
Oregon Soergel bimodule workshop

August 2014

Exercises 2.1

Essential skills: Computing with diagrams (Q1, Q2), diagrammatic arguments (Q3),
idempotent decompositions (Q2, Q5), Temperley-Lieb algebra and Jones-Wenzl projectors
(Q6), localization (Q7, Q8)

1. Check that the one color relations hold in Soergel bimodules.

Remark. In an additive category, in order to demonstrate morphism-theoretically that X ∼=
M ⊕N , one must provide morphisms

pM : X → M, iM : M → X, pN : X → N, iN : N → X,

which satisfy the following relations:

pM iM = 1M ,

pN iN = 1N ,

pM iN = 0,

pN iM = 0,

1X = iMpM + iNpN .

Comprehend this fact. The final equation decomposes the identity of X into orthogonal idem-
potents.

2. Show that BsBs
∼= Bs(1)⊕Bs(−1) by following the rubric of the remark above.

3. a) Consider a one-color Soergel diagram without polynomials, viewed as a graph (with
boundary) having only trivalent and univalent vertices. Prove that any two trees with the
same boundary are equal. Prove that any connected graph which is not a tree evaluates
to zero.

b) Prove that any universal morphism (in many colors) with empty boundary is equal to a
polynomial. (Hint: use induction on the number of connected components.)

4. The graded rank (as a free right R-module) of the following Hom spaces was computed in
the previous supplemental exercises to be

a) v2 for Hom(Bs, Bt),

b) v−1 + 2v + v3 for Hom(BsBs, Bs),

c) 1 + 2v2 + v4 for Hom(Bs, BsBtBs).

Now construct diagrammatic bases for these spaces. (Hint: They only use universal diagrams.)

5. a) Write down the two-color relations when mst = 2. Prove that BsBt
∼= BtBs by

constructing inverse isomorphisms.

b) Write down the two-color relations when mst = 3. Prove that BsBtBs
∼= X ⊕ Bs, where

X is the image of an idempotent constructed using two 6-valent vertices, by following the
rubric of the remark above.

c) (Still with mst = 3.) One similarly has BtBsBt
∼= Y ⊕ Bt. Prove that X is isomorphic

to Y . (Extra credit: Extend the remark above to a rubric which describes when two
summands of different objects are isomorphic.)



6. Let TLn be the Temperley-Lieb algebra with n strands, where a circle evaluates to −[2] =
−(q + q−1) ∈ Z[q, q−1]. Show that the space of all elements killed by caps above (resp. cups
below) is at most one-dimensional, and show that these spaces agree. (By constructing the
Jones-Wenzl projector, one proves that this space is precisely one-dimensional.)

The Jones-Wenzl projector JWn ∈ TLn is uniquely specified in this one-dimensional kernel
by the fact that the coefficient of the identity is 1. Verify the following recursive formula.
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7. Let 2cs = αs ⊗ 1 + 1 ⊗ αs and 2ds = αs ⊗ 1 − 1 ⊗ αs inside Bs. When s is understood,
write q0 = cs and q1 = ds. Let w have length d. For a subsequence e ⊂ w, write qe for the
tensor product qe1qe2 · · · qed ∈ Bs1Bs2 · · ·Bsd . Prove that {qe}e⊂w is linearly independent in the
degree +d part of BS(w). Is it a basis?

8. (Assumes knowledge of the support of a coherent sheaf.) For w ∈ W , let Grw = {(w(v), v} ⊂
h × h. Let w1, w2, . . . be an enumeration of the elements of W , and let B be an R-bimodule.
Suppose there exists a filtration 0 ⊂ B1 ⊂ . . . ⊂ Bm = B such that Bi/Bi−1 ∼= ⊕R⊕ni

wi
. Show

that Bi is equal to the submodule of B consisting of sections with support on the subvariety
∪i
j=1

Grwj
. Deduce that a standard filtration on a Soergel bimodule is unique and is preserved

by all morphisms. (Hint: the support of any nonzero element of Rx is Grx.)
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9. Why does the general polynomial forcing relation follow from the case of linear polynomials?
Give a quick and elegant argument.

10. Consider a universal diagram in two colors, whose boundary alternates BsBtBsBt . . . BsBt

when read clockwise. Prove that the minimal degree of any nonzero universal diagram is 2, and
that all such universal diagrams are deformation retracts of colored Temperley-Lieb diagrams.
(Hint: what characterizes universal diagrams in the image of the functor from Temperley-Lieb?
What happens when you try to connect two different connected components of the same color?)

11. The trace of an element a ∈ TLn is the evaluation in Z[q, q−1] of the closed diagram below.
Calculate the trace of JWn (hint: use induction).

a

Suppose that q is a primitive 2(n + 1)-th root of unity. What is the trace of JWn? What
do you get when you rotate JWn by one strand?

12. a) Suppose that w is a reduced expression. How many copies of Qw appear in the
localization of BS(w)? Does this depend on the reduced expression?

b) Suppose that w and w′ are reduced expressions which differ by a single braid relation.
Consider a 2mst valent vertex, viewed as a map BS(w) → BS(w′). Now apply the
localization functor to this map. After restriction of this map to Qw → Qw, do you get
an isomorphism?

c) If you compose two 2mst-valent vertices BS(w) → BS(w′) → BS(w), what can you say
about the localized restriction to Qw → Qw? Is it the identity map?

d) Now begin at w, and apply an arbitrary chain of braid relations, viewed as 2mst-valent
vertices, to get from BS(w) to BS(w). A priori, what can you say about the localized
restriction to Qw → Qw?

Constructing idempotents

13. In this exercise, we work in type B2, so that mst = 4, and we use a non-symmetric Cartan
matrix where as,t = −1 and at,s = −2.

a) In type B2, write HsHtHsHt as a sum of KL basis elements. How do you expect
BsBtBsBt to decompose?

b) Calculate the graded rank of Hom(BsBt, BsBtBsBt). Compute a diagrammatic basis of
maps in degree 0 (you should have found it to be a 2-dimensional space).

c) Calculate the graded rank of Hom(BsBtBsBt, BsBt). Compute a diagrammatic basis of
maps in degree 0. Why is this really easy, given the last part?



d) Calculate the graded rank of End(BsBt) and deduce that the only degree zero map is the
identity.

e) Therefore, one can construct a 2×2 matrix given by composing a map BsBt → BsBtBsBt

of degree 0 with a map BsBtBsBt → BsBt of degree 0, and computing the coefficient of
the identity. This is called a local intersection form; one thinks of it as a bilinear form
on Hom(BsBtBsBt, BsBt)... How? Compute this matrix.

f) Whenever two maps pair under the local intersection form to the value 1, one can con-
struct an idempotent in End(BsBtBsBt) which factors through BsBt. Whenever one
has dual bases under the local intersection form, the corresponding idempotents will be
orthogonal. Find dual bases and compute these orthogonal idempotents.

g) You have just proven that BsBt occurs as a summand inside BsBtBsBt precisely 2 times.
Can there be any other summands besides Bstst? Why or why not?

h) Suppose that we work in characteristic 2. How many times does BsBt occur as a summand
inside BsBtBsBt?

14. What happens if you repeat Q13 in type H2? One has mst = 5, and as,t = at,s = −φ, the
(negative) golden ratio.

15. If you want more exercise, repeat Q13 in type H2, except with the goal of decomposing
BsBtBsBtBs.

16. Let V be the standard representation of sl2. Compute the decomposition of V ⊗ V ⊗ V
into direct summands, by constructing an idempotent decomposition of the identity. Does this
remind you of any previous exercises? What happens when q is an 8-th root of unity?


