	0	$(x-1)^{3}(y-1)^{0}$
$a b c d e$	1	1	$(x-1)^{2}(y-1)^{0}$
f	1	0	$(x-1)^{3}(y-1)^{1}$
ab ac ad aebcbdbecd ce	2	2	$(x-1)^{1}(y-1)^{0}$
af bf cf de df ef	2	1	$(x-1)^{2}(y-1)^{1}$
\vdots	\vdots	\vdots	\vdots

$$
\begin{aligned}
T(x, y) & =(x-1)^{3}+5(x-1)^{2}+(x-1)^{3}(y-1)+9(x-1)+\cdots \\
& =x^{3} y+x^{2} y+x^{2} y^{2}+x y^{2}+x y^{3}
\end{aligned}
$$

Clearly there is something more to this story...

WHY CARE ABOUT THE TUTTE POLYNOMIAL?

Many interesting quantities are evaluations of $T_{\mathcal{A}}(x, y)$.
For graphs:

- $T(1,1)=$ number of spanning trees.
- $T(2,0)=$ number of acyclic orientations of edges.
- $T(0,2)=$ number of totally cyclic orientations of edges.
- $(-1)^{v-c} q^{c} T(1-q, 0)=$ chromatic polynomial = number of proper q-colorings of the vertices.
- $(-1)^{e-v+c} T(0,1-t)=$ flow polynomial $=$ number of nowhere zero t-flows of the edges.
[Tutte, 1947] [Crapo, 1969] [Stanley, 1973] [LasVergnas, 1980]

Many interesting invariants of \mathcal{A} are evaluations of $T_{\mathcal{A}}(x, y)$.

For the Catalan matroid: [A. 02]

- $T(1,1)=\frac{1}{n+1}\binom{2 n}{n}$ (Catalan numbers)
- If $a(P)=$ number of up-steps before the first down-step, and $b(P)=$ number of returns to the x-axis.

$$
T(x, y)=\sum_{P \text { Dyck }} x^{a(P)} y^{b(P)}
$$

Many interesting invariants of \mathcal{A} are evaluations of $T_{\mathcal{A}}(x, y)$.

For the Catalan matroid: For a path P let
$a(P)=$ number of up-steps before the first down-step,
$b(P)=$ number of times the path bounces on the x -axis.

$$
T(x, y)=\sum_{P \text { Dyck }} x^{a(P)} y^{b(P)}
$$

Theorem. The Tutte polynomials of M and M^{*} are related by

$$
T_{M^{*}}(x, y)=T_{M}(y, x) .
$$

Since $C_{n}^{*} \cong C_{n}$ we get $T_{C_{n}}(x, y)=T_{C_{n}}(y, x)$, so
Theorem. [A. 2002]
(\# of Dyck paths of $2 n$ steps, a initial upsteps, b bounces) = (\# of Dyck paths of $2 n$ steps, b initial upsteps, a bounces).

Many interesting invariants of \mathcal{A} are evaluations of $T_{\mathcal{A}}(x, y)$.

For vector arrangements:

- $T(1,1)=$ number of bases.
- $T(2,1)=$ number of independent sets.
- $T(1,2)=$ number of spanning sets.

Many interesting invariants of \mathcal{A} are evaluations of $T_{\mathcal{A}}(x, y)$.

For vector arrangements \mapsto hyperplane arrangements:
Vector $a \in \mathbb{K}^{n} \mapsto$ Hyperplane $H_{a}=\left\{x \in\left(\mathbb{K}^{n}\right)^{*}: a \cdot x=0\right\}$.
Vector arr. $A \subseteq \mathbb{K}^{n} \mapsto$ Complement $V(\mathcal{A})=\mathbb{K}^{n} \backslash$ hyperplanes
Example. C_{3}

Vectors:

- $\pm e_{i} \quad(1 \leq i \leq 3)$
$\bullet \pm e_{i} \pm e_{j} \quad(1 \leq i<j \leq 3)$

Hyperplanes:

$$
2 x=0,2 y=0,2 z=0
$$

$$
x \pm y=0, y \pm z=0, z \pm x=0
$$

Many important invariants of \mathcal{A} are evaluations of $T_{\mathcal{A}}(x, y)$.

For hyperplane arrangements:

- $(\mathbb{K}=\mathbb{R})$

$$
(-1)^{n} T(2,0)=\text { number of regions of } V(\mathcal{A})
$$

[Zaslavsky, 1975]

- $(\mathbb{K}=\mathbb{C})$

$$
T(1-q, 0)=\sum_{i} \operatorname{dim} H^{i}(V(A) ; \mathbb{Z})(-q)^{i}
$$

[Orlik and Solomon, 1980, Goresky-MacPherson, 1988]
[Crapo and Rota, 1970]

Many important invariants of \mathcal{A} are evaluations of $T_{\mathcal{A}}(x, y)$.

For hyperplane arrangements:

- $(\mathbb{K}=\mathbb{R})$

$$
(-1)^{n} T(2,0)=\text { number of regions of } V(\mathcal{A})
$$

[Zaslavsky, 1975]

- $(\mathbb{K}=\mathbb{C})$

$$
T(1-q, 0)=\sum_{i} \operatorname{dim} H^{i}(V(A) ; \mathbb{Z})(-q)^{i}
$$

[Orlik and Solomon, 1980, Goresky-MacPherson, 1988]

- $\left(\mathbb{K}=\mathbb{F}_{q}\right)$

$$
|T(1-q, 0)|=|V(\mathcal{A})|
$$

[Crapo and Rota, 1970]

WHY IS THE TUTTE POLYNOMIAL IN SO MANY PLACES?

Given a matroid M and an element e :
Deletion: $M \backslash e$ has bases $\{B \in \mathcal{B}: e \notin B\}$
Contraction: M / e has bases $\{B-e: B \in \mathcal{B}, e \in B\}$
A Tutte-Grothendieck invariant is a function which behaves well under deletion and contraction:

$$
f(M)=f(M \backslash e)+f(M / e) \quad(\text { for all nontrivial } e)
$$

Theorem. (Brylawski, 1972) The Tutte polynomial is the universal T-G invariant. Every other one is an evaluation of $T_{M}(x, y)$.

COMPUTING TUTTE POLYNOMIALS

Finite field method.
Let $\bar{\chi}(q, t)=(t-1)^{r} T\left(\frac{q+t-1}{t-1}, t\right)$.

Theorem. (A., 2002) Let \mathcal{A} be a \mathbb{Z}-arrangement. Let q be a large prime, and let \mathcal{A}_{q} be the induced arrangement in \mathbb{F}_{q}^{n}. Then

$$
q^{n-r} \bar{\chi}_{\mathcal{A}}(q, t)=\sum_{p \in \mathbb{F}_{q}^{n}} t^{h(p)}
$$

where $h(p)=$ number of hyperplanes of \mathcal{A}_{q} that p lies on.
Computing Tutte polynomials is \#P-hard, so we cannot expect miracles from this method. Still, it is often very useful.

An application: Root systems.
Root systems are arguably the most important vector configurations in mathematics. They are crucial in the classification of regular polytopes, simple Lie groups and Lie algebras, cluster algebras, etc.
"Classical root systems":

$$
\begin{aligned}
& A_{n}^{+}=\left\{e_{i}-e_{j}: 1 \leq i \leq j \leq n\right\} \\
& B_{n}^{+}=\left\{e_{i} \pm e_{j}: 1 \leq i \leq j \leq n\right\} \cup\left\{e_{i}: 1 \leq i \leq n\right\} \\
& C_{n}^{+}=\left\{e_{i} \pm e_{j}: 1 \leq i \leq j \leq n\right\} \cup\left\{2 e_{i}: 1 \leq i \leq n\right\} \\
& D_{n}^{+}=\left\{e_{i} \pm e_{j}: 1 \leq i \leq j \leq n\right\}
\end{aligned}
$$

TUTTE POLYNOMIALS OF CLASSICAL ROOT SYSTEMS

We can use this method to compute the Tutte polynomials of $A_{n}, B_{n}, C_{n}, D_{n}$. Surprisingly, they come from the 2-variable Rogers - Ramanujan function from analytic number theory:

$$
\sum_{n \geq 0} \frac{z^{n} y\binom{n}{2}}{n!}
$$

Theorem. [Tutte 67 / A. 02] The Tutte polynomials $\bar{\chi}_{A_{n}}(x, y)$ of the type A root systems are given by:

$$
\left(\sum_{n \geq 0} \frac{z^{n} y\binom{n}{2}}{n!}\right)^{x}=\bar{\chi}_{A_{0}}(x, y) \frac{z^{0}}{0!}+\bar{\chi}_{A_{1}}(x, y) \frac{z^{1}}{1!}+\bar{\chi}_{A_{2}}(x, y) \frac{z^{2}}{2!}+\cdots
$$

Similar formulas hold for B_{n}, C_{n}, and D_{n}. (More complicated, but also come from Rogers-Ramanujan function.)

muchas
 gracias

For more information, see:
http://math.sfsu.edu/federico http://tinyurl.com/ardilamatroids

