Exercises on the Kazhdan-Lusztig polynomial of a matroid (WARTHOG 2015)

Fix a field k. An arrangement \mathcal{A} over k consists of a finite set I and a linear subspace $V \subset k^{I}$ that is not contained in any coordinate hyperplane. We have the complement $U_{\mathcal{A}}:=V \cap\left(k^{\times}\right)^{I}$, and we define the reciprocal plane $X_{\mathcal{A}}$ to be the closure of $U_{\mathcal{A}}^{-1}$ in k^{I}. For any flat F of \mathcal{A}, we have the restriction \mathcal{A}^{F} (obtained by intersecting V with $k^{I \backslash F}$) and the localization \mathcal{A}_{F} (obtained by projecting V onto k^{F}).

1. For any $x \in X_{\mathcal{A}} \subset k^{I}$, let $F_{x}=\left\{i \mid x_{i} \neq 0\right\}$.
(a) Show that F_{x} is a flat of \mathcal{A}.
(b) Show that, for any flat F of $\mathcal{A},\left\{x \in X_{\mathcal{A}} \mid F_{x}=F\right\} \cong U_{\mathcal{A}_{F}}$.
2. I stated in the lectures that the stratum $U_{\mathcal{A}_{F}} \subset X_{\mathcal{A}}$ has $X_{\mathcal{A}^{F}}$ as a normal slice. This problem is about proving this statement in the simplest nontrivial case.
Let $I=\{1,2,3,4\}$ and $V=\left\{v \in k^{4} \mid v_{1}+v_{2}+v_{3}+v_{4}=0\right\}$. Then

$$
X_{\mathcal{A}}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in k^{4} \mid x_{2} x_{3} x_{4}+x_{1} x_{3} x_{4}+x_{1} x_{2} x_{4}+x_{1} x_{2} x_{3}=0\right\} .
$$

Let $F=\{1,2,3\}$, so that

$$
U_{\mathcal{A}_{F}}=\left\{\left(0,0,0, x_{4}\right) \mid x_{4} \neq 0\right\} \subset X_{\mathcal{A}}
$$

and

$$
X_{\mathcal{A}^{F}}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in k^{3} \mid x_{2} x_{3}+x_{1} x_{3}+x_{1} x_{2}=0\right\} .
$$

Let M be the open subset of $X_{\mathcal{A}}$ defined by the nonvanishing of x_{4} and $1+\frac{x_{1}}{x_{4}}$.
Let N be the open subset of $U_{\mathcal{A}^{F}} \times X_{\mathcal{A}^{F}}$ defined by the nonvanishing of $1-\frac{x_{1}}{x_{4}}$.

Show that the maps

$$
\varphi: M \rightleftarrows N: \psi
$$

given by the formulas

$$
\varphi\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\frac{x_{1}}{1+\frac{x_{1}}{x_{4}}}, x_{2}, x_{3}, x_{4}\right)
$$

and

$$
\psi\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\frac{x_{1}}{1-\frac{x_{1}}{x_{4}}}, x_{2}, x_{3}, x_{4}\right)
$$

are mutually inverse isomorphisms, taking $U_{\mathcal{A}^{F}} \subset M$ to $U_{\mathcal{A}^{F}} \times\{0\} \subset N$.
3. Prove that there is a unique way to assign to each matroid M a polynomial $P_{M}(q) \in \mathbb{Z}[q]$ such that the following conditions are satisfied:
(a) If $\operatorname{rk} M=0$, then $P_{M}(q)=1$.
(b) If $\operatorname{rk} M>0$, then $\operatorname{deg} P_{M}(q)<\frac{1}{2}$ rk M.
(c) For every $M, q^{\mathrm{rk} M} P_{M}\left(q^{-1}\right)=\sum_{F} \chi_{M_{F}}(q) P_{M^{F}}(q)$.

Hint: Uniqueness is trivial once you have existence. For existence, note that the recursion says

$$
q^{\mathrm{rk} M^{M}} P_{M}\left(q^{-1}\right)-P_{M}(q)=R_{M}(q):=\sum_{\emptyset \neq F} \chi_{M_{F}}(q) P_{M^{F}}(q) .
$$

To solve the problem, you need to show that $q^{\mathrm{rk} M} R_{M}\left(q^{-1}\right)=-R_{M}(q)$.
4. Show that $P_{M \oplus M^{\prime}}(q)=P_{M}(q) P_{M^{\prime}}(q)$.
5. Show that $P_{M}(0)=1$ for any M.
6. Show that the coefficient of q in $P_{M}(q)$ is equal to the number of flats of rank rk $M-1$ minus the number of flats of rank 1 .
7. It is a classical result that the number of flats of rank rk $M-1$ minus the number of flats of rank 1 is always nonnegative, with equality if and only if the lattice of flats of M is modular. This in turn is equivalent to the statement that there is another matroid M^{\prime} whose lattice of flats is opposite to that of M. Show that, in this case, $P_{M}(q)=1$. (Thus if the linear coefficient vanishes, all higher coefficients vanish.)
8. Find a general formula for the coefficient of q^{2} in $P_{M}(q)$.

