
Hodge theory for combinatorial geometries

June Huh

with Karim Adiprasito and Eric Katz

June Huh 1 / 48



Three fundamental ideas:

The idea of Bernd Sturmfels that a matroid can be viewed as a piecewise linear object,

the tropical linear space (Ardila-Klivans).

The idea of Richard Stanley that the Hodge structure on the cohomology of projective

toric varieties produces fundamental combinatorial inequalities.

The idea of Peter McMullen that the g-conjecture for polytopes can be proved

using the ‘flip connectivity’ of simplicial polytopes of given dimension.
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We will not apply any algebraic geometry.

I will present a purely combinatorial solution to a purely combinatorial problem.
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A graph is a 1-dimensional space, with vertices and edges.

Graphs are the simplest combinatorial structures.
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Hassler Whitney (1932): The chromatic polynomial of a graph G is the function

�G(q) = (the number of proper colorings of G with q colors):

Example

� �

� �

�G(q) = 1q4 � 4q3 + 6q2 � 3q ; �G(2) = 2; �G(3) = 18; : : :

What can be said about the chromatic polynomial in general?
Read’s conjecture (1968)

The coefficients of the chromatic polynomial �G(q) form a log-concave sequence

for any graph G, that is,
a
2
i � ai�1ai+1 for all i .
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Example

How do we compute the chromatic polynomial? We write

� �

� �
=

� �

� �
-

�

� �

and use

�Gne(q) = q(q � 1)3

�G=e(q) = q(q � 1)(q � 2):

Therefore
�G(q) = �Gne(q)� �G=e(q) = 1q4 � 4q3 + 6q2 � 3q :

This algorithmic description of �G(q) makes the prediction of the conjecture interesting.
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For any finite set of vectors A in a vector space over a field, define

fi (A) = (number of independent subsets of A with size i):

Example

If A is the set of all nonzero vectors in F32, then

f0 = 1; f1 = 7; f2 = 21; f3 = 28:

How do we compute fi (A)? We use

fi (A) = fi (A n v) + fi�1(A = v):
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Welsh’s conjecture (1969)

The sequence fi form a log-concave sequence for any finite set of vectors A

in any vector space over any field, that is,

f
2
i � fi�1 fi+1 for all i .

June Huh 8 / 48



Hassler Whitney (1935).

A matroid M on a finite set E is a collection of subsets of E , called independent

sets, which satisfy axioms modeled on the relation of linear independence of vectors:

1. Every subset of an independent set is an independent set.

2. If an independent set A has more elements than independent

set B , then there is an element in A which, when added to B , gives a larger

independent set.
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We write n + 1 for the size of M , the cardinality of the ground set E .

We write r + 1 for the rank of M , the cardinality of any maximal independent set of M .

In all interesting cases, r < n .
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1. Let G be a finite graph, and E the set of edges.

Call a subset of E independent if it does not contain a circuit.

This defines a graphic matroid M .

2. Let V be a vector space over a field k , and A a finite set of vectors.

Call a subset of A independent if it is linearly independent.

This defines a matroid M realizable over k .

�
1

4

�
2

�
3
�-

6

�
��	

�
�3

3

1

2

4
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Fano matroid is realizable iff char(k) = 2.

Non-Fano matroid is realizable iff char(k) , 2.

Non-Pappus matroid is not realizable over any field.

How many matroids are realizable over a field?
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0% of matroids are realizable.

In other words, almost all matroids are (conjecturally) not realizable over any field.

Testing the realizability of a matroid over a given field is not easy.

When k = Q, this is equivalent to Hilbert’s tenth problem over Q (Sturmfels):

“Is there an algorithm to decide whether a given polynomial equation

with Q coefficients has a solution over Q?”
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One can define the characteristic polynomial of a matroid by the recursion

�M (q) = �Mne(q)� �M=e(q):

Rota’s conjecture (1970)

The coefficients of the characteristic polynomial �M (q) form a log-concave

sequence for any matroid M , that is,

�2i � �i�1�i+1 for all i .

This implies the conjecture on G and the conjecture on A (Brylawski, Lenz).
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How to show that a given sequence is log-concave?
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(after Teissier and Dimca-Papadima)

h : a nonconstant homogeneous polynomial in C[z0; : : : ; zr ].

Jh : the jacobian ideal
�
@h=@z0; : : : ; @h=@zr

�
.

Define the numbers �i (h) by saying that the function

dimCm
u
J
v
h =m

u+1
J
v
h

agrees with the polynomial for large enough u and v

�0(h)

r !
u
r + � � �+

�i (h)

(r � i)!i !
u
r�i

v
i + � � �+

�r (h)

r !
v
r + (lower degree terms):

The sequence �i (h) is log-concave for any h .
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Geometrically, the Milnor numbers are given by the graph � of the Gauss map of h :

� � Pr � Pr

�1

yy

�2

%%
Pr �

@h

@z0
: @h
@z1

:���: @h
@zr

� // Pr

� defines an element in the homology of Pr � Pr , which we write as

[�] =

rX
i=0

�i (h)[Pr�i � Pi ] 2 H2r (P
r � Pr ;Z):
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Theorem (-, 2012)

Any nonconstant homogeneous polynomial h 2 C[z0; : : : ; zr ] defines a sequence of

’Milnor numbers’ �0(h); : : : ; �r (h) with the following properties:

1. �i (h) is the number of i -dimensional cells in a CW-model of the complement

D(h) := fx 2 Pr j h(x ) , 0g:

2. �i (h) form a log-concave sequence, and

3. if h is product of linear forms, then the attaching maps are homologically trivial:

�i (h) = bi
�
D(h)

�
:

When h defines a hyperplane arrangement A , using Orlik-Solomon we get

�i (h) = �i (A ) := (the i -th coefficient of the characteristic polynomial of A );

justifying the log-concavity for matroids realizable over a field of characteristic zero.
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Example

Consider the case when
h = z

2
0 z

3
1 2 C[z0; z1]:

We have
Jh = (2z0z

3
1 ; 3z

2
0 z

2
1 ) = z0z

2
1 (2z1; 3z0) = z0z

2
1m:

Therefore

dimCm
u
J
v
h =m

u+1
J
v
h = dimCm

u+v=mu+v+1 = u + v + 1;

�0(h) = 1 and �1(h) = 1:

These are the Betti numbers of D(h) ' S1.
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Example

Consider the case when

h = z
d
0 + z

d
1 + z

d
2 2 C[z0; z1; z2]:

We have
Jh = (dz d�10 ; dz d�11 ; dz d�12 ) = md�1:

Therefore
dimCm

u
J
v
h =m

u+1
J
v
h = dimCm

u+(d�1)v=mu+(d�1)v+1;

�0(h) = 1; �1(h) = d � 1; �2(h) = (d � 1)2:
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Example

This gives

�
�
D(h)

�
= 1� (d � 1) + (d � 1)2;

�
�
V (h)

�
= 3�

�
1� (d � 1) + (d � 1)2

�
hence

g = 1�
1

2
�
�
V (h)

�
=

1

2
(d � 1)(d � 2):

June Huh 21 / 48



The homology group of an algebraic variety is a finitely generated abelian group

with several extra structures.

It contains

(i) the set of prime classes, the classes of subvarieties,

(ii) the set of effective classes, the nonnegative linear combinations of prime classes.

The second set is a cone, and in the case of toric varieties, this cone is

generated by the classes of torus orbit closures.
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Example

If X is a product of projective spaces, then

H2k (X ;Z) =
n
� =

X
i

di [P
k�i � Pi ]; di 2 Z

o
:

In this case, some positive multiple of � is prime if and only if fdig form

a log-concave sequence of nonnegative integers with no internal zeros.
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Example

This structure on the distribution of primes is not visible if we do not work up to a

multiple.

For example, there is no subvariety of P5 � P5 with the homology class

1[P5 � P0] + 2[P4 � P1] + 3[P3 � P2] + 4[P2 � P3] + 2[P1 � P4] + 1[P0 � P5];

although (1; 2; 3; 4; 2; 1) is a log-concave sequence with no internal zeros.
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I believe that no one will ever be able to characterize prime homology

classes in Pm � Pn . However, the asymptotic distribution of primes has

a simple structure (at least in this case).

How about for other homogeneous spaces, for example, Grassmannians?
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Matroids on [n ] = f0; 1; : : : ;ng are related to the geometry of the n-dimensional

permutohedron, the convex hull of an orbit of the symmetric group Sn+1.

The above is, in fact, the picture of flags in the Boolean lattice of [n ].
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The rays of the dual fan �An
correspond to nonempty proper subsets of [n ].

More generally, k -dimensional cones of �An
correspond to

flags of nonempty proper subsets of [n ]:

S1 ( S2 ( � � � ( Sk :

The “extra symmetry” of the permutohedron maps a flag

S1 ( S2 ( � � � ( Sk :

to the flag of complements

[n ] n S1 ) [n ] n S2 ) � � � ) [n ] n Sk :
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A matroid M of rank r + 1 on [n ] can be viewed as an r -dimensional subfan

�M � �An

which consists of cones corresponding to flags of flats of M :

F1 ( F2 ( � � � ( Fr :

The fan �M is the Bergman fan of M ,

or the tropical linear space associated to M .
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A homology class of XAn
can be viewed as a balanced weighted subcomplex of Pn

by assigning intersection numbers to the faces of complementary dimension:

A homology class of a toric variety can be viewed as a tropical variety.

A matroid M on [n ] can be viewed as the balanced weighted subcomplex �M ,

which has weight 1 on faces corresponding to complete flags of flats of M :

F1 ( F2 ( � � � ( Fr :

The homology class �M determines M , and we know exactly which

homology classes in XAn
are of this form.
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Theorem

Let k be a field. For any matroid M on [n ],

(i) the homology class �M is effective in XAn
over k , and

(ii) the homology class �M is prime in XAn
over k iff M is realizable over k .
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Theorem

Under the “anticanonical” map

� : XAn
�! Pn � Pn ;

the matroid homology class pushforwards

�M 7�! (the coefficients of the chromatic polynomial of M ):

Since prime classes map to prime classes, this implies the log-concavity conjecture

for all matroids which are realizable over some field (but it suggests more).
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In a joint work with Farhad Babaee, we showed that every cohomology class �

in a smooth complete toric variety has a canonical representative T� in the space of

closed currents, the “tropical current” of �.

This representative faithfully reflects piecewise linear geometry of the tropical variety �.

Question

Is the matroid current T�M
a limit of effective algebraic cycles for any matroid M?
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In general, given a smooth projective variety, we wish to understand the limits of

1. algebraic cycles (with real coefficients) in the space of real closed currents,

2. effective algebraic cycles in the cone of positive closed currents.

There is an obvious necessary condition for the approximability of

a (p; p)-dimensional closed current T :

(�) [T ] 2 R
Z
�
H

2q(X ;Z)=tors \H q;q(X )
�
; q = n � p:

Is this condition sufficient for the approximability?
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HC If T is a (p; p)-dimensional real closed current on X satisfying (�),

then T is a weak limit of the form

T = lim
i!1

Ti ; Ti =
X
j

�ijZij ; �ij 2 R:

HC+ If T is a (p; p)-dimensional positive closed current on X satisfying (�),

then T is a weak limit of the form

T = lim
i!1

Ti ; Ti =
X
j

�ijZij ; �ij 2 R�0:

Demailly proved that

1. HC+ holds for any X when p = n � 1,

2. HC+ for X implies HC for X , and

3. HC for X is equivalent to the Hodge conjecture for X .
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Part of the claim that “tropical currents faithfully reflect . . . ” is the following.

Theorem (Babaee-H.)

For any matroid M on [n ], the tropical current T�M
is extremal in the cone of

positive closed currents on XAn
.

A Krein-Milman type convex analysis shows that

Corollary (Babaee-H.)

Assuming HC+ for XAn
, the main question has an affirmative answer for all M on [n ].
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In a recent joint work with Karim Adiprasito and Eric Katz, we obtained inequalities

that imply Rota’s log-concavity conjecture in its full generality.

What we show is that the tropical variety �M has a “cohomology ring”

which has the structure of the cohomology ring of a smooth projective variety.
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From Jean-Pierre Serre to Alexander Grothendieck, 1964.
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Let X be a smooth projective variety of dimension r , k � r=2,

and let C k (X ) be the image of cycle class map in H 2k (X ;Ql)

Grothendieck’s standard conjectures say that we should have the following:

(1) Hard Lefschetz: Any hyperplane class ` defines an isormophism

C
k (X ) �! C

r�k (X ); h 7�! `r�2k � h :

(2) Hodge-Riemann: Any hyperplane class ` defines a definite form of sign (�1)k

PC
k (X )� PC

k (X ) �! C
r (X ) ' Q; (h1; h2) 7�! `r�2k � h1 � h2;

where PC k (X ) � C k (X ) is the kernel of the multiplication by `r�2k+1.
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A motivating observation is that the toric variety of �M is, in the realizable case,

’Chow equivalent’ to a smooth projective variety (Feichtner-Yuzvinsky):

There is a map from a smooth projective variety

V �! X�M

which induces an isomorphism between Chow cohomology rings

A
�(X�M

) �! A
�(V ):

It is tempting to think this as a ’Chow homotopy’.

(When the base field is C, it is important not to think this as the usual homotopy.)
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In fact, the converse also holds.

Theorem

The toric variety X�M
is Chow equivalent to a smooth projective variety over k

if and only if M is realizable over the field k .

We show that, even in the non-realizable case, A�(M ) := A�(X�M
) has the structure

of the cohomology ring of a smooth projective variety (of dimension r ).
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Our argument is a good advertisement for tropical geometry to pure combinatorialists:

For any two matroids on [n ] with the same rank, there is a diagram

�M

\ip"
**
�1

\ip"
**
�2

\ip"
))
� � �

\ip"
++
�M 0 ;

and each flip preserves the validity of the ‘Kähler package’ in their cohomology rings.

The intermediate objects are tropical varieties with good cohomology rings,

but not in general associated to a matroid (unlike in McMullen’s case of polytopes).
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The cohomology ring A�(M ) can be described explicitly by generators and relations,

which can be taken as a definition.

Definition

The cohomology ring of M is the quotient of the polynomial ring

A
�(M ) := Z[xF ]=(I1 + I2);

where the variables are indexed by nonempty proper flats of M , and

I1 := ideal

 X
i12F

xF �
X
i22F

xF j i1 and i2 are distinct elements of [n ]

!
;

I2 := ideal

 
xF1xF2 j F1 and F2 are incomparable flats of M

!
:
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Theorem

The Chow ring A�(M ) is a Poincaré duality algebra of dimension r :

(1) Degree map: There is an isomorphism

degM : Ar (M ) �! Z;

rY
i=1

xFi 7�! 1;

for any complete flag of nonempty proper flats F1 ( F2 ( � � � ( Fr of M .

(2) Poincaré duality: For any nonnegative integer k � r , the multiplication defines

the perfect pairing
A

k (M )�A
r�k (M ) �! A

r (M ) ' Z;

Note that the underlying simplicial complex of �M , the order complex of M ,

is not Gorenstein in general.

June Huh 43 / 48



Theorem

The Chow ring A�(M ) is a Poincaré duality algebra of dimension r :
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Almost all simplicial spheres are not polytopal.

Why can’t we prove (at the moment) the g-conjecture for simplicial spheres?

Because we do not understand Kähler classes in their ’cohomology’ ring.

The case of non-realizable matroids contrasts this in an interesting way.
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Let K[n] be the convex cone of linear forms with real coefficientsX
S

cSxS

that satisfy, for any two incomparable nonempty proper subsets S1;S2 of [n ],

cS1 + cS2 > cS1\S2 + cS1[S2 (c; = c[n] = 0):

Definition

The ample cone of M , denoted KM , is defined to be the image

K[n] �! KM � A
1(M )R;

where all the non-flats of M are mapped to zero.
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Main Theorem

Let ` be an element of KM and let k be a nonnegative integer � r=2.

(1) Hard Lefschetz: The multiplication by ` defines an isormophism

A
k (M )R �! A

r�k (M )R; h 7�! `r�2k � h :

(2) Hodge-Riemann: The multiplication by ` defines a definite form of sign (�1)k

PA
k (M )R � PA

k (M )R �! A
r (M )R ' R; (h1; h2) 7�! `r�2k � h1 � h2;

where PAk (M )R � Ak (M )R is the kernel of the multiplication by `r�2k+1.
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Why does this imply the log-concavity conjecture?

Let i be an element of [n ], and consider the linear forms

�(i) :=
X
i2S

xS ;

�(i) :=
X
i<S

xS :

Note that these linear forms are ‘almost’ ample:

cS1 + cS2 � cS1\S2 + cS1[S2 (c; = c[n] = 0):

Their images in the cohomology ring A�(M ) does not depend on i ;

they will be denoted by � and � respectively.
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Proposition

Under the isomorphism deg : Ar (M ) �! Z; we have

�r�k�k 7�! (k -th coefficient of the reduced characteristic polynomial of M ):

While neither � nor � are in the ample cone KM , we may take the limit

`1 �! �; `2 �! �; `1; `2 2 KM :

This may be one reason why direct combinatorial reasoning for log-concavity

was not easy.
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