Oregon Soergel bimodule workshop

August 2014

Exercises 3

Essential skills: Local intersection forms (Q1, Q2), Elements of Bott-Samelson bimodules (Q3, Q4, Q5), Global intersection forms (Q6, Q7), Lefschetz linear algebra (Q6, Q7, Q8, Q9)

- a) In type B_2 , compute the local intersection pairing of BS(stst) at st, in all degrees.
 - b) In degree 0, make observations about the definiteness and signature of this form.
 - c) In type H_2 , compute the local intersection pairings of BS(ststs) at sts and s respectively. Any observations about definiteness and signature in degree 0?
 - d) In type D_4 , compute the local intersection pairings of BS(tuvstuv) at tuv, in all degrees. Definiteness and signature in degree 0?
- 2. In the Temperley-Lieb category with q=1, compute the local intersection form on Hom(3,5)and on Hom(1,5). What are the signatures of these forms?
- **3.** Let $f \in \mathfrak{h}^* \in R$ be a linear polynomial. For a general expression \underline{w} , find a formula for fc_{ε} in the 01-sequence basis of BS(w) as a right R-module.
- 4. In this exercise we find a recursive formula for

$$N_{\underline{w}}(f) := \langle f^{\ell(\underline{w})} c_{\text{bot}}, c_{\text{bot}} \rangle.$$

for any degree two element $f \in R$, acting by left multiplication on $\overline{BS(\underline{w})}$.

- a) Find a formula for $N_w(f)$ in terms of $N_{w'}(f)$, over all subexpressions $\underline{w'}$ obtained by omitting a simple reflection from \underline{w} .
- b) Show that $N_{\underline{w}}(f) = 0$ unless \underline{w} is reduced. (Hint: It might help to use the light leaves description of $BS(\underline{w})$ or the decomposition of $BS(\underline{w})$ into indecomposable Soergel bimodules.) Use this to simplify your formula in part (a).
- c) Suppose that $\partial_s(f) > 0$ for all $s \in S$. Show that $N_{\underline{w}}(f) > 0$ for \underline{w} reduced. (First prove that sw > w if and only if $\partial_s(wf) > 0$.)
- 5. Use the 01-basis of BS(w) and an upper-triangularity argument to prove that the global intersection form is non-degenerate to degree 0.
- **6.** Consider $\overline{(B_sB_s)}$, with the Lefschetz operator

$$L_{a,b} := (a\rho \cdot -) \operatorname{id}_{B_s} + \operatorname{id}_{B_s} (b\rho \cdot -)$$

for some $a, b \in \mathbb{R}$. For which a, b does the hard Lefschetz property hold? For which a, b do the Hodge-Riemann bilinear relations hold? For which a, b does (HR) hold with the opposite signatures?

7. Now we work with $\overline{BS(sts)}$ when $m_{st}=3$. Let $\rho \in \mathfrak{h}^*$ satisfy $\partial_s(\rho)=\partial_t(\rho)=1$. Let L be

the degree 2 endomorphism of $\overline{B_sB_tB_s}$ given by left multiplication by ρ . What is $L^3(c_{\text{bot}})$? What is $\langle c_{\text{bot}}, L^3(c_{\text{bot}}) \rangle$? Find a basis for $\overline{B_sB_tB_s}^{-1}$ (i.e. the elements in degree -1) in the kernel of L^2 . Are they orthogonal to $L^2(c_{\text{bot}})$ under the intersection form? Show that the form $(v, w) = \langle v, Lw \rangle$ on this orthogonal subspace of $\overline{B_s B_t B_s}^{-1}$ is negative definite.

Bonus problem: what does the picture look like when restricted to the summand $B_s \stackrel{\oplus}{\subset}$ $B_sB_tB_s$? What does it look like when restricted to the summand $B_{sts} \stackrel{\oplus}{\subset} B_sB_tB_s$?

- 8. Let (V, L_V) and (W, L_W) be Lefschetz spaces, i.e. graded vector spaces equipped with a nondegenerate graded bilinear form and a Lefschetz operator. Suppose that $\sigma: V \to W(1)$ is a vector space map of degree +1, satisfying
 - $\sigma L_V = L_W \sigma$,
 - $\langle v, L_V v' \rangle_V = \langle \sigma v, \sigma v' \rangle_W$,
 - σ is injective from negative degrees.

Suppose that (W, L_W) has (HR). Prove that (V, L_V) has (hL). (Hint: There are two cases, for $v \in V$ of negative degree. Either σv is primitive, or σv is not primitive.) What extra conditions would guarantee that (V, L_V) has (HR), except in degree 0?

- 9. a) Let (V, L_V) and (W, L_W) be Lefschetz spaces, and suppose that $\sigma: V \to W(-d)$ is a vector space map of degree -d, satisfying $\sigma L_V = L_W \sigma$. When d > 0, prove that the Lefschetz form on W, restricted to the image of σ , is zero.
 - b) Deduce that the global intersection form on $\overline{B_sB_s}$, restricted to the (canonical) summand $\overline{B_s}(1)$, is zero.
 - c) By contrast, show that the global intersection form need not restrict to zero on a summand of the form $\overline{B_s}(-1)$. (This summand is non-canonical, so there are multiple choices of inclusion map.)

Oregon Soergel bimodule workshop

August 2014

Supplementary Exercises 3

Krull-Schmidt categories:

Recall that a *Krull-Schmidt category* is an additive category in which every object is isomorphic to a finite direct sum of indecomposable objects, and an object is indecomposable if and only if its endomorphism ring is local.

- 10. Some exercises to get used to Krull-Schmidt categories:
 - a) Show that the Krull-Schmidt theorem holds in Krull-Schmidt categories: any object can be written as a direct sum of indecomposable objects, and this decomposition is unique up to permutation of the factors.
 - b) (Idempotent lifting) Let A be an algebra and $\mathfrak{m} \subset A$ an ideal such that $\mathfrak{m}^2 = 0$. Show that given an idempotent $e \in A/\mathfrak{m}$ there exists an idempotent $e \in A$ such that e = e in A/\mathfrak{m} . Now prove the same statement assuming only that A is complete with respect to the topology defined by \mathfrak{m} .
 - c) Let $(\mathbb{O}, \mathfrak{m})$ be a complete local ring. Let \mathcal{C} be a Karoubian \mathbb{O} -linear additive category such that all hom spaces are finitely generated. Show that \mathcal{C} is Krull-Schmidt. (*Hint:* It might help to first consider the case when \mathbb{O} is a field.)
 - d) Show that the category of graded modules over a polynomial ring is a Krull-Schmidt category. Conclude that the category of Soergel bimodules is Krull-Schmidt.
 - e) (*) Let X be an affine variety. When does the Krull-Schmidt theorem hold for vector bundles on X? (Answer: almost never.) Conclude that the Krull-Schmidt theorem fails for ungraded modules over a polynomial ring. (Optional: show that the Krull-Schmidt theorem holds for vector bundles on a projective algebraic variety.)
- 11. Let \mathcal{C} be a Krull-Schmidt category over an algebraically closed field \mathbb{k} . Show that the multiplicity of B as summand of X is given by the rank of the form

$$\operatorname{Hom}(B,X) \times \operatorname{Hom}(X,B) \to \operatorname{End}(B)/\mathfrak{m}_B$$
.

where \mathfrak{m}_B denotes the maximal ideal of $\operatorname{End}(B)$. What is the correct statement for general fields or local rings \mathbb{k} ?

Lefschetz linear algebra:

- **12.** Let $H = \bigoplus H^i$ be a finite dimensional graded \mathbb{R} -vector space and $L : H^{\bullet} \to H^{\bullet+2}$ an operator of degree 2. Show that H admits a representation of $\mathfrak{sl}_2(\mathbb{R}) = \mathbb{R}f \oplus \mathbb{R}h \oplus \mathbb{R}e$ with e = L and hx = mx for all $x \in H^m$ if and only if L satisfies the hard Lefschetz theorem (i.e. $L^m : H^{-m} \to H^m$ is an isomorphism for all $m \geq 0$).
- 13. Prove that the Lefschetz decomposition is orthogonal for the Lefschetz form.
- **14.** Suppose that $H = \oplus H^i$ and $W = \oplus W^j$ are finite dimensional graded real vector spaces with forms $\langle -, \rangle$ and Lefschetz operators L_H and L_W . Suppose that $H^{\text{odd}} = 0$ or $H^{\text{even}} = 0$, that L satisfies the hard Lefschetz theorem on H and that

$$\underline{\dim} W := \sum \dim W^i v^i = (v + v^{-1}) \underline{\dim} H.$$

Show that W satisfies (HR) if and only if the signature of the Lefschetz form $(-,-)_{L_W}^{-i}$ on W^{-i} is equal to the dimension of the primitive subspace $P_{L_H}^{-i+1} \subset H^{-i+1}$ (by convention $P_{L_H}^1 = 0$).

15. This question explores Hodge theory for the Grassmannian $H^*(Gr(3,6))$, using a combinatorial model. Let P(3,6) denote the set of partitions which fit inside a 3×3 rectangle (I will describe elements of P(3,6) using Young tableaux). The *degree* of a partition will be -9 plus twice the number of boxes; for example, the partition (3,1,1) has degree +1. We say that two partitions are *complimentary* if one can be glued to the 180 degree rotation of the other to obtain the full 3×3 rectangle; for example, (3,2,0) and (3,1,0) are complimentary.

Let H denote the graded vector space with basis $\{v_{\lambda}\}_{{\lambda}\in P(3,6)}$. Place a symmetric bilinear form on H, where $\langle v_{\lambda}, v_{\mu} \rangle = 1$ when λ and μ are complimentary, and it equals zero otherwise. Place an operator $L \colon H \to H(2)$ on this space, where $Lv_{\lambda} = \sum_{\mu} v_{\mu}$ is the sum over partitions $\mu \in P(3,6)$ obtained from λ by adding a single box.

- a) Prove that L is a Lefschetz operator.
- b) Prove that L has the hard Lefschetz property. Compute a basis of each primitive subspace.
- c) Prove that L has the Hodge-Riemann bilinear relations.

Duality and invariant forms

- **16.** Given an R-bimodule B, its dual $\mathbb{D}B$ is defined to be $\operatorname{Hom}_{(-,R)}(B,R)$, the right R-module maps. Clearly $\mathbb{D}^2 = \mathbb{1}$ on any bimodule which is free as a right R-module.
 - a) Show that $\operatorname{Hom}_{(R,R)}^0(B,\mathbb{D}B)$ is isomorphic to the space of invariant forms on B. If a map $B \to \mathbb{D}B$ is an isomorphism, what does this say about the corresponding invariant form?
 - b) What is $\mathbb{D}B_s$? What about $\mathbb{D}BS(\underline{w})$?
 - c) Show (by definition) that $\mathbb{D}B_w \cong B_w$ for all $w \in W$, and therefore there exists a nondegenerate invariant form on B_w .
 - d) If the Soergel conjecture holds, show that any non-zero invariant form on B_w is nondegenerate. Show that the global intersection form on $BS(\underline{w})$ for a reduced expression restricts to a nonzero form on B_w .