Oregon Soergel bimodule workshop

August 2014

Exercises 2.2

Essential skills: Constructing light leaves and double leaves (Q1, Q2, Q3), understanding the Zamolodchikov relations (Q4, Q5), the light leaves basis theorem (Q6, Q7). For more practice in 2 colors and category \mathcal{O} , see supplementary exercises.

- 1. Describe all light leaves maps from ss...s (m times).
- **2.** The diagram $ss \to s$ of degree +1, which is a horizontal reflection of the light leaf for 01, is not a light leaf. Rewrite this morphism as an R-linear combination of double leaves.
- **3.** Let W be of type A_7 , and let \underline{w} be the reduced expression

 $\underline{w} = 1357246352461357.$

a) Show that

 $\underline{e} = 1111010110100000$

is the unique subexpression with defect zero and terminus

$$w_I = 13435437.$$

(Note that w_I is the longest element of the parabolic subgroup for $I = \{1, 3, 4, 5, 7\}$.)

- b) Draw the corresponding light leaf.
- c) Take this light leaf, and precompose it with the upside-down version of itself, to obtain a morphism $\underline{w_I} \to \underline{w} \to \underline{w_I}$. Compute this morphism, modulo terms lower than w_I . (A lengthy calculation, this is a supplemental exercise. The answer should be multiplication by 2!)
- **4.** Let $S = \{s, t, u\}$ be type A_3 . Let $\underline{w} = tstuts$ and let $\underline{y} = utstut$ be two expressions for the longest element $w_0 \in W$. There are (essentially) two paths from \underline{w} to \underline{y} in the reduced expression graph of w_0 . Find a reasonably quick proof that the two corresponding morphisms of Bott-Samelson bimodules are not equal. (Extra Credit: find the lower terms which express the difference of these two morphisms.)
- **5.** Let $S = \{s, t, u\}$ be type B_3 , with $m_{st} = 3$ and $m_{tu} = 4$. The "miraculous" reduced expression is $\underline{w} = stustsutu$. Draw the Zamolodchikov relation.
- **6.** Fix \underline{w} arbitrary, and \underline{x} reduced. Let $E(\underline{w}, x)$ denote the set of light leaves for subexpressions of \underline{w} which terminate in x, living inside $\operatorname{Hom}(\underline{w}, \underline{x})$. Use localization and the Bruhat path dominance order to prove that the images in \mathbb{BSBim} of the light leaves maps in $E(\underline{w}, x)$ are all linearly independent.
- 7. Show that the functor from \mathcal{D} to \mathbb{BSBim} is an equivalence of categories, assuming that double leaves form a basis for morphisms in \mathcal{D} .

Oregon Soergel bimodule workshop

August 2014

Supplementary Exercises 2.2

Practice in two colors:

- 8. Verify that the two-color relations (the "dot" relation and the "associativity" relation) imply the "idempotent decomposition" relation.
- **9.** Let $m_{st} = m < \infty$. For k > 0, let $\underline{w} = stst...st$ of length 2(m+k). What is the dimension of $Hom(BS(\underline{w}), R)$ in degree -2k? Draw a light leaf map in that degree. Now draw several different graphs realizing the same morphism.

Category \mathcal{O} :

- 10. These questions are about category \mathcal{O} for \mathfrak{sl}_2 .
 - a) Find a change of basis to check directly that $\Delta(5) \otimes L(1) \cong \Delta(4) \oplus \Delta(6)$.
 - b) Find projective resolutions of $\Delta(0)$ and $\Delta(-2)$.
 - c) Find a projective resolution of L(0) and L(-2).
 - d) Find a projective resolution of $\nabla(0)$ and $\nabla(-2)$.
 - e) After applying the Soergel functor, these resolutions are sent to complexes of Soergel modules. Write down these complexes. How can you deduce what the differentials are?
- 11. In this exercise we look at the effect of translation functors on category \mathcal{O} , and see that they are easily understood on Verma modules.
 - i) Let $\lambda \in \mathfrak{h}^*$ be an arbitrary weight, and let V be a finite dimensional representation of \mathfrak{g} . Show that $\Delta(\lambda) \otimes V$ has a Verma flag; that is, that there exists a filtration

$$0 = F_0 \subset F_1 \subset \cdots \subset F_m = \Delta(\lambda) \otimes V$$

such that $F_i/F_{i-1} \cong \Delta(\mu_i)$ for some $\mu_i \in \mathfrak{h}^*$. What can you say about the multiset $\{\mu_i\}$?

- ii) Now suppose that $\lambda, \mu \in \mathfrak{h}^*$ are such that $\lambda + \rho, \mu + \rho$ are dominant, and such that $\lambda \mu \in \mathbb{Z}R$. Show that $T^{\mu}_{\lambda}(\Delta(w \cdot \lambda)) \cong \Delta(w \cdot \mu)$. Conclude that T^{μ}_{λ} gives an equivalence $\mathcal{O}_{\lambda} \to \mathcal{O}_{\mu}$ if $\lambda + \rho$ and $\mu + \rho$ are strictly dominant. Moreover, show that $T^{\mu}_{\lambda} \circ T^{\lambda}_{\nu} \cong T^{\mu}_{\nu}$ whenever $\mu + \rho, \lambda + \rho, \nu + \rho$ are all strictly dominant.
- iii) Now suppose that λ is integral and that $\lambda + \rho$ is dominant. Show we have an isomorphism

$$[\mathcal{O}_{\lambda}] \to \mathbb{Z}We_{\lambda} : [\Delta(w \cdot \lambda)] \mapsto e_{\lambda} \cdot w$$

where $e_{\lambda} = \sum_{x \in \text{Stab}_{W}(\lambda + \rho)} x$.

iv) Let λ, μ be as above. In addition, assume that λ, μ are integral, that λ is regular (i.e. $\lambda + \rho$ is strictly dominant) and the μ is sub-regular (i.e. $e_{\mu} = (1 + s)$ for some $s \in S$). Show that we have a commutative diagram

$$[\mathcal{O}_{\lambda}] \xrightarrow{T_{\lambda}^{\mu}} [\mathcal{O}_{\mu}] \xrightarrow{T_{\mu}^{\lambda}} [\mathcal{O}_{\lambda}]$$

$$\downarrow^{\sim} \qquad \qquad \downarrow^{\sim} \qquad \qquad \downarrow^{\sim}$$

$$\mathbb{Z}W \xrightarrow{\cdot (1+s)} \mathbb{Z}W(1+s) \xrightarrow{\text{inclusion}} \mathbb{Z}W$$

(the vertical isomorphisms are those of the previous exercise).

- v) (Optional) Can you give similar descriptions for more general weights? (I.e. non integral, or with e_{λ} more complicated?)
- 12. a) Let C be a finite dimensional graded algebra, and P a (non-graded) projective (resp. simple) module. Show that P admits a graded lift.
 - b) Show that $\overline{B_x}$ is indecomposable as a graded R-module if and only if it is indecomposable as an ungraded R-module.

Light leaves and indecomposables:

These exercises were written hastily, perform at your own risk.

- 13. Let \underline{w} and \underline{x} be rexes. We work modulo terms lower than x. We have seen that the coefficient of H_x inside $\underline{H}(\underline{w})$ describes the graded rank of $\operatorname{Hom}(BS(\underline{w}), B_x)$ modulo lower terms, and that light leaves for \underline{w} with terminus x give a basis for this space (as a right R-module). Let e_w denote the idempotent in $\operatorname{End}(BS(\underline{w}))$ which picks out the indecomposable B_w . Let the x-kernel of \underline{w} be those linear combinations of light leaves with terminus x which vanish after precomposition with e_w . Then $\operatorname{Hom}(B_w, B_x)$ is precisely $\operatorname{Hom}(BS(\underline{w}), B_x)$ modulo the x-kernel, modulo lower terms.
 - a) Justify that the graded rank of $\text{Hom}(BS(\underline{w}), B_x)$ modulo lower terms should agree with the coefficient of H_x in the character of $BS(\underline{w})$.
 - b) Assuming that $[B_w] = \underline{H}_w$, justify that the graded rank of $\text{Hom}(B_w, B_x)$ modulo lower terms should agree with the coefficient $h_{x,w}$ of H_x in \underline{H}_w .
 - c) Let $m_{st} = 3$. Compute the x-kernel of the rex <u>sts</u>, for each $x \leq sts$. Do the graded ranks agree with your expectations?
- **14.** Recall that $\underline{H}_w\underline{H}_s = \underline{H}_{ws}\sum_y \mu(y,w,s)\underline{H}_y$ for various integers $\mu(y,w,s)$.
 - a) Using the inductive algorithm, prove that $\mu(y, w, s)$ is zero unless ys < y. When ys < y, prove that $\mu(y, w, s)$ is equal to the coefficient of v^1 in $h_{y,w}$.
 - b) Assuming that one knows the y-kernel of \underline{w} , construct a diagrammatic basis of $\operatorname{Hom}^0(B_wB_s, B_y)$. Use symbols to denote e_w and e_y . (Hint: How does the light leaf construction connect degree +1 maps from \underline{w} and degree +0 maps from $\underline{w}s$?)