Oregon Soergel bimodule workshop

August 2014

Exercises 1.2

Essential skills: Deodhar defect formula (Q1), the pairing on H (Q2), understanding diagrammatics (Q3, Q4, Q5), playing with elements of Bott-Samelson bimodules (Q6, Q7)

- 1. a) Use the Deodhar defect formula to compute $\underline{H}_s\underline{H}_s\underline{H}_s$ in the standard basis.
 - b) Let s, t, u denote three distinct simple reflections. Use the Deodhar defect formula to compute $\underline{H}_s\underline{H}_t\underline{H}_u$. Is this product equal to \underline{H}_{stu} ?
 - c) Let s and t be distinct simple reflections. What is $\varepsilon(\underline{H}_s\underline{H}_t\underline{H}_s)$?
 - d) Let $\{s, t, u, v\}$ be the simple reflections in type D_4 , where s, u, v all commute. Compute the product H(w) for the reduced expression w = suvtsuv.
- **2.** Compute the pairing $(\underline{H}_s\underline{H}_t\underline{H}_s,\underline{H}_s)$ in two different ways.
 - a) Use biadjunction and the quadratic relation to express this pairing in terms of $\varepsilon(\underline{H_t}\underline{H_s})$.
 - b) Use the Deodhar defect formula on both sides, and the "self-dual orthogonality" of the standard basis.
- **3.** Look up the definition of a *Frobenius object* in a monoidal category (on wikipedia).
 - a) Express this definition diagrammatically.
 - b) Suppose that $A \subset B$ is a Frobenius extension. Using 1-manifold diagrams for induction and restriction bimodules, show that $B \otimes_A B$ is a Frobenius object in the category of B-bimodules.
- **4.** Let $A = \mathbb{R}[x]/(x^2)$ be an object in the monoidal category of \mathbb{R} -vector spaces. Let $\cap : A \otimes A \to \mathbb{R}$ denote the map which sends $f \otimes g$ to the coefficient of x in fg. Let $\cup : \mathbb{R} \to A \otimes A$ denote the map which sends 1 to $x \otimes 1 + 1 \otimes x$.
 - a) We wish to encode these maps diagrammatically, drawing \cap as a cap and \cup as a cup. Justify this diagrammatic notation, by checking the biadjointness/isotopy relations.
 - b) Draw a sequence of nested circles, as in an archery target. Evaluate this morphism.
- 5. This question deals with the universal presentation of Ω_G for a group G.
 - a) Draw the generating morphisms corresponding to the pair $g \circ g^{-1}$. Draw the inverse relations.
 - b) Draw the associator relation for the triple $g \circ g^{-1} \circ g$.
 - c) Prove that g and g^{-1} are biadjoint.
- **6.** a) Construct a map $B_sB_t \to R \otimes_{R^{s,t}} R(2)$ sending $1 \otimes 1 \otimes 1 \mapsto 1 \otimes 1$, when $m_{s,t} = 2$.
 - b) Why is there no such map when $m_{s,t} > 2$?
 - c) Confirm the decomposition $B_sB_tB_s \cong R \otimes_{R^{s,t}} R(3) \oplus B_s$ given in class, when $m_{s,t} = 3$.
 - d) When $m_{s,t} = 4$, how would you expect $B_s B_t B_s B_t$ to decompose?
- 7. Let $c_s = \frac{\alpha_s}{2} \otimes 1 + 1 \otimes \frac{\alpha_s}{2}$ and $c_1 = 1 \otimes 1$ denote certain elements of B_s . Show that $\{c_s, c_1\}$ form a basis of B_s as a right R-module. For any $f \in R$, find a nice formula for fc_s in terms of this basis.

Oregon Soergel bimodule workshop

August 2014

Supplementary Exercises 1.2

Hecke algebras:

- 8. Some more questions from lecture, dealing with the standard trace and standard pairing.
 - a) Compute $\varepsilon(H_xH_y)$. When is it non-zero?
 - b) Show that $\varepsilon(ab) = \varepsilon(ba)$.
 - c) Show that the standard basis is dual to the bar involution of the standard basis for the standard pairing.
 - d) Show that the KL basis is graded orthonormal for the standard pairing.
 - e) Show that \underline{H}_s is self-biadjoint.

Deodhar defect formula:

- **9.** Prove the Deodhar defect formula.
- **10.** Let $\underline{w} = s_1 \dots s_m$ denote an expression. We write $x \leq \underline{w}$ if there exists a subexpression \mathbf{e} of \underline{w} with $x = \underline{w}^{\mathbf{e}}$. Given two subexpressions \mathbf{e}, \mathbf{e}' of \underline{w} let x_0, x_1, \ldots and x'_0, x'_1, \ldots be their Bruhat strolls (e.g. $x_i := s_1^{e_1} \dots s_i^{e_i}$). We define the *path dominance order* on subexpressions by saying that $\mathbf{e} \leq \mathbf{e}'$ if $x_i \leq x'_i$ for $1 \leq i \leq \ell(\underline{w})$. Show that for any $x \leq \underline{w}$ there is a unique subexpression \mathbf{e} of \underline{w} , the *canonical subexpression*, which is characterized by the following equivalent conditions:
 - a) $\mathbf{e} \leq \mathbf{e}'$ for any subexpression \mathbf{e}' of \underline{w} with $\underline{w}^{\mathbf{e}'} = x$ (i.e. \mathbf{e} is the unique minimal element in the path dominance order).
 - b) e has no D's in its UD labelling.
 - c) e is of maximal defect amongst all subexpressions e' of w with $w^{e'} = x$.

(If you know about Bott-Samelson resolutions: What geometric fact does the existence of e correspond to?) (Do you think there is a unique maximal element in the path dominance order?)

Diagrammatics:

- 11. In class, I fixed a biadjunction between E and E^{\vee} , and a biadjunction between F and F^{\vee} . I demonstrated two ways to take a 2-morphism $\beta \colon E \to F$ and return a 2-morphism $F^{\vee} \to E^{\vee}$, known as the right mate β^{\vee} and the left mate ${}^{\vee}\beta$. One can think about these as "twisting" or "rotating" β by 180 degrees to the right or to the left. Visualize what it would mean to twist β by 360 degrees to the right, yielding another 2-morphism $\beta^{\vee\vee} \colon E \to F$. Verify that β is cyclic, i.e. $\beta^{\vee} = {}^{\vee}\beta$, if and only if $\beta = \beta^{\vee\vee}$.
- **12.** Suppose that B is an object in a monoidal category with biadjoints, and $\phi \colon B \otimes B \otimes B \to \mathbb{1}$ is a cyclic morphism. What should it mean to "rotate" ϕ by 120 degrees? Suppose that $\text{Hom}(B \otimes B \otimes B, \mathbb{1})$ is one-dimensional over \mathbb{C} . What can you say about the 120 degree rotation of ϕ , vis a vis ϕ ?

Soergel Hom Formula:

- 13. You already have enough "building block morphisms" to solve these problems.
 - a) Compute the size (i.e. graded rank) of the Hom space $\text{Hom}(B_s, B_t)$. Find a generating set of morphisms, and indicate how these morphisms factor.
 - b) Compute the size of the Hom space $\text{Hom}(B_s, B_s B_t B_s)$ in degree zero. Find a generating set of morphisms, and indicate how these morphisms factor.
 - c) Compose a morphism of minimal degree $B_s \to B_s B_s$ with one of minimal degree $B_s B_s \to B_s$. What is the resulting map? Show this by a general argument, and then by direct computation.