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Abstract A simple replacement approach is used to construct new symmetric and affine
designs from projective or affine spaces. This is used to construct symmetric designs with
a given automorphism group, to study GMW designs, and to construct new affine designs
whose automorphism group fixes a point and has just two point- and block-orbits.

Keywords Symmetric and affine designs · Projective or affine spaces · GMW designs ·
Point- and block-orbits

AMS Classifications 05B05 · 05B25 · 51E05 · 05B10

1 Introduction

In this paper we present a very simple way to modify projective or affine spaces in order to
produce many other symmetric or affine designs having the same parameters. This contains
as very special cases constructions used in [8,9] (which are in turn based on a construction
in [13]), and will be used here for several purposes. We will prove the following

Theorem 1.1 For any finite group G and some d < 35|G|, for each prime power q there is
a symmetric design D having the parameters of PG(d, q) such that AutD ∼= G.

This result previously was proved in [9] under the more restrictive conditions q ≥ 3
and (an arbitrary) d ≥ 50|G|2; and in [11] in greater generality when q = 2. The argument
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308 U. Dempwolff, W. M. Kantor

presented here is far simpler than in [9]. Our methods also provide information concerning
GMW designs, an important class of difference set designs discovered and studied in [5].
Isomorphisms and automorphisms of those designs were completely dealt with in [10], using
the classification of finite simple groups. Here we will provide an elementary proof of the
most “natural” special case of those results:

Theorem 1.2 Let K = GF(q), F1 and F2 be finite fields such that K ⊂ F1, F2 ⊂ GF(qd)

and [Fi : K ] ≥ 3; for i = 1, 2, let Di ⊃ K be a hyperplane of the K -space Fi , so that
D∗

i /K ∗ is the standard Singer difference set in F∗
i /K ∗, where D∗

i = Di\{0}. For i = 1, 2, let
Di be the GMW design having the parameters of PG(d − 1, q), determined by the difference
set D∗

i
ri /K ∗ for integers ri relatively prime to q|F∗

i | such that 1 ≤ ri < |F∗
i |.

(i) If D1 ∼= D2 then F1 = F2 and r2 ≡ r1 paw (mod qn − 1), where p is the prime
dividing q and w ≡ 1(mod (qn − 1)/(q − 1)).

(ii) AutD1 ∼= �L(N , F1)/Z , where qd = |F1|N and Z consists of the scalar transforma-
tions v → kv with k ∈ K ∗.

The construction of these designs Di is recalled in Sect. 4. The aforementioned result in
[10] deals with difference sets more general than D∗ri

i /K ∗ (the design corresponding to the
latter difference set is isomorphic to the projective space over K determined by Fi ).

Much of this paper—and in particular, the proofs of the preceding theorems—uses lines
of designs [3,4]. If x and y are distinct points of a design, the line xy is the intersection of
all blocks containing x and y; two points are on exactly one line.

Throughout this paper, q will be a prime power, K = GF(q) ⊂ F = GF(qh) where
h ≥ 3, and d and N will be integers > 1. Also, D0 is the kernel of the trace map F → K , so
that D∗

0/K ∗ is the standard Singer difference set in F∗/K ∗. In Sect. 7 we prove the following

Theorem 1.3 Let N > 1 be an integer, and let q > 2 be a prime power. If r is an integer
such that 1 < r < qh − 1 and (r, q(qh − 1)) = 1, then there is an affine design A(r) with
the following properties:

(i) Its parameters are those of the classical affine design AG(hN , q) but it is not isomor-
phic to that design.

(ii) There is a point 0 such that all lines through 0 have size q.
(iii) The incidence structure of lines and blocks containing 0 is isomorphic to the GMW

design obtained using the difference set D∗r

0 /K ∗ of F∗/K ∗.
(iv) There is a cyclic automorphism group A of order qhN − 1 fixing 0 and acting reg-

ularly on the points 
= 0 of A(r), on the blocks containing 0, and on the blocks not
containing 0.

(v) AutA(r) ∼= �L(N , qh).
(vi) A(r1) ∼= A(r2) if and only if r2 = cr1, where c is a power of the prime dividing q.

In view of (iv), A(r) can be described using a relative difference set in A with distinguished
subgroup K ∗ (cf. Remark 7.6).

In Sect. 2 we present our perturbations of projective spaces, and study their lines in Sect. 3.
This is used in Sect. 4 for our elementary proof of Theorem 1.2. Theorem 1.1 is proved in
Sect. 5. The affine versions of these results are in Sects. 6, 7 and 8: Sect. 6 discusses pertur-
bations of affine spaces, Sect. 7 contains the proof of Theorem 1.3, and Sect. 8 contains an
affine design version of Theorem 1.1. We emphasize that all of the proofs in this paper are
elementary. In particular, the proof we give for Theorem 1.2 is far easier to understand than
the argument in [10].
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Distorting symmetric designs 309

2 Perturbations of projective spaces

Suppose that � is a partition of the point set of P = PG(d, q) by subspaces. For each point
or line X ∈ � let αX denote the identity map on X ; for any other X ∈ � let αX be a bijection
from the hyperplanes of X to the blocks of a symmetric design DX having point set X and
the same parameters as PG(X). Also write XαX = X . Define an incidence structure Pα by
using

points : the points of P
blocks : Hα :=

⋃

X∈�

(H ∩ X)αX for each hyperplane H of P. (2.1)

Theorem 2.2 Pα is a symmetric design having the same parameters as P.

Proof For any hyperplanes H, H ′ of P,

|Hα ∩ H ′α| =
∑

X

|(H ∩ X)αX ∩ (H ′ ∩ X)αX |

=
∑

X

|(H ∩ X) ∩ (H ′ ∩ X)| = |H ∩ H ′|. (2.3)

(We have used the fact that (H ∩ X)αX and (H ′ ∩ X)αX are distinct blocks of DX if and only
if H ∩ X and H ′ ∩ X are distinct hyperplanes of X .) �

We will write x I H if x ∈ Hα . Note that a special case of this construction was used in
[8,9].

Remark 2.4 If X ∈ � is not a point or line, then {Hα∩X | Hα 
⊇ X} is the set of blocks of DX .

Variations:

1. We could have used any symmetric design P having a partition into suitable subsets that
inherit the structure of symmetric designs. The simplest example of this uses a good
block of a symmetric design P along with the individual points in its complement, as in
[8,9].

2. We did not quite need a partition �. Instead we could have used a family � of subspaces
whose union is all points and such that X ∩ Y = W is the same subspace for all distinct
X, Y ∈ �. If the αX are required to send hyperplanes on x to blocks on x for each point
x in W , then we obtain a symmetric design as before. While this seems a bit artificial,
in Sect. 6 we will see that a similar idea produces Theorem 1.3.

3 Lines and colines

If X and Y are distinct blocks of a symmetric design, the coline [X, Y ] is the set of all blocks
containing X ∩Y ; two blocks are in exactly one coline. In PG(d, q), colines are just the duals
of lines; all lines and colines have size q + 1 = (v − λ)/(k − λ), which is the maximum
possible size for any symmetric design [4].

We now study line sizes in the designs Pα constructed in the preceding section.

Proposition 3.1 Let X ∈ �. The line of Pα determined by two points of X is contained in X.
Moreover, if DX is a projective space of dimension at least 2, then in Pα each line containing
two points of X has size q + 1.
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310 U. Dempwolff, W. M. Kantor

Proof For the first assertion, observe that X is the intersection of the hyperplanes of P that
contain X , and hence also of some of the blocks of Pα . For the second assertion, observe that
the blocks of Pα induce on X the projective space DX by Remark 2.4. �

Proposition 3.2 Let X, Y ∈ � be distinct, and x ∈ X, y ∈ Y . If there is a third point on the
line xy of Pα, then the following condition holds in X and DX :

For any distinct hyperplanes A1, A2, A3 in a coline of X,

x ∈ AαX
1 ∩ AαX

2 ⇒ x ∈ AαX
3 .

(3.3)

Proof Let z 
= x, y be a point of xy, and let z ∈ Z ∈ �. Then Z 
= X, Y by Proposition 3.1.
Let H1 be a hyperplane of P such that H1 ∩ X = A1 and H1 ⊇ Y . Let H2 be a hyperplane

of P such that H2 ∩ X = A2 and H2 ⊇ Z . Then H3 = 〈H1 ∩ H2, A3〉 is a hyperplane of P,
since

(H1 ∩ H2) ∩ A3=(H1 ∩ X ∩ A3) ∩ (H2 ∩ X ∩ A3)=(A1 ∩ A3) ∩ (A2 ∩ A3)=A1 ∩ A2

is a hyperplane of A3. Note that H3 ∩ X = A3 (as otherwise H3 ⊇ 〈X, H1 ∩ H2〉 ⊇ 〈A1, H1 ∩
H2, A2, H1 ∩ H2〉 = 〈H1, H2〉).

By hypothesis, x ∈ (H1 ∩ X)αX , while y ∈ (H1 ∩ Y )αY trivially, so that x, y I H1. Then
also z I H1, and hence z ∈ (H1 ∩ Z)αZ . Consequently, since H2 ⊇ Z ,

z ∈ (H1 ∩ Z)αZ = (H1 ∩ (H2 ∩ Z))αZ = (H3 ∩ (H2 ∩ Z))αZ = (H3 ∩ Z)αZ .

Hence, z I H3. Similarly, y I H3. Thus, x I H3, so that x ∈ (H3 ∩ X)αX = AαX
3 , as asserted.

�
Remark Here (3.3) is a property of a single subspace X and a single bijection αX . It can be
viewed as a “local collinearity condition” on the dual space X◦: for any three collinear points
of X∗, if the images of two of them are on the “hyperplane” x then so is the image of the
third. As in [9, Lemma 4.1], this suggests the

Corollary 3.4 In the situation of the preceding proposition, the following condition holds:

(∗) α−1
X maps the set of blocks of DX containing x to the set of hyperplanes

of X containing a uniquely determined point of X.

Proof Let S denote the set of α−1
X -images in X of the blocks of DX containing x . We claim

that S is closed under colines: let A1, A2, A3 be distinct members of a coline of X , where
A1, A2 ∈ S. Then x ∈ AαX

1 ∩ AαX
2 , and hence x ∈ AαX

3 by the proposition, so that A3 ∈ S,
as required.

Thus, S is a subspace of the dual space of X , and in view of its size it is the set of
hyperplanes on a point of X . �

The preceding results can be used to determine the isomorphisms among a large class
of the designs Pα . Later we will use similar ideas. However, the total number of symmetric
designs obtainable by this approach is far inferior to the number already known [8,9].

Remark 3.5 (1) Any permutation βX of the points of X induces a permutation βX of all
subsets of X , and hence produces an isomorphism PG(X) → PG(X)βX . In particular, (3.3)
holds using βX and DX = PG(X)βX .
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Distorting symmetric designs 311

For example, view X = Fv using a difference set: let K = GF(q), F = GF(qh), h ≥ 3;
as usual, let D0 be the kernel of the trace map F → K , so that D∗

0/K ∗ is the usual Singer
difference set in F∗/K ∗. Let r be an integer such that 1 < r < |F∗| and (r, q|F∗|) = 1, so
that DX = Dr

0 projects onto another difference set in F∗/K ∗ not equivalent to D∗
0/K ∗. Then

βX : av �→ arv, a ∈ F, sends aD0v �→ (aD0)
rv = ar DXv and induces an isomorphism

from PG(X) to another projective space DX . These projective spaces are isomorphic but are
not equal, and 3.3 holds for the map βX .

(2) In the next section we will use a variation on βX in order to study GMW designs.
Namely, if DX and DX are as above, consider the bijection αX : aD0v �→ aDXv, a ∈ F,

from the hyperplanes of PG(X) to those of DX .
Note that this bijection does not arise from an isomorphism of projective spaces. For

otherwise, if {a−1
i D0v | ai ∈ F∗, 1 ≤ i ≤ (qh−1 − 1)/(q − 1)} be the set of hyperplanes of

X = Fv containing v, then ai ∈ D0 and ∩i (a
−1
i D0v)αX is a point K av for some a ∈ F∗.

Thus, for each k ∈ K and each i we have kav ∈ (a−1
i D0v)αX = a−1

i DXv, and hence
kai ∈ a−1 DX . Then D0 ⊆ a−1 DX . This contradicts the fact that D∗

X/K ∗ and D∗
0/K ∗ are

inequivalent difference sets.
This can be further clarified by observing that αX β−1

X maps PG(X) to itself sending
D0ar �→ D0a. In view of our choice of r , the latter map is not induced by a collineation of
PG(X).

4 GMW designs

GMW designs are symmetric designs that arise from cyclic difference sets and have the same
parameters as projective spaces [5]. There are various constructions; we will use the one in
[6,7,9], generalized somewhat.

Let N ≥ 2, and let � denote the set of 1-dimensional subspaces of the F-space VF = F N .
Let K , F, and D0 be as in the Introduction, so that D0 is the kernel of the trace map

T : F → K . In each X ∈ � choose a nonzero vector vX ; also choose a subset DX = K DX

of F such that D∗
X/K ∗ is a difference set in F∗/K ∗, with corresponding difference set design

DX . We will consider the symmetric design Pα , where

αX : aD0vX �→ aDXvX for all a ∈ F∗ (4.1)

for each X ∈ �. Note that this is well-defined since K D0 = D0 and K DX = DX .
We also define another incidence structure D, whose points are the 1-spaces Kv when VF

is viewed as a K -space (i.e., these are the points of P = PG(hN − 1, q)), whose blocks are
the 1-spaces Kλ with nonzero λ in the dual space V ◦

F of VF , and with incidence given by

Kv I ′Kλ ⇐⇒ λ(v) ∈ DFv. (4.2)

Proposition 4.3 Pα ∼= D.

Proof Our isomorphism will be the identity on points and send the block Hα of Pα to the
block Kλ of D, where H = Ker(T kλ) for all k ∈ K ∗ (here T kλ(v) = T (kλ(v)) for v ∈ VF ).
It suffices to show that incidence is preserved.

Consider incidences involving the points of X = FvX ∈ �. If λ(vX ) = 0 then X ⊆
Ker(T λ), and all points of X are incident with Kλ in Pα and with H = Ker(T λ) in D.
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312 U. Dempwolff, W. M. Kantor

Suppose that λ(vX ) 
= 0. Let a ∈ F∗. In P we have

K avX ⊂ Ker(T λ) ⇐⇒ T (λ(avX )) = 0 ⇐⇒ a ∈ λ(vX )−1 D0. (4.4)

Hence, by (2.1), in Pα we have K avX I H ⇐⇒ K avX ⊆ (λ(vX )−1 D0vX )αX = λ(vX )−1

DXvX . On the other hand, in D we have K avX I ′Kλ ⇐⇒ T (λ(avX )) ∈ DFvX ⇐⇒ a ∈
λ(vX )−1 DX . �

Definition If all DX are equal, then D is a GMW design [5], and the above description is the
same as the one in [6,7,10]. In this case, (2.1) and (4.1) imply that every element of �L(VF )

acts as an automorphism of D.

Proposition 4.5 Assume that X and Y are distinct members of �, and that D∗
X/K ∗ is not

equivalent to D∗
0/K ∗. If x ∈ X and y ∈ Y then the line xy of Pα has size 2.

First proof Otherwise, according to Corollary 3.4, there is a point x ′ of X such that αX maps
the set of hyperplanes of X on x ′ to the set of blocks of DX on x . Since αX commutes with
the action of F∗ (by (4.1)), it follows that this holds for all x ′ ∈ X . Consequently, αX arises
from an isomorphism of projective spaces, which is not the case by Remark 3.5(2). �

Second, more direct proof We will use the description (4.2). Let x = Kv and y = Kw,
and suppose that xy contains a third point z = K u. Let z ∈ Z = Fu. We first show that
Z ⊂ X + Y . For if not, then Z ∩ (X + Y ) = 0 in view of the definition of �, so there is
some λ ∈ V ∗ that vanishes on X + Y such that λ(u) 
∈ DZ . By (4.2), x and y are on Kλ but
z is not, which is a contradiction.

Thus, u = av + bw for some a, b ∈ F . By Proposition 3.1, a, b 
= 0.
Pick λ,µ ∈ V ◦

F such that λ(v) = 1, λ(w) = 0 and µ(v) = 0, µ(w) = 1. Let c, d ∈ F .
By (4.2),

Kv, Kw I ′K (cλ + dµ) ⇐⇒ c = (cλ + dµ)(v) ∈ DX , d = (cλ + dµ)(w) ∈ DY .

Hence, since z = K (av + bw) is in the line xy, whenever c ∈ DX and d ∈ DY , we have
ac + bd = (cλ + dµ)(av + bw) ∈ DZ by (4.2), so that aDX + bDY ⊆ DZ .

Since 0 ∈ DX , DY , it follows that aDX ⊆ DZ and bDY ⊆ DZ with a, b 
= 0, and hence
aDX = DZ = bDY as these all have the same size. Then aDX + aDX ⊆ aDX . Since
K DX = DX , this means that DX is a K -subspace of X , and hence is a hyperplane in view
of its size. This contradicts the fact that D∗

X/K ∗ is not equivalent to D∗
0/K ∗. �

In the situation of Propositions 3.1 and 4.5, the set � is uniquely determined by the design
D: for two different points x and y, the line of D through them has size q + 1 if they lie in
the same member Fv of � and has size 2 otherwise. In other words, � can be reconstructed
from D. We now show that the same is true for the underlying projective space P, provided
that we further restrict D. Geometrically reconstructing P will easily yield Theorem 1.2.

Proposition 4.6 Assume that all DX are the same set D = Dr
0, where 1 < r < |F |, (r, |F |) =

1 and D∗/K ∗ is not equivalent to D∗
0/K ∗. Then the projective space P can be canonically

reconstructed from the symmetric design D.

Proof We just saw that � is uniquely determined by D. Since lines will not suffice for the
proof, we introduce a technical variation of the notion of line. For any distinct points x and
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y, let x ∈ X ∈ � and y ∈ Y ∈ �, and define the pseudoline ((x, y)) of D as follows, where
H ranges over hyperplanes of P:

((x, y)) = {z | i f x, y I H = Ker(λ), and either

X ⊆ Ker(λ) or Y ⊆ Ker(λ), then z I H}.
Claim Each pseudoline ((x, y)), with x ∈ X and y ∈ Y for different X, Y ∈ �, is just the
set of points of the line x + y of P determined by x and y.

For, let x = K u, y = Kv. Then all points of ((x, y)) are contained in all Kλ such that
λ(u) = λ(v) = 0, so that ((x, y)) ⊆ X + Y. Let z = K (au + bv) for some a, b ∈ F∗. Then
z ∈ ((x, y)) if and only if the following holds: if λ(u) ∈ D, λ(v) ∈ D and λ(u)λ(v) = 0,
then λ(au + bv) ∈ D.

Assume that λ(u) ∈ D, λ(v) ∈ D and λ(u)λ(v) = 0. If a, b ∈ K then λ(au + bv) =
aλ(u) + bλ(v) = bλ(u) or aλ(v) is in D, so that K (au + bv) ∈ ((x, y)).

Now consider z = K (au + bv) ∈ ((x, y)) and suppose that a /∈ K . Choose λ such
that λ(u) 
= 0 = λ(v). Then for each c ∈ D we have cλ(u) ∈ D and cλ(v) = 0, so that
a[cλ(u)] = [cλ](au + bv) ∈ D since z ∈ ((x, y)). Then aD ⊆ D. Since D∗/K ∗ is a
difference set, this contradicts the fact that a /∈ K and proves our Claim.

Each subspace of P not contained in any member of � is the union of those of its lines
not contained in any member of �, and hence is determined from D in view of the above
Claim. Moreover, if x1 and x2 are distinct points of X ∈ �, and if y ∈ Y ∈ � with X 
= Y ,
then the projective line x1 + x2 is just [((x1, y)), ((x2, y))] ∩ X. Consequently, all subspaces
of members of � are uniquely determined from D. Hence, so is P. �

Proof of Theorem1.2 We have seen that P and �i are uniquely determined by Di . Thus,
|F1| = |F2|, and we may assume that � = �i is the same for both designs Di . In partic-
ular, F1 = F2. (N.B.—The fact that |F1| = |F2| follows more directly by considering the
parameters of the Di . However, this does not give us information useful for (i) and (ii).)

Let �̂ denote the set of K -subspaces of V projecting onto members of �. Then the set-
stabilizer of �̂ in �L(V ) is �L(N , F1) (since {X̂ + v | X̂ ∈ �̂, v ∈ V } is the set of lines
of AG(N , F1)). It follows that AutD1 ≤ �L(N , F1)/Z , while we have already noted that
�L(N , F1)/Z acts on D1 (cf. [6,7,10]). This proves (ii).

For (i), since Di uniquely determines P and �, any isomorphism ϕ : D1 → D2 acts on
both P and �.

Let A denote the cyclic subgroup of both AutD1 and AutD2 induced by GF(qd)∗/K ∗.
Then Aϕ = ϕ−1 Aϕ lies in AutD2, which has just one conjugacy class of cyclic subgroups
of order (q N − 1)/(q − 1) (e.g., by Schur’s Lemma). Thus, Aϕg = A for some g ∈ AutD2.

Then ϕg normalizes the subgroup F∗/K ∗ of A. Since ϕg sends blocks of D1 to blocks
fof D2 it sends D1 to D2, and hence induces an equivalence between the difference sets D1

and D2. Thus, (i) holds [10, Theorem 4; 12, pp. 77–78]. �

Remark When N > 2 we could have sidestepped Proposition 4.6 and proceeded as in [10]:
There is a natural structure of projective space induced by Di on �, and hence any isomor-
phism D1 → D2 induces a collineation of that space. However, the proof of Proposition 4.6
is no more difficult than what is needed in this approach, and that proposition is slightly more
general (the case N = 2 is dealt with group theoretically in [10, pp. 66–67]). Moreover, that
proposition gives a rather strong form of an answer to a question appearing in [10, pp. 67–68],
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314 U. Dempwolff, W. M. Kantor

at least in the case of the GMW designs D it deals with: it provides a purely geometric way
to reconstruct the projective space P from D.

5 Proof of Theorem 1.1

Once again fix finite fields F ⊃ K with [F : K ] ≥ 5; let D0 be as before, and let ω denote a
generator of F∗.

Fix an integer n ≥ 3. Let G be a finite group and � a simple, undirected, connected graph
on {1, . . . , n} such that Aut� is isomorphic to G and is not vertex-transitive, and moreover
such that � has more than n edges.

Let VF be an (n + 1)-dimensional vector space over F , with basis v�, v1, . . . , vn and
corresponding dual basis λ�, λ1, . . . , λn ∈ V ◦

F . As in Sect. 4, we will need to consider the
vector space V = VK as well.

We will use five subsets D�, D1, D2, D3, D∞ of F , where, for each m ∈ {�, 1, 2, 3,∞},
(a) K ⊆ Dm ⊆ F and K Dm = Dm ,
(b) D∗

m/K ∗ is a difference set in F∗/K ∗ with associated design isomorphic to PG(FK ),

(c) the five difference sets D∗
m/K ∗ are pairwise inequivalent, and

(d) no difference set D∗
m/K ∗ is equivalent D∗

0/K ∗.

Example Let α�, α1, α2, α3, α∞ : F∗ → F∗ represent five different, nontrivial cosets of
(Aut F) · {β ∈ Aut F∗ | β = 1 on F∗/K ∗} in Aut F∗; extend these to F by sending 0 �→ 0.
Then the sets Dm = Dαm

0 satisfy (a-d).

Each point of PG(VF ) is a set of points of PG(VK ), called a clump in [10]; the set of
clumps is precisely the set � used in Sect. 4. Dually, each point of PG(V ◦

F ) is a set of points
of PG(V ◦

K ), called a coclump.
Let 	 := PG(V ◦

F )\{Fλ�}. For each Fλ ∈ 	, define Dλ ⊂ F as follows (whenever
1 ≤ i, j ≤ n):

(1) Dλ�+λi = D� for each i in the shortest G-orbit on {1, . . . , n},
(2) Dλi = D1,
(3) Dλi +λ j = D2 if i j is an edge of �,

(4) Dωλi +λ j = Dλi +ωλ j = D3 if i j is an edge of �, and
(5) Dλ = D∞ for all other Fλ ∈ 	.

For convenience we say that Fλ has color Dm iff Dλ = Dm .
We need one further design: let D� be a symmetric design having the same parameters as

PG(FK ) but not admitting a nontrivial semiregular automorphism. Such a design D� is known
to exist. (For example, this follows from [9, Corollary 3.5(i)]: since [F : K ] ≥ 4 there is such
a design in which some block is fixed by all automorphisms. We note that the argument used
in that Corollary is just an elementary and standard use of lines of the designs obtained in an
elementary construction of Shrikhande [13].) We assume that the points of D� are the points
of PG(FK ), and that incidence in D� is just inclusion.

Let ρ be an arbitrary bijection from the hyperplanes of PG(FK ) to the blocks of D�. This
determines a map from the hyperplanes of the K -space F to the blocks of D�; we also call
this map ρ.

Define an incidence structure D by taking as points and blocks the points Kv and hyper-
planes Kλ of PG(VK ), defining incidence Kv I Kλ (or “Kv is on Kλ”) if and only if one of
the following occurs (for some c ∈ F∗):
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Kλ 
⊆ Fλ� and λ(v) ∈ Dλ or

Kλ = K cλ� and λ�(v) ∈ (D0c−1)ρ. (5.1)

In particular, K cλ is on all points in ker λ for each λ.
In a series of lemmas we will prove that

Theorem 5.2 AutD ∼= G.

Lemma 5.3

(a) D is a symmetric design.
(b) The coline determined by two blocks of Fλ lies in Fλ. If Fλ 
= Fλ� then each such

coline has size q + 1.

Proof

(a) For any X = Fv and any hyperplane H = Kλ of V define αX : X → X by

(X ∩ H)αX = {K cv ⊆ X | c ∈ F∗ and K cv I Kλ}.
Then D ∼= Pα as in the proof of Proposition 4.3.

(b) This is immediate by the dual of Proposition 3.1. �

Lemma 5.4 Colines determined by blocks from different coclumps contain only two blocks.

Proof This follows exactly as in (the dual of) the first proof of Proposition 4.5 (since each
coline not inside Fλ� meets some coclump 
= Fλ�). However, for completeness we will
imitate the (dual of the) simpler second proof of that proposition.

Let Fλ 
= Fµ, and consider a block K τ 
= Kλ, Kµ in the coline [Kλ, Kµ]. As in the
aforementioned proof, K τ ⊆ Fλ + Fµ, and hence τ = aλ + bµ for some a, b ∈ F .

Assume first that µ = cλ� with c ∈ F∗. Choose any v,w ∈ V such that λ(v) = λ�(w) = 1
and λ(w) = λ�(v) = 0. If x, y ∈ F then K (xv+yw) I Kλ, Kµ iff x = λ(xv+yw) ∈ Dλ and
K y = Kλ�(xv+ yw) ⊆ (c−1 D0)

ρ. The latter conditions must imply that K (xv+ yw) I K τ ,
and hence that τ(xv + yw) ∈ Dτ . Thus, aDλ + b(c−1 D0)

ρ ⊆ Dτ . We have ab 
= 0 by
Lemma 5.3(b), so that aDλ = b(c−1 D0)

ρ = Dτ . This implies that Dτ + Dτ ⊆ Dτ , which
contradicts condition (d).

Assume next that Fλ� 
= Fλ, Fµ. The previous paragraph shows that Fτ 
= Fλ�. This
time choose v,w ∈ V with λ(v) = µ(w) = 1 and λ(w) = µ(v) = 0. As above we obtain
K (xv + yw) I Kλ, Kµ iff x = λ(xv + yw) ∈ Dλ and y = µ(xv + yw) ⊆ Dµ, in which
case τ(xv + yw) ∈ Dτ and hence aDλ + bDµ ⊆ Dτ . This produces the same contradiction
as before. �

Lemma 5.5 Every automorphism of D permutes the clumps, permutes the coclumps, sends
Fλ� to itself, and induces a collineation of PG(VF ).

Proof Lemmas 5.3 and 5.4 characterize all coclumps in 	; hence also Fλ� is determined as
the complement of their union. The clump Fv containing the point Kv is determined as the
intersection of those coclumps all of whose members are on Kv. (Those are precisely the
coclumps Fλ for which λ(v) = 0.) This determines all clumps, i.e., all points of PG(VF ). In
particular, every automorphism of D induces a collineation of PG(VF ).

By Remark 2.4, D induces difference set designs on all Fλ 
= Fλ�, but not on Fλ� in
view of the choice of D�. �
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Lemma 5.6 Every automorphism of D preserves the colors of coclumps.

Proof We call a triple (Kλ, Kµ, Fv) consisting of two blocks and a clump admissible if
Fλ, Fµ, Fλ� are distinct, λ(v) 
= 0, µ(v) 
= 0, and {x ∈ Fv | x I Kλ} = {x ∈ Fv | x I Kµ}.
Note that

A triple (Kλ, Kµ, Fv) is admissible iff Dλ = Dµ and Kλ(v) = Kµ(v). (5.7)

For, if a = λ(v), b = µ(v) and c ∈ F∗, then admissibility states that K cv I Kλ ⇐⇒
K cv I Kµ; by (5.1) this occurs iff ca ∈ Dλ ⇐⇒ cb ∈ Dµ; and this occurs iff Dλ = Dµ

and ba−1 Dλ = Dλ, in which case ba−1 = d−1
1 d2 has |Dλ| − 1 solutions d1, d2 ∈ Dλ, and

hence ba−1 ∈ K , as asserted.

Claim If Fλ has color Dm, then Kλ is in precisely

(cm − 1) · qh − 1

q − 1
· (q − 1) · (qh)n−1 (5.8)

admissible triples, where cm is the number of coclumps of color Dm.

To prove this, we consider any block Kµ with corresponding coclump Fµ 
= Fλ of color
Dµ = Dλ (cf. (5.7)), and count the number of admissible triples (Kλ, Kµ, Fv). Choose
u, w ∈ V such that λ(u) = µ(w) = 1 and λ(w) = µ(u) = 0, so that V = Fu ⊕ Fw ⊕
[ker(λ) ∩ ker(µ)]. Write v = au + bw + z for some a, b ∈ F∗ and z ∈ ker λ ∩ ker µ. Then
(Kλ, Kµ, Fv) is admissible ⇐⇒ λ(au + bw + z)−1µ(au + bw + z) ∈ K ⇐⇒ a−1b ∈
K ⇐⇒ Fv = F(u + kw + y) for uniquely determined k ∈ K ∗, y ∈ ker(λ) ∩ ker(µ).
Since there are cm − 1 choices for Fµ and (qh − 1)/(q − 1) choices for Kµ inside Fµ, and
dim[ker(λ) ∩ ker(µ)] = n − 1, this proves (5.8).

By conditions (1–5) in our construction of D, c� < c1 < c2 < c3 < c∞. (For the first
two inequalities recall that Aut� is not vertex-transitive and that � has more than n edges.)
Thus, the numbers in (5.8) differ for different m.

By (5.1), λ(v) = 0 iff all members of the coclump Fλ are incident with all members
of the clump Fv. Consequently, Lemma 5.5 implies that automorphisms of D permute the
admissible triples and hence, by (5.8), preserve the colors of coclumps. �

Lemma 5.9

(a) G is isomorphic to a subgroup of AutD.
(b) AutD induces a subgroup of Aut� and hence of G.
(c) If γ ∈ AutD induces the trivial automorphism of �, then γ = 1.

Proof

(a) Each element of G naturally acts (dually) on our basis v�, v1, . . . , vn and dual basis
λ�, λ1, . . . , λn , fixing v� and λ�. By (1–5) and (5.1), the resulting linear transformation
induces an automorphism of D.

(b) By Lemma 5.6, each element of AutD induces permutations on the sets of coclumps
of colors D1 and D2, and hence induces permutations of the vertices and edges of �,
respectively. Condition (3) guarantees that this produces an automorphism of �.

(c) By Lemma 5.5, γ induces a collineation of VF . Since n ≥ 3, this collineation is also
produced by a semilinear transformation T of VF .
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We first show that T induces a scalar transformation of VF . By the hypothesis, (Fλi )
γ = Fλi

and hence λi T = aiλi for some ai ∈ F∗ and all i (including i = �). If i j is an edge of �, then
(F(λi + λ j ))

γ = F(aiλi + a jλ j ) has color D3 by Lemma 5.6, and hence ai = a j . Since
� is connected, λi T = aλi for some a ∈ F whenever 1 ≤ i ≤ n. Also (F(λ� + λi ))

γ =
F(a�λ�+aλi ) has color D� by Lemma 5.6, and hence a� = a. Consequently, T (cλi ) = acσ λi

for all i , all c ∈ F , and some σ ∈ AutF .
Let i j be an edge. Since γ fixes Fλi and Fλ j , by Lemma 5.6 it permutes the colors

of the coclumps in Fλi + Fλ j and hence permutes the pair {F(ωλi + λ j ), F(λi + ωλ j )}
of coclumps of color D4. Then F(aωσ λi + aλ j ) = (F(ωλi + λ j ))

γ = F(ωλi + λ j ) or
F(ω−1λi + λ j ). Consequently, ωσ = ω or ω−1, and hence σ = 1 since ω generates F∗.
Thus, T is precisely multiplication by the scalar a ∈ F , as asserted.

In particular, T acts on Fλ� as multiplication by a, so that γ acts fixed-point-freely
on the points of Fλ�. By Remark 2.4, γ induces a fixed-point-free automorphism of D�.
In view of our choice of D�, it follows that γ acts trivially on Fλ�. Thus, a ∈ K ∗, so
that γ = 1. �

Proof of Theorem5.2 The theorem is an immediate consequence of Lemma 5.9. �

Proof of Theorem1.1 By [1] and its proof, there is a graph � behaving as required and having
n ≤ 6|G| vertices (some care is needed here for small G). Also, we choose [F : K ] = 5 in
order to guarantee both the existence of a design D� having the desired properties and the
requirement that there are five different, nontrivial cosets of (Aut F) · {β ∈ Aut F∗ | β = 1
on F∗/K ∗} in Aut F∗. Then the design D in Theorem 5.2 has the parameters of PG(d, q)

with d + 1 = 5(n + 1) ≤ 35|G|. �
We also note the following variation on this theorem:

Theorem 5.10 Let G be any finite group. Then there are infinitely many integers d ≥ 35|G|
such that, for each prime power q, there is a symmetric design D having the parameters of
PG(d, q) such that AutD ∼= G.

Proof First observe that, for every integer m ≥ 6, there is a connected graph �1 on m vertices
whose full automorphism group is trivial. For example, start with an (m − 3)-cycle, pick two
of its vertices v,w, and add an additional edge containing v, and an additional path of length
2 containing w. Then the automorphism group of the resulting graph �1 is the trivial group.

Therefore, if G = 1 and d + 1 = 5(m + 1) ≥ 35 = 35|G|, then our construction (with
[F : K ] = 5 and � = �1) produces the desired design.

Suppose that |G| > 1. By [1] there is a connected graph �′ on n′ ≤ 3|G| vertices such that
Aut �′ ∼= G. Choose d ≥ 30|G| such that 5 divides d + 1, and write d + 1 = 5(n′ + m + 1).
Since 5m = d +1−5n′ −5 ≥ 15|G|−4 ≥ 26, there is a graph �1 as above. Then the graph
� with connected components �1 and �′ has G as full automorphism group. Once again our
construction produces the desired design. �

6 Perturbations of affine spaces

Temporarily let � be a partition of the point set of A = AG(d, q) = AG(V ) by affine
subspaces (as in Sect. 2). For each point or line X ∈ � let αX = 1; for any other X ∈ � let
αX be a parallelism-preserving bijection from the hyperplanes of X to the blocks of an affine
design AX having point set X and the same parameters as AG(X). Also write XαX = X .
Define an incidence structure Aα by using
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points : the points o f A, i.e., the vectors in V

blocks : Hα :=
⋃

X∈�

(H ∩ X)αX f or each hyper plane H of A. (6.1)

As in the proof of Theorem 2.2, it is straightforward to check that Aα is an affine design
having the same parameters as A. However, we do not know interesting partitions � other
than families of parallel subspaces. The following variation on this idea appears to be more
useful.

Consider a family � of nonzero subspaces of V such that
⋃

X∈�

X = V and

X ∩ Y = 0 for any distinctX, Y ∈ �.

(6.2)

Let αX again be a parallelism-preserving bijection from the hyperplanes of X to the blocks
of an affine design AX having point set X and the same parameters as AG(X), but with the
additional requirement that

αX sends hyper planes of X containing 0 to blocks of AX containing 0. (6.3)

Finally, define Hα and Aα using (6.1).

Theorem 6.4 Aα is an affine design having the same parameters as A.

Proof In (2.3) we have |(H ∩ X)αX ∩ (H ′ ∩ X)αX | = |(H ∩ X) ∩ (H ′ ∩ X)|. (By (6.3),
(H ∩ X)αX ∩ (H ′ ∩ X)αX can contain 0 only if (H ∩ X) ∩ (H ′ ∩ X) does). In particular, if
H and H ′ are disjoint then so are Hα and H ′α .

Consequently, Aα has constant block size, has a parallellism, has a constant number of
points common to any two nonparallel blocks, and has the same parameters as an affine space.
Hence, an elementary counting argument (see [2, Lemma 8.2 and Theorem 8.8]) completes
the proof. �

Variations:

1. We could have used any affine design having a partition into suitable subsets that inherit
the structure of affine designs.

2. We could have used a family � of subspaces whose union is all points and such that
X ∩ Y = W is the same subspace for all distinct X, Y ∈ �. We would also require that
the maps αX send hyperplanes on x to blocks on x for each point x in W . This produces
an affine design as before.

7 Affine versions of GMW designs

Let K = GF(q), F = GF(qh), VF of dimension N , �, X = FvX , D0 and DX be as in
Sect. 4. In particular, D0 = T −1(0) where T : F → K is the trace map; we also need the set
�0 := T −1(1).

Let α : {Fλ | 0 
= λ ∈ V ◦} → Aut(F∗) be an arbitrary map, and extend each αλ = αFλ

to F by 0αλ = 0. Define an incidence structure Aα by using

points : the vectors inV

blocks : (Kλ)α := λ−1(Dαλ

0 ) and (7.1)

[λ]α := λ−1(�
αλ

0 ) whenever 0 
= λ ∈ V ◦.
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Note that (Kλ)α = (Kλ′)α iff λ′ = cλ for some 0 
= c ∈ K , while [λ]α = [λ′]α iff λ′ = λ.
Moreover, if λ 
= 0 then {Kλ, [kλ]α | k ∈ K ∗} is a parallel class: a partition of the points
into pairwise disjoint blocks.

Proposition 7.2 Aα is an affine design having the same parameters as AG(hN , q).

Proof We will use Theorem 6.4. Clearly � = {Fv | 0 
= v ∈ V } satisfies (6.2). We need to
verify (6.3). Take X = FvX ∈ � and 0 
= λ ∈ V ◦ and set c = λ(v). Then it is easy to check
that

FvX ∩ (Kλ)α =
{

FvX if c = 0
c−1 Dαλ

0 vX if c 
= 0

FvX ∩ [λ]α =
{∅ if c = 0

c−1�
αλ

0 vX if c 
= 0.

The sets c−1 Dαλ

0 and c−1�
αλ

0 are obtained from the hyperplanes of the affine space AG(F) =
AG(h, q) by applying the permutation αλ of the points. It follows that the map sending
X ∩ Kλ �→ X ∩ (Kλ)α and X ∩ [λ] �→ X ∩ [λ]α preserves parallelism and satisfies (6.3).

�

Remark 7.3 Each Hadamard design produces an affine Hadamard 3-design by adjoining one
further point. In particular, any GMW design obtained as in Sect. 4 with q = 2 produces an
affine design with one more point. Therefore, in this case we do not need to use the above
construction to “extend” such designs, and hence we will assume that q > 2.

Lemma 7.4 Let x and y be distinct points of Aα , where 0 
= x ∈ X ∈ � and y ∈ Y ∈ �.

(i) If X = Y then the line xy has size q and lies in X. In particular, this holds for every
line through 0 : each such line has the form K x ′ for some x ′ ∈ X.

(ii) If X 
= Y, y 
= 0 and |xy| > 2, then (3.3) and Corollary3.4 hold.
(iii) If X 
= Y, y 
= 0 and D∗

X/K ∗ is not equivalent to D∗
0/K ∗, then |xy| = 2.

Proof These are proved exactly as in Sect. 3 and Proposition 4.5. �

Proof of Theorem1.3 Assume that all αλ arise from the same automorphism β : x �→ xr ,

where (r, q(qh − 1)) = 1. Then the design A(r) in the theorem is just Aα .

(i) The parameters are clear, while the isomorphism assertion will follow once we prove (v).
(ii) By Lemma 7.4(i), lines contained in members of � have size q .

(iii) By Lemma 7.4(i), the stated lines all have the form Kv for 0 
= v ∈ V . Hence, the
indicated incidence structure is exactly the one in Sect. 4, using the difference set
D = Dr

0.
(iv) We already observed this.
(v) Recall that q ≥ 3. By Lemma 7.4(i, iii), the q-point lines of A(r) are the lines in mem-

bers of �. Consequently, every automorphism fixes 0, since this is the intersection of
the members of �.
By (iii) and Sect. 4, we have AutA(r) ≤ �L(VF ). In order to prove the reverse inclu-
sion, let g ∈ �L(VF ) and let σ = σg be the associated field automorphism. Then
σλg−1 is a linear functional V → K . We claim that g sends [λ]α to [σλg−1]α:

λ(v) ∈ �
β
0 ⇐⇒ σλg−1(gv) = λ(v)σ ∈ �

βσ
0

⇐⇒ σλg−1(gv) ∈ (�σ
0 )β = �

β
0 (7.5)

⇐⇒ gv ∈ [σλg−1]α
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(since σ commutes with β, is additive, and sends �0 = T −1(1) to itself). Similarly, g
sends (Kλ)α to (Kσλg−1)α . Therefore, g ∈ AutA(r), and hence AutA(r) = �L(VF ).

(vi) One direction is clear. By (v), any isomorphism A(r1) → A(r2) must send 0 to 0 and
hence induces an isomorphism of the GMW-designs in (iii). Now apply Theorem 1.2.

�

Remark 7.6 Relationship with relative difference set designs and their automorphism groups.
Let � be a relative difference set of size qh−1 in F∗ relative to K ∗. This means that |�c ∩�|
is 0 if 1 
= c ∈ K ∗ and qh−1 if c ∈ F − K . This produces an incidence structure A′

�

whose point set is the nonzero elements of V = F N and whose blocks are the sets λ−1(�),
0 
= λ ∈ V ◦

F . It is straightforward to check that any two distinct blocks meet in qh(N−2)

points unless the corresponding linear functionals are linearly dependent over K , in which
case the intersection is empty.

Identify V with GF(q Nh). Then it is easy to check that A′
� admits the automorphisms

v �→ cv, v ∈ V ∗ (compare (7.7) below). It follows that each block of A′
� is a relative

difference set in V ∗ with respect to K ∗.
It is also easy to check that there is an affine design A� underlying A′

� having the same
parameters as AG(hN , q): include the zero vector as a new point and use the point sets
V − ⋃

c∈K ∗(cλ)−1(�), 0 
= λ ∈ V ◦
F , as new blocks. There is an affine design determined

in the same manner by D, with point set F and blocks �c and (F − K ∗�)c, c ∈ F∗.
Then the larger affine design A� can also be described as follows, using a specific linear
functional, namely the trace map T̂ : V → F : the blocks of A� are the sets

(
T̂ −1(�)

)
c and(

T̂ −1(F − K ∗�)
)
c, c ∈ V ∗.

However, this description focuses only on one cyclic automorphism group and hence loses
some of the rich structure of these affine designs.

Namely, GL(VF ) ≤ AutA′
� ≤ AutA�. The second inclusion is obvious, so consider any

g ∈ GL(VF ), sending v �→ gv. Then g sends λ−1(�) to (λg−1)−1(�):

λ(v) ∈ � ⇐⇒ (λg−1)(gv) ∈ � ⇐⇒ gv ∈ (λg−1)−1(�). (7.7)

(This is essentially the same calculation as in (7.5).) In particular, these designs admit many
cyclic automorphism groups acting regularly on both the points 
= 0 and the blocks not on
0; in fact, analogues of Theorem 1.3(i)–(iv) hold for A�. Moreover, �L(V ) ≤ AutA′

� if �

is invariant under all automorphisms of F ; this is the case when � = T −1(1) for the trace
map T : F → K ; and this produces affine versions of GMW designs.

The above examples appear implicitly in [12, p. 77]. However, no mention is made there
of affine designs (or larger automorphism groups).

8 Automorphism groups of affine designs

We can use the ideas in Sect. 5 to give a simpler proof of a version of another result in [9]:

Theorem 8.1 Let G be any finite group. Then for some integer d < 35|G|, and for infinitely
many integers d ≥ 35|G|, for each prime power q > 2 there is an affine design A having
the parameters of AG(d, q) such that AutA ∼= G.

Proof Let G, F, K , D0, V , {v�, v1, . . . , vn}, {λ�, λ1, . . . , λn}, αm and Dm = Dαm
0 (for m ∈

{�, 1, 2, 3,∞}), and D : {Fλ | 0 
= λ ∈ V ◦} → {D�, D1, D2, D3, D∞} be as in Sect. 5. The
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integer d we use will be the one already used in the proofs of Theorems 1.1 and 5.10. Write
�′

m = �
αm
0 .

The hyperplanes of AG(FK ) can be taken to be of the form D0a and �0a, a ∈ F∗. Let
A� be an affine design with the parameters of AG(FK ) and point set F such that no automor-
phism has precisely one fixed point. The existence of such a design again follows from [9].
Let ρ denote a parallelism-preserving bijection from the blocks of AG(FK ) to the blocks of
A� such that (6.3) holds.

Define an incidence structure A by using

points : the vectors in V

blocks : (Kλ) and [λ] whenever 0 
= λ ∈ V ◦,

with incidence defined by

v I (Kλ) ⇐⇒
{

λ(v) ∈ Dλ if Kλ 
⊆ Fλ�

λ(v) ∈ (D0c−1)ρ if Kλ = K cλ�

v I [λ] ⇐⇒
{

λ(v) ∈ D′
λ if Fλ 
= Fλ�

λ(v) ∈ (�0c−1)ρ if λ = cλ�.

The argument in Sect. 6 shows that A is an affine design with the parameters of AG(VK ).
As in Sect. 7, whenever 0 
= v ∈ V the line 0v is Kv, and there is some w ∈ V such that
vw = {v,w}. Since q > 2, this characterizes 0 as the only point such that all lines through
it have size q . The 1-dimensional K -subspaces of V are precisely the lines through 0, and
the blocks through 0 are precisely those of the form (Kλ). Consequently, starting with A we
can geometrically reconstruct the design D of Sect. 5. On the other hand, the faithful, linear
representation of G on V used in Sect. 5 maps into AutA.

Thus, G ≤ AutA. Assume that G < AutA. Then by Sect. 5, some 1 
= g ∈ AutA fixes
0 as well as all lines and all blocks through 0. This shows that g induces on each clump Fλ

multiplication by a scalar from K ∗. The same argument as in Sect. 5 shows that then g acts
on V as multiplication by a scalar.

Since g fixes the blocks (K aλ�), the blocks [aλ�] parallel to these are permuted among
themselves by g. The intersections (K aλ�)∩ Fv� and [aλ�]∩ Fv� form a design isomorphic
to A� and invariant under g. This contradicts the choice of A�. �
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