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1. INTRODUCTION

A group is said to have a split BN-pair of rank 1 if it has a homomorphic
image G having a (faithful) 2-transitive pcrmutation representation on
a set £ such that, for « € 2, G, has a normal subgroup O regular on £ - «.
That is, Q is transitive on £2 — «, and no nontrivial element of Q fixes a
point of £ — .

TrrOREM 1.1.  Let G be a finite group 2-transitive on a set 2. Suppose that,
Jor o€ 2, G, has a normal subgroup Q regular on 2 — a. Then G has a normal
subgroup M such that M < G < Aut M and M acts on 2 as one of the following
groups in its usual 2-transitive representation: a sharply 2-tramsitive group,

PSL(2, 9), Sz(g), PSU(3, ¢), or a group of Ree type.

For | 2| odd, this result has been proved by Shult [31]. The purpose of
this paper is to prove Theorem 1.1 when | £ | is even.

We remark that the groups listed in Theorem 1.1 all satisfy the hypotheses
of the theorem. Also, sharply 2-transitive groups have been completely
classified by Zassenhaus [44].

This theorem is one of a number of results of a similar nature. Zassenhaus
groups are easily seen to satisfy the hypotheses of the theorem. The classifica-
tion of Zassenhaus groups, due to Zassenhaus [43], Feit [10], Ito [20] and
Suzuki [33], is implicitly required in the proof. Suzuki [34-36] has considered
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other special cases of Theorem 1.1. Further special cases are found in [15, 21,
23, 24 and 26]. We also note that recent results of Shult [30] and Kantor,
O’Nan and Seitz [22] are similar to Theorem 1.1, and led to it.

The theorem can be viewed in a different manner. Tits [38] has classified
all finite groups having a faithful irreducible BN-pair of rank 3. Theorem 1.1
extends this classification to finite groups having a split BN -pair of rank [.
Very recently, P. Fong and G. Seitz have used Theorem 1.1 in order to
study finite groups having a BN-pair of rank 2.

We now indicate the approach used in the proof of Theorem 1.1 when £ |
is even. The basic idea is to use induction in order to obtain the structure of
the 2-Sylow subgroups of G. Once this has been accomplished, results of
Alperin, Brauer and Gorenstein [1, 2] and Walter [39] can be applied.

The study of the 2-Sylow subgroups of G is based primarily on a study of
the fusion of 2-clements of G. Standard fusion and transfer arguments are
applied repeatedly. A useful tool is the fact that G, controls the fusion of
those of its subsets which fix at least 3 points.

Another basic too] is the Brauer-Wielandt Theorem [41], which is applied
to Klein groups in G5 acting on Q. The structure of Q is studied only when
it 1s clear that either Q) is a p-group or some element of G5 of prime order 1s
fixed-point-free on Q; the Feit-Thompson Theorem [11] is never applied
to Q. We also do not use Suzuki's method of generators and relations [33,
34, 35].

The structure of the paper is as follows. Sections 2 and 3 contain back-
ground material. In Section 4 we begin the proof of Theorem 1.1 by taking a
counterexample of minimal order. Then | £ | 1s even by Shult’s result [31].
This section contains the fusion result mentioned above, together with an
inductive lemma to be used throughout the proof.

By a result of Bender [4], we may assume that G, has even order. Let 1 be
an involution in G4 . The action of C(f) on the fixed points of ¢ might be
solvable, of unitary or Ree type, or contain PSL(2, g) in its usual representa-
tion. These possibilities are further divided as follows: the action is solvable
of degree 24 (Section 5); ¢ fixes just 2 points (Section 6); the action is of
unitary or Ree type (Section 7); the action contains PSL(2, ¢) (Sections 8, 9).
In the latter case, Section 9 considers the possibility that C(#) has SL(2, ¢)
as a normal subgroup. In Section 8, it is assumed that, for any involution ¢
in G, the action of C(t) on the fixed points of ¢ contains PSL(2, ¢) for some
odd prime power ¢ depending on ¢, and that in each case C(¢) has PSL(2, ¢)
as a normal subgroup. Within this framework, there are also a large number of
subcases which must be considered.

Notation. Most of our notation is standard. All groups will be finite. If
G is a group, G = G — {1}, GY is the derived group of G, ¢(G) is the
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Frattini subgroup, O(G) is the largest normal subgroup of odd order, and
Aut G is the automorphism group of G. If G is a p-group, 2,(G) =
(xeG|a? = 1).

IfxeGand YC Gthen x¥ = {&¥ |ye Y}. If x, y € G we write x ~ y, or
x ~ yin G, when & and y are conjugate in G, and we write & ~< y otherwise.

If X C H < G, then X is weakly closed in H (with respect to G) if g€ G
and X¥C H imply that X = X¥.

If p is a prime and m a positive integer, m,, will denote the p-part of m.

We use Wielandt’s notation for permutation groups [42]. If G is a permuta-
tion group on 2 and « € 2, G, is the stabilizer of a. If a £ € £, then G4
is the stabilizer of o and §, while Gy, g is the setwise stabilizer of {«, p}. If
X CG,4C 802and 4% = 4, then X< denotes the set of permutations induced
by X on 4. Our notation for the pointwise stabilizer of a subset of £ will,
however, differ from that of Wielandt (see Section 4). G is said to be semi-
regular on 2 if only 1 € G fixes a point of £2. G is regular on 2 if it 1s transitive
and semiregular on £2. We shall abuse this terminology slightly: if € G is an
involution, then ¢ will be called a regular involution if {#> is semiregular on £2.

We shall employ a useful but unusual convention concerning equality of
certain types of groups. The following are typical examples. Let ¢ be an
involution in a permutation group G, 4 its set of fixed points, and Cy(¢) a sub-
group of C(#). Then, we write Cy(t) = SL{(2, ¢) to mean that C(t) ~ SL{(2, g)
and that C(¢t)4 acts on 4 as PSL(2, ¢) in its usual 2-trapsitive permutation
representation. Similarly, we write Cy(t)4 = PSU(3, ¢) to mean that Cy(z)?
acts on 4 as PSU(3, ¢) in its usual 2-transitive permutation representation,

2. BACKGROUND LEMMAS

The Brauer—-Wielandt Theorem is basic to our approach:

Levma 2.1 (Wielandt [41]). Let {t,u> be a Klein group acting on a
group X of odd order. Then

(i) X = Cy(t)Cx(u)Cx(tu); and
(1) [Cx(O Cx(@)] [Cx(tw)] = | X T{Cx(<E w)) 2.
LemMa 2.2. Let S be a 2-Sylow subgroup of a group G. Suppose that
Sy <1 S, where S|Sy is abelian, and let x € S — S, . Assume that, for eachg € G

and each integer m, if (x™)9 € .S then (¥ = x™(mod S,). Then G has a
normal subgroup G, such that x € G — G, and G|G, is a 2-group.

Proof. Compute the image of x under the transfer map G — S/S,.

Lemma 2.3, Let S be a 2-Sylow subgroup of a group G and let Sy <1 .S
with SIS, cyclic. Suppose that x is an involution in S — S, conjugate to no
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element of Sy . Then G has a normal subgroup G, such that x¢ G — G, and
G|G, is a 2-group.

This is clear from Lemma 2.2, Lemma 2.3 is essentially Thompson’s
transfer lemma.

Liemya 2.4 (Burnside [8, p. 155]; [14, p. 203]).  If S is a 2-Sylow subgroup
of a group G, then N(S) controls fusion in Z(.S).

LEmMMA 2.5 (Burnside {8, p. 156]; [14, p. 46]). If S is a 2-Sylow subgroup
of a group G, t is an involution in Z(S), and t ~ t; € .S — {t), then there is an
elementary abelian subgroup X of S such that t € X and N(X) has an element
of odd order moving t.

LemMMA 2.6. Let G be 2-transitive on a set 2, and let o, B €82, o # B.
Suppose that t is an involution central in a 2-Sylow subgroup of G,z and such
that C(t) is 2-transitive on the fixed points of t. If S is a 2-Sylow subgroup of C(¢)
such that Sy, g ts a 2-Sylow subgroup of C(1), gy, then S contains a conjugate
1= (aff) - of L.

Proof.  As C(t) has an element interchanging « and 8, Sy, g is a 2-Sylow
subgroup of Gy, 4 . Since G contains a conjugate (af)... of ¢, the lemma
follows.

Levma 2.7 ([22, Lemma 3.4]). Let X be a 2-group and Y <1 X, where
| X]Y'| =k 2= 4. Let A be a subgroup of Aut X of odd order centralizing Y
and transitive on (X|Y)*. Then either
(1) There is a unique A-invariant subgroup X, of X such that
X=X «Y;o0r
(1)) & == 4 and there is a unique A-invariant subgroup X, of X such that
X, is quaternion of order 8, X = XY, | X,NY | =2and [X{,Y] = L.

3. PSL(2, ¢), PSU(3, ¢), anp Grouprs oF Ree Tyee

In this section we have compiled the properties of the groups of even degree
characterized by Theorem 1.1 which will be required later.

Levma 3.1, Set G = PSL(2, q), where q is odd. Let G be PI'L(2, q) in its
usual 2-transitive representation of degree g -~ 1 on a set §2.
(i) G = AutG.
(il) G|G has an abelian 2-Sylow subgroup.
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(iii) If q is not a square then | G|G |, = 2.

(iv) If qis a square and o, B € 82, o # B, then a 2-Sylow subgroup of G,
is metacyclic.

(v)  Each involution in G — PGL(2, q) fixes /q -+ | points of 2.

(vi) If qis asquare then G is a subgroup of index 2 in precisely 3 subgroups
of G : PGL(2, q), G{a> with a an involution in G -- PG1.(2, q), and PGL(2, q),
which acts on 2 as a Zassenhaus group.

(vii) If g > 3, the covering group of PSL(2, g) is SL.(2, ¢), unless ¢ = 9.
The Schur multiplier of PSL(2, 9) has order 6.

Proof. It is easy to check (i)~(1v). For (v) and (vi), see Fong and Wong
[12, Section 1]. For (vii), see Schur [29].

Lemma 3.2. Let G be PSU(3, q) in its usual 2-transitive representation of
degree g® + 1 on a set 2, where qis odd. Let a, B € 2, o« 7 B.

(1) G, has a normal subgroup Q of order ¢° regular on 2 — «.

(i) Z(0) = D(Q) = OV is elementary abelian of order q; G,z is
irreducible on Q|Z(0Q).

(i) G has a single class of involutions.

(iv) If tis an involution in G , then Cy(t) = Z(Q) and C(t) > Cy(t) =
SL(2, q), where C(t)]Cy(t) is cyclic.

(v) A 2-Sylow subgroup S of G is quasidihedral if q = 1(mod 4) and
wreathed Zy. \ Zy if ¢ = 3(mod 4).

(vi) Set G = Aut G. Then G is a permutation group on 8.

(vi) G — G contains a single class of involutions of G, each of which
fixes ¢ -1 points.

(vi) If ae G,y — G5 is an involution, then Cgla) — PGL(2, q) and
Cola) 0 Z(0) = 1.

(ix) A central extension of G by a 2-group splits.

Proof. (1)—(vi) These are easy to verify.
(vii)~(viii) G/G has a cyclic 2-Sylow subgroup (Steinberg [32]). Let

aeG,, — G, be induced by the involutory field automorphism of GF(g?).
Then Cg(a) is the full 3-dimensional orthogonal group over GF(q), that is,
Ci(a) = PGL(2, g).

G acts on the projective plane PG(2, ¢2). An involution xe G — G is a
collincation of this plane, and thus fixes ¢ + 2 or ¢ 4+ ¢ + 1 lines. If x fixes
no points of £2, then x fixes precisely (¢* -~ 1)/(g -+ 1) lines, each meeting 2
in g + 1 points, a contradiction.
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Now assume that x € G,;. Let {¥) be the 2-Sylow subgroup of G4, so
'y =(g>— 1)y. If ¢ =1 (mod 4), then y~1y* == y*=! is an involution. If
g = 3 (mod 4), then yy* = y**! is an involution. In either case, a 2-Sylow
subgroup of G,; has a single class of involutions not in G,,. This implies
(vit) and (viit).

(ix) Let H be a central extension of G by a group <z of order 2. Let ¢
be an involution in /[{ — {z) and set L .- Cy(t). Then L/{2) contains a
characteristic subgroup E/<{z) isomorphic to SL(2, g) such that L/E 1s cyclic.
By Lemma 3.1 (vii) it follows that £ has a characteristic subgroup E, such
that I = I, < {z>.

A Sylow 2-subgroup .S of Ny(<t, z) is 2-Sylow in H. Set S, = SN E,.
Then S > S, , S/S, is abelian, and 2 ¢ .5, . Now Lemma 2.2 implies that //
has a normal subgroup H, of index 2, and If —= Hy < {z).

We define groups of Ree type by means of the axioms of Ward [40].
Alternative characterizations are found in [15, 22, 28, 39].

LemMma 3.3, Let G be a group of Ree type, in its usual 2-transitive repre-
sentation on a set 2, | Q]| =¢34 1,9 =324 q = 0. Let o, B 82, o £ B.
(1) A 2-Sylow subgroup S of G is elementary abelian of order 3.

(i) C(S) = S and N(S)/C(S) acts on S* as a Frobemius group of
order 21.
(i) G, has a normal subgroup Q regular on & — o. If g >> 3, then Q has
class 3, Z(Q)| = ¢, QW = @(Q), and | D(Q)] = ¢*.
(iv) G.pis cyclic of ovder q — 1.
(v) An involution t € G, fixes q - 1 points, and is the only element of
(G.p)* fixing more than 2 points.
(vi)y C(1) = <ty x PSL(2, q).
(vil) Co(YNZ(Q) == 1, and if q >> 3, then Co(t)Z(Q) = D(O).
(vill) Gissimpleifq > 3, and if ¢ = 3, then G ~ PI'L(2, 8).
(ix) Aut G/G has odd order.
(x) A central extension of G by a 2-group splits.

Proof. (1)—(viii) Sec Ward [40].

(ix) This has been checked for Ree groups by Ree [27]. The following
proof for groups of Ree type is in the spirit of later sections. The notation is
that of Section 4. We may assume that ¢ >> 3.

Aut G acts on Q. Let x € Aut G — G, where { x| = 2 or 4 and x> € G. We
may assume that x centralizes the involution # in G,;. Let G be G{x}, 4
the fixed points of ¢, and ¥ the subgroup of G fixing each point of 4. Then
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| W |is either 2 or 4. If | W | = 4 then G, has a central 2-Sylow subgroup of
order 4. If | W| = 2, then (Cy(t){x>)? = PGL(2, ¢) and again G, has a
central 2-Sylow subgroup of order 4.

Now O(G,p) is irreducible on Q/P(Q), 4 1 (;Q/P(O)] — 1), and ¢ is fixed-
point-free on Q/@(Q). Thus, a 2-Sylow subgroup of G,; must be a Klein
group, say <{t, uy. As G is irreducible on Q/@(Q), it follows that u or fu is
in C(0), and hence fixes each point of £2, a contradiction.

(x) If X is a 2-Sylow subgroup of a central extension H of G by a group
(%) of order 2, then N (.X) has a subgroup of order 7 transitive on (X/{z))".
By Lemma 2.7, X splits over {z», and consequently H splits over {(z»

[14, p. 246].

4. BecINNING OF Proor

Assume that G is a group of least order satisfying the hypotheses but not the
conclusions of Theorem 1.1. Thus, G is 2-transitive on £, | 2| = n is even,
and G, has a normal subgroup Q of odd order n — | regular on 2 — a.

Lemma 4.1.
(1) G has no proper normal subgroup containing Q.
(it G has no normal subgroup of index 2.
(iii) G contains no odd permutations.
(iv) G has no regular normal subgroup.
(v) G has an involution fixing at least 4 points.

(vi) For each involution u, the number of fixed points of wu is =n
(mod 4).

Proof. (i) Let G > K >= Q. If K has a unique normal subgroup M as in
Theorem 1, and clearly Co(M) = 1, so that G < Aut M and G satisfies the
conclusions of Theorem 1.1. If M is not unique, then K has a unique minimal
normal subgroup L, and M = LQ is a normal sharply 2-transitive subgroup
of G.

(i) As|Q |is odd, such a subgroup would contain Q.

(i) This is clear by (ii).

(iv) Let K be a regular normal subgroup of G. Then KQ is a sharply
2-transitive normal subgroup of G, contradicting (i).

(v) If | G, is odd, then G is solvable or contains a normal subgroup
PSL(2,¢), ¢ == 3 (mod 4), containing Q (Bender [4]). If some involution
fixes 2 points, but no involution fixes more than 2 points, then G has a normal
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subgroup PSL(2, ¢) containing O, or G is A, in its usual representation
(Hering [17]). None of these possibilities can occur.

(vi) By (iii), # is an even permutation, hence has an cven number of
2-cycles.

An involution fixing no points of 2 will be called a regular involution.

Notation. Let « and 8 be distinct points of .
Let X be any subset of G fixing at least two points. Define:

A(X) == set of fixed points of X;
N(X)4&) == permutation group induced by NV(.X) on 4(X);
C(X) -~ (Con X) o £ A(X)
Wy = pointwise stabilizer of 4(.X') in N(X).

For an involution denoted ¢, we write 4 = A(f)and W = W, .

LevMa 4.2, If X is a subset of G fixing at least 3 points, then Cy(X)4X0)
is a 2-transitive group satisfying the hypotheses of Theorem 1.1 with |4(X)| even.

Proof. We may assume that o€ 4(X). If 8, y € H(X) — «, then y = 8%,
heQ. Let xc X. Then gt « 8% == 8% implies that

[h_l’ x_l] = Gmﬁ N [Q: (;m] § QB == |

Thus, h € Cy(X), so that Co(X) is transitive on A(X) — «. As « is any point
of A(X) and Cy(X) <0 N(X),, Cy(X)4X 1s 2-transitive and satisfies the
hypotheses of Theorem 1.1. Finally, [4(X)] = |Co(X)} + 1 is even as
PO 1 is odd.

Levva 4.3, Let X and Y be subsets of G, each fixing at least 3 points.
If X and Y are conjugate in G then they are conjugate in G, .

Proof. Let YV = X7 geG. Then «, 5, of, frcd(Y). Let o = q,
B¢% = B, where i e Cy(Y) (Lemma 4.2). Then ghe G5, and X9 = V" = Y.

LemMa 4.4, Let X be a subset of G* fixing at least 3 points. Then
[Co(X), Wy] = 1, and one of the following holds.

(1) JAX)] == 2% | CyX)Y*D | = 292% — 1), and C(X) is a sharply
2-transitive group.

(1) 1A(X)! = ¢ + 1 and C(X) = PSL(2, q) for some odd prime power q.

(i) [AX)| = q + 1 and Cy(X) = SL(2, q) for some odd prime power q.

(W) AX) = ¢ - 1 and Cy(X) is a central extension of PSU(3, q) by

a group of odd order, where q is an odd prime power.
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(v) 14(X) = ¢+ 1 and C(X) is a central extension of a group of Ree
type by a group of odd order, where ¢ — 321,

Proof. Let XCTG,. Then [Cyo(X), W] <ONnW,=1 As N(X)
normalizes Wy , we have [Cy(X), W] == 1. By Lemma 4.2, the minimality of
| G|, and the definition of Cy(.X), it follows that C(X)4X) is solvable of
order 272 — 1), Cy( X)X = PSL(2, g), C(X)#Y = PSU(3, ¢), or C,(X)4X)
1s of Ree type.

Clearly, Co(X )X &~ Cy(X)/Co(X) N Wy and Cy(X) N Wy < Z(Cy(X)).
From the definition of Cy(.X) it follows that Cy(.X) has no normal subgroup of
index 2.

If Cy(X)4 is unitary or of Ree type, then (iv) or (v) holds by
Lemmas 3.2(ix) and 3.3(x). Suppose that Co (X)) —= PSL(2, ¢) with ¢ > 3
and ¢ odd. In this case we have Cp(X) <X Cy((X)D, so that Cy(X) == C,(X)V.
Thus, 1f neither (i1) nor (iii) holds, then Co(X) is a homomorphic image of the
covering group of PSL(2, 9) (Lemma 3.1(vii)). However, in this case, if Pis a
3-Sylow subgroup of CyX),, then P = Cy(X) x (PN Wy), so that a
result of Gaschiitz [14, p. 246] implies that Cy(X) splits over PN Wy,
a contradiction.

Finally, suppose that C (.Y )44 is solvable of order 27(2¢ —— 1). Then Cy(X)
has a normal 2-Sylow subgroup R such that R4 is regular. It follows that
Cy(X) = R Cy(X). Using Lemma 2.7 and the fact that Cy(X) has no
normal subgroup of index 2, we have | RN W, | -2 2. Consequently,
(1), (ii), or (iii) holds.

Lemma 4.5. If {t,uy is a Klein group in G,z with t ~u ~ tu,
1At w)) = 2, and Cy(t)2 = PSL(2, q), then Q is elementary abelian and
no==g® -+ .

Proof. t~u~tuin G,z (Lemma 4.3). As {t, u) acts on Z(Q), one and
hence all involutions in {t, %) centralize elements of Z(Q)*. However, Cy(t),5
is irreducible on Cy(f). Thus, Cy(t) < Z(Q), and it follows that O < Z(Q).
Also, n = ¢3 + 1 follows from Lemma 2.1.

LevmmMAa 4.6, Let t be an involution in Gz such that C(t),; contains a
2-Sylow subgroup of G,z . Then C(t) contains a 2-Sylow subgroup of G provided
that either

(1) 712<[A]2,07
(1) Q s a p-group of order p°, |Cy(t)| = p*, and either b is odd or a

s even.

Moreover, in either case ny = | 41,
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Proof. (1) |Gy =my| Gygip < [d [ Ct)sgly = | C@)ly. Moreover,
ny = | 4l,.
(i) If @ is even then n, == 2 = {4 ,. If a is odd and & is odd then

ny = (p D = (" 4 1)y

S. THE SoLvaBLE (CASE

TueoreMm 5.1. Let t be an involution in G 4 such that C()4 is solvable and
{41 > 2. Then

(1) 14| =4; and
(2) if G,y contains no Klein group, then Ci(t) = SL(2, 3).

Proof. Suppose the theorem is false. Let | 4! =k == 4. If £ ==4, we
are assuming that G4 contains no Klein group and Cy(t) = A4, .

If there is an involution z € G, fixing just 2 points, then 2 € Z(G,,). Also,
2 # t and 24 fixes just 2 points. Then ! 4 | = 4 and G,; has a Klein group,
a contradiction. Thus, there is no such involution 2.

Write k = 27, f 2= 2.

Lrmma 5.2, Ct) has a normal 2-Sylow subgroup T of order k. If W contains
no Klein group then T % (&) is the unique elementary abelian subgroup of C(t) of
order 2k. If t7is in T' x {(t>, then g is in N(T{t}).

Proof. 'The first assertion follows from Lemma 4.4 and our conditions on ¢.
Suppose that W contains no Klein group, and let S be a 2-Sylow subgroup of
C(t). If & == 4, then G4 contains no Klein group, and the second assertion is
clear.

Suppose that & > 4. If .S — T(S N W) contains no involution, the
uniqueness of T<{t) is again clear. Let u€ S — T(S N ) be an involution.
Since C(1)? is solvable, it is a subgroup of the group of 1-dimensional affine
semilinear mappings on GF(k) (Huppert [19]). By hypothesis, u4 == 1, so
that u4 acts as a field automorphism. Thus, u4 fixes +/k points, that is,
'Cr®)] = VE As T(S N\ W) = 1" % (SN W), the second assertion follows.

If 7€ T X <), then (T<t>y ™ < C(1). By the uniqueness of Tt} we
have g € N(T{t)).

Lemma 5.3. Suppose that k >4, W contains no Klein group, and
Tty -~ {t> contains conjugates of t. Then:

(1) T<t) contains k conjugates of t, namely, the elements of Tt;
(i) N(TXt)) is tramsitive on Tt; and
(i) <t is a 2-Sylow subgroup of W.
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Proof. (i) and (ii). If 7<¢) does not contain % conjugates of ¢ it contains
2k — 1 such conjugates and, by Lemma 5.2, N(T{t>) is transitive on (T<{t>)*.
Then H = N(T{))/C(T<{t)) is a linear group acting on (Tt>)* as a
primitive group of degree 2k — 1 with subdegrees 1, # — 1, 2 — 1. | H| is
odd (Wielandt [42, p. 8, Ex. 3.13]), so that H is solvable (Feit-Thompson [11]).
Let M be a normal subgroup of H regular on (7T<{t))*. Then M is fixed-
point-free on 7<t>, so that A is cyclic and H/M = Aut GF(2k). Now
27 — 1 = |Cy(2); divides f +- 1, whereas f > 2.

Thus, 7¢t> has k conjugates of t. Let t7€ T, ge . By Lemma 5.2,
gEN(T). However, T9 2= T and | TV T91 > k + 1, whereas T<t> has
only & conjugates of 7. This contradiction implies that 7% is the set of
conjugates of ¢ in T{¢).

(iif) A 2-Sylow subgroup of C(7<t}>) has the form 7 >} with Y
2-Sylow in . Let X be a 2-Sylow subgroup of N(7¢)>) normalizing 7 > Y.
Since | Tt| = k = 2f, X is transitive on Tt. If | 17| = 2, then ¢ is the only
involution which is a square in 7 X Y, so that X :Z C(#), a contradiction.

For purposes of Lemmas 5.4 and 5.5, we recall that we are assuming that,
if G5 contains a Klein group, then k& > 4. We also make the following
observation, which will be used frequently in Sections 5, 6 and 7. If <(u, v
is a Klein group in G5, and u4™ £ 1, then either C(v)4"? is solvable, or
the action of #4¢*) has been described in Section 3.

Lemma 54. G, contains no involution u such that C(u)4™) is nonsolvable.

Proof. Suppose that C(z)4 is nonsolvable. We first assume that u ¢ C(¢).

Since Co(<t,u>) << Cy(t) N Cylw), |4({t,w))] = 4 and {4 | = 16. By
Lemma 4.1(vi), ;4(x)] = 28 and |d(tu)] -= 4, 16 or 28. Also, W contains
no Klein group, as otherwise there is an involution ve¢ W such that
14 =£ 1 (Lemma 2.1), and then we must have | d(2)| == 162 (see Section 3),
whereas (162 — 1)+ O | (Lemma 2.1).

Cy(uw)*™ is a Ree group. For otherwise, it is unitary. By Lemma 4.4,
Co(t) & Cy(ty, so that Ay, = (Cy() N Cw))? ~ (Cyt) N Cu))*™). Then
4% is a field automorphism (Lemma 3.2). If v is the involution in Cy(u),g,
then (¢, u, v is elementary abelian of order 8, and (¢, u, v> N W = 7¢>. Thus,
{u, v>4 is a Klein group in C(¢)%; , which is not possible.

Let S be a 2-Sylow subgroup of C(u) containing Cp(«)(¢>. Then
E == SN Cyu) = SN Cy{t,uy) = Cr(u). By Section 3, there is no
involution x € W, such that u4® = 1 and C({u, ¥>)}4*) is a Ree group. Thus,
W, contains no Klein group, so that ,(8) = Edu>. Note that S,z ==
(SN W) is 2-Sylow in C(u),g .

If u is weakly closed in S then S,, is a 2-Sylow subgroup of G,;, contra-
dicting Lemma 2.6. As in Lemma 5.3(i) it follows that u is conjugate to all
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elements of Eu. Then ¢ must be conjugate to all elements of (E{u))? — Eu =
E# Z Cy(u), contradicting Lemma 5.3(i).

Thus, u ¢ C(t). Let v be an involution in C(t),5 N C(u),; . Since v € C(t),4,
C(z)*) and C(tw)?"") must be solvable. If (4(2)| = 8, we can replace ¢ by v
in the above argument. Thus, {d(v), = 4. As [A({¢, v))j #: 2, we have
IA(t, v0), =4 and |4} == A@Fo)] == 16. Then [Q] = 152-3/9 ==
30w | Colun)iiCollu, v0)* (Lemma 2.1). 1f 1Cy(<u, v,)| == 3 then
Co(u)isa 3-group and 5% 1, Q |. If Cy(<u, v)) == 1 then 52 = 'Cy(u)| |{C o(uv)),
so that |C(u), = 5, contradicting Lemma 4. 1(vi).

Lemma 5.5, G, contains no Klein group.

Proof.  Let <x,¥> be a Klein group in G,; containing ¢ such that C(x),,
contains a 2-Sylow subgroup of G,;. Set £ == 14({x, ¥>)|. Since | 4| > 4,
¢ > 2. By Lemma 5.4, x, y and xy fix £ or /2 points. By Lemma 2.1, at most
one of these fixes / points, and n — | = (/2 — 1)}/ — 1)/({ — 1)? =
(/- DHE—1), i=1or 2. If i-=1, n==0 (mod2/). In either case,
n=z= 0 (mod /2). Thus, by Lemma 4.6, (A(x); = /2, so that [A(x)] = /
and C(x) contains a 2-Sylow subgroup of G.

Let 7% be the 2-Sylow subgroup of Cy(v). C(x) contains a conjugate X of
1% X <y, Then | X4 2/ so that | XN W, | = 22/ = 8. Choose
ve (X N W) such that |A(v); is maximal. Then (X N W )2 | = 4,
However, C{z)4} is solvable by Lemma 5.4, so that this is impossible.

Lrvya 5.6. (1) n = k%
(1) T7 consists of k — 1 regular involutions.
(1) Tt consists of k conjugates of t, permuted transitively by N{T).
(iv) W=t

Proof. By Lemmas 2.6, 5.2, 5.3(iii), and 5.5, or their proofs if & = 4, {¢>
is a 2-Sylow subgroup of W, TXt) contains all involutions in C(t), and
either (ii) and (iii) hold or £ = 4 and (7'{¢))* consists of 7 conjugates of z.

We first show that either (i), (it), and (iii) hold or # == 28 and G has a single
class of involutions. If v ¢ 4, then # normalizes G,,. and hence centralizes
some involution t; € G, . Then ¢, € T{(¢>. By Lemma 5.5, no 2 involutions in
T{t> have common fixed points. Thus, the conjugates of ¢ lying in 7z
determine a partition of £ into subsets of & elements. It follows that either
n—==Fk -kork=4and n -=7 -4 = 28. In the latter case, G has one class
of involutions.

Since C(1t)) == T x W, for each conjugate #, of ¢ inside T%¢), it also
follows that O(W) == 1. Thus, W = {t).

It remains to show that n -4 28. If n = 28, then £ = 4, all involutions in G
are conjugate, and | Gyg |, == 2 or 4. Let M .= O(G, ) and let t ~ 1’ = (a, B) -
with t' € C(#) (Lemma 2.6). Then M == Cy(#)Cp(t")Cprs(tt). As W = {8},
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Cof(t) == 1.If Cpy(¢') > 1, then,since k = 4and Wy = &', Cy(t') ~ Cy(2),
which is impossible. Thus, Cy(#') = 1, and similarly Cy(#") = 1. Conse-
quently, | Gog | = 2 or 4. If G5 = {t, a result of Ito [21] yields a contra-
diction. If | G 4 | = 4, then no involution in 7" is a square in TG, ; . However,
if t,e TN Z(TG,5)*, then ¢, and t are conjugate in N(TG ;) (Lemma 2.4), and
this is a contradiction.

We now complete the proof of Theorem 5.1 (compare Harada [16]). Since
W — ‘t»and C(t)% s cyclic, C(t),g is cyclic (Lemma 5.5).

Set .# == Tt, and regard N(7<t>) as a permutation group on .#. By
Lemma 5.6(iii), N(7<t>)” is transitive. Set 4 = Co(#). Then

A < N(TE) n C(t),

and 47 is regular on .¢ — {t}. Thus, N(7<t>)” satisfies the hypotheses of
Theorem 1.1. By Lemma 5.6(iv), 7<t> = C(S5). Also, N(Tt>) N C(f) acts
on.# as C(1), acts on T, that is, as C(t), acts on 4.

We claim that N(7¢z>)” is solvable. This is clear if |.# | == & = 4. Let
"4 =k =2/ > 4 If N(T{t})” is not solvable, the minimality of G implies
that N(7<1>)” contains PSL(2, 27 — 1), and then (N(T<t)) N C@)* | >
(2/ — 1)(27 -- 2)/2. On the other hand, (N(T<t>) N C(#))” | = ' C@t)* | <
(27 — 1)f. ‘This is a contradiction unless f == 3. If f == 3 and (N(7<t))”
contains PSI(2, 7), then C(¢),; contains an element g of order 3 inverted by
an element of N(7¥¢)). Moreover, in this case, n = 64 and n — 1 =7 - 3%
Thus, Cy(g) >>1 and | A(g)! > 2. By Lemma 4.3, g is inverted in G 5, whereas
g is centralized by a 2-Sylow subgroup {¢) of G, . This is a contradiction.

Thus, N(T<t>) has a normal subgroup R containing C(.%) = T{t> such
that R” is regular. Clearly, | R == 2k and . is regular on (R/7¥t})*. By
T.emma 5.6(ii), 7 is a minimal normal subgroup of R4, so that T < Z(R).

Suppose that k£ == 4 and R/T is quaternion of order 8. Then T{t)/T =
Z(R/T), so that a® == t* e Tt for some x € R. Then C(t*) == (T, x, where
T == Z(R) = C(x), so that x € C(T(t>), contradicting Lemma 5.6(iv).

By Lemma 2.7, R/T = T,/T x T<t)]T, where C(t), normalizes T, ==
[R, C(t),). Then T' < Z(T}), and A is regular on (T/T)*.

Let .S be a 2-Sylow subgroup of N(7{¢>) containing both R and a 2-Sylow
subgroup of C(t),5. Then | ¥ | = k| .S% |, and by Lemma 5.6(i) we have
S =R C(t),5 1y = ny Gogip = | G 1, . Thus, S is a 2-Sylow subgroup of
G. Clearly, S = T\S,5 > Ty, wheret e S5, Sgiscyclic,and T, N S, = 1.

By Lemma 2.3, t ~ ¢, €7,. Then t; ¢ T (Lemma 5.6(iii)). Since A is
transitive on (77/7) and T <{ Z(Ty), cach coset =T of T in T} consists
of k involutions. Thus, 7} is elementary abelian of order 4. However,
t ~t, and C(t) contains no elementary abelian subgroup of order >2k.
This contradiction proves Theorem 5.1.
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6. 2-INvoLUTIONS

In this section we consider the possibility that G contains 2-involutions,
that is, involutions fixing exactly two points.

Tueorem 6.1. (1) G contains no 2-involutions.
(1) If t is a nonregular tnvolution such that C(1)4 == PSL(2, q), then
e L P

Proof. Suppose that G, contains a 2-involution 2. Then 2 inverts every
element in Q and z € Z(G ;). By Lemma 4.1(v) there exists an involution ¢ in
G; which has more than 2 fixed points. We consider the Klein group <2, 2.
Since 2 e C(t) fixes just 2 points of A, we have Cy(t)? == PSL(2, ¢) for some
odd prime power g. Clearly, 5 is the only 2-involution in G,;. Hence,
A(tz)) > 2 and Cy(t2)4" — PSL(2, ¢’} for some ¢'. By Lemma 2.1,
n -1 = qq'. If, say, ¢ == ¢', we have n =~ ¢% -~ 1.

It thus suffices to prove (ii). Suppose that ¢ € G4 1s an involution such that
14| =2and Cy(t)? = PSL(2, q), wheren =< ¢* 4 1. Then | @ — 4| < ¢% -~ ¢.

Lemma 6.2, Cy(t) =- PSL(2, ¢).

Proof.  Otherwise, Cy(t) ~ SL(2, ¢) by Lemma 4.4. Let 4 be the unique
involution in Cy(#). Then A(u)2 4. Hence, |2 — d(u)] < ¢* —q. If
yeQ- Aw), then | Ct),| = qlg? — Dl ) = g+ 1. On the other
hand, C(t), has odd order since the unique involution # of Cy(t) does not
fix y. Also, (¢, | Co(2), 1) == 1 since Q is regular on £ — «. However, SL(2, ¢)
has no such subgroup (Dickson [9, pp. 285-286}), a contradiction.

LEMMA 6.3, (1) n=¢* -+ 1.
(it) g =1 (mod4).
(i)  Cy(t)ygy.,) s a dihedral group of order q < 1 which is self-normalizing
tn Co(t).
(iv)  C\(t) acts transitively on the set of nontrivial orbits of {t>.

Proof. Let X = Cy(t)g,,. As above, | X | 22 ¢-4-1and (g, | X |) == 1.
We thus have one of the following situations (Dickson [9, pp. 285-286]):

(a) .Y is a dihedral group of order ¢ | 1;
(b)) X~ Ay

(¢) X ~ S,and ¢ — 41 (mod 8); or
() N a A;andg -~ 41 (mod 10).

If (a) holds then n = ¢ -+ | and Cy(#) is transitive on the orbits of <t> on
2 -~ 4. Clearly (i) holds, and (ii) follows from Lemma 4.1(vi).
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Suppose that (b), (c) or (d) holds. As | X : Cy(t),, | << 2, Cy(t),, contains
a subgroup isomorphic to 4, . Then there exists a Klein group (z; , 25> <{ G,
such that v; ~ 9, ~ 7,9, . Thus,

() [ColCvr, v}l Q1 = [Co(vy)?

by Lemma 2.1. Assume now that ¢ is a prime. We have ql |Q |, so that
by (*) ¢ 1Co(en)] and ¢ |[Cocey, el since |Q 1 < ¢ Then [Colwy)]
[Co({y 5 vo2)|? = ¢® 2 n — 1, a contradiction.

Thus, ¢ is not a prime. For each of the cases (b), (c) and (d), 3| | X | and
hence 3 + ¢4. Also, ¢ is an odd prime power and ¢ < | X' | — 1. This implies
that ¢ = 49 and that we have case (d) for any choice of y in £2 — 4. Hence,
1q(g* — 1)/60 divides

(01— 92 =q(Qllg) — 2, and 40[((Qjg) —1) <g—1=48.

Therefore, we have [Q =49 -41. By (*), 41 - 7] | Colwy, vy, and
i 4(v;): > n, a contradiction.

Lemya 6.4, All involutions in Cy(t) are 2-involutions.

Proof. As | Cy(t)ys | == (¢ — 1)/2 and ¢ == | (mod 4), there is an involu-
tion u € Cy(t),; . If # is a 2-involution the lemma is clear. Suppose that u
fixes some point y € 2 — 4. Then u fixes 9’ = y*. Hence, by Lemma 6.3,
Cy®), = Cy(t),, = Cy(t)gy,,y - This group is a dihedral group of order
g -+ 1 and contains (g 4 1)/2 conjugates of u. The total number of conjugates
of win Cy(t) is q(g + 1)/2. Counting in two ways the pairs (4, y) with % an
involution in C(¢) and y ¢ 4 a fixed point of #, we find that

(g -+ DIA@) — (A0 d@)| =12 =4 g+ 1)2 =qg—1)(g+ D2

Then |A(u)] = ¢ + 1, and tu is a 2-involution by Lemmas 6.3(i) and 2.1.

A 2-involution 2’ € G, centralizes ¢t and fixes no points of 4. Let
H == {2"5Cy(t). Then H 1s PGL(2, q) and - is a dihedral group of order
2(g -+ 1). The product of 2" with an involution in Cy(t),, is an involution in
H, . — Cy(t),, conjugate in H to z’. This is a contradiction since G, contains
only one 2-involution.

Lemma 6.5. (i) G,q contains a unique 2-involution z.
(ii)  Cy(t), s cyclic of order (g + 1)/2.
(i) If u is an involution in G, then either |A(u)| = 2 or |A(u)] = ¢ -+ 1
and Cy(u) = PSL(2, q).

Proof. (i) is obvious. By Lemma 6.4, | Cy(), | is odd, so that (ii) follows
from Lemma 6.3(iii). Let # be an arbitrary involution in G. If u has no fixed

481/20/3-2
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points, then # is an odd permutation. By Lemma 4.1(iii), # has at least 2 fixed
points. Assume that u € G,z and |4(u)] > 2. Then Cyu)?™ == PSL(2, ¢')
for some ¢’. The argument at the beginning of the proof of Theorem 6.1,
together with Lemmas 6.2 and 6.3(1) for u or zu, shows that ¢’ -= ¢ and
Cy(w) - - PSL(2, ¢).

Lemma 6.6. (i) W = {£>.
(i) If u is an involution different from t in C(t), then | A N A(u)] = 2.

Proof (Hering [18]). (i) By Lemma 6.3, Cy(¢) acts transitively on the set
of nontrivial orbits of (t) and, for each of these orbits {y, y'}, Cy(t),,,
self-normalizing in Cy(2). Hence, Cy(t),.,; fixes only one nontrivial orbit
of {t;. As W centralizes Cy(t), W must fix each orbit {y, ¥}, so that W is an
elementary abelian 2-group. If W contains an involution u -+ ¢, then
Colu)] == Co(<t,u))? = ¢* = n — 1, a contradiction.

(i) Let AN dA(u) > 2. Then 4N Au) = At w) = vg + |
since u ¢ Wby (1). Lety € A(u) - (4 N A(n)). By Lemma 6.5(i1), | Co(<t, 1)),
divides | Cy(t), | -= (¢ + 1)/2. On the other hand, | Cy(<¢, u)), . divides
| Co(u), |, where  Cy(u), | =~ ¢(¢ — 1)/2 by Lemma 6.5(iii). It follows that
Cy(ct, 1), = 1, so that

g v AW — (@0 @) = G W) - Valg — 1),

a contradiction.

18
J

Lemma 6.7, Let C\(t) be the subgroup of C(t) generated by the 2-involutions
i C(t). Then
(1) Cy(t) =PGL(2, q); and

(1) Al involutions in C\(t) are 2-involutions.

Proof. Since te Gy, -, t commutes with the unique 2-involution 2" in
G, . 'This involution fixes no points of 4, so that {(z">C(t) = PGL(2, ¢).
Hence, the number of involutions in {(2'>Cy(t) is g(g -+ 1)/2 -+ g(g — 1)/2.

If u 1s an arbitrary 2-involution in C(t), then ¢ leaves invariant A(ux). Hence,
by Lemma 6.5(1) the number of 2-involutions in C(t) is not greater than the
number of subsets of cardinality 2 of £ which are invariant under ¢. Obviously,
this number is ¢(g - 1)/2 + ¢{g — 1)/2. Hence, C1(#) == {2">Cy(2).

For the rest of this section let #' be an involution in Gy, 5 — G,5 which is
conjugate to ¢. Furthermore, let Ci(¢") be the subgroup of C(#') generated by
all 2-involutions and H = C{(#'),p .

LevnMa 0.8. (1) H is a cyclic group of order q -+ | containing =.
(1)  H is semiregular on 2 - {a, B}.
(i)  Cy(t)ia.py i5 a dihedral group of order 2(q + 1).
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Proof. By Lemma 6.5(ii), C,(¢') is transitive on £ — 4(t'). Hence
O, | = g + 1. Also, Cy(t"), is a cyclic group of order (g - 1)/2. Since
g=1 (mod4) and zeCyt),, we get Cyt'), = (2> x C\(t'),. Here
Ci(t'), == Cy(t')av == H, so that we have (i).

Let e H be an element of prime order. If | 2| = 2, then # = z and &
fixes only « and B. Let | k| > 2. Then ke Cy(¢'). Here (k) is the only
subgroup of Cy(#')i, 4 of its order. By Lemma 6.3(iv), Cy(t) acts on the
nontrivial orbits of (¢ as it does on the conjugates of <&). Thus, & again
fixes only « and 8. As H is regular on 4(¢'), this implies (ii).

Finally, (1ii) follows from (i) together with Lemma 6.3(iii).

LemMa 6.9. H contains an r-Sylow subgroup R for some prime r such that

(1) R acts irreducibly on Q;
() C(Rhs < C(H)ys;
(i) N(R),s is isomorphic to a subgroup of the group of 1-dimensional
semilinear transformations over GF(q?); and

(iv) R is an r-Sylow subgroup of G.

Proof. Let g = p® with p a prime. As ¢ = 1 (mod 4), there is a prime r
such that 7! (¢? — 1) and r+(p? — 1) for 1 <7 << 2s (see Birkhoff and
Vandiver [5, Theorem V]). Let R be an 7-Sylow subgroup of G. Then R
has at least 2 fixed points, because 7 1 ¢%(g? 4 1). Let R <{ G, . Becausc of
the property » ¥ (p* — 1) for 1 < ¢ << 25, we have C(x) N Q == | for x € R*.
Hence, | R | l (¢> — 1) and therefore | R | | (g + 1), so that we can assume
that R <C H. Then Q is elementary abelian, R acts irreducibly on Q, and (i1)
and (iii) follow from a lemma of Huppert {19, Hilffsatz 2].

Lemma 6.10. | G gt N(R)(, gy | 15 0dd.

Proof. Suppose that this index is even. Then the involution #’, which
centralizes R, must normalize a second conjugate of R. Thus, there exists an
element g € G, 4 such that t' € N(R?) and R == R.

Suppose that R? < C(¥'). Then R? < H since H = Cy(t), < C(t')y
and H contains an 7-Sylow subgroup of G by Lemma 6.9(iv). However,
this is impossible as H is cyclic and we assumed that R? = R.

Therefore, R? € C(¢'), and t’ inverts every element in R?, By Lemma 6.8(iii)
there exists a 2-involution ye& Cy(t')y. 5y — Cy(t'"%)e which inverts every
element in H¢ Then yt' e C(R%),5, and by Lemma 6.9(ii), v¢' € C(H?),s .
Hence, ¢’ acts on H?in the same way as y does, and D = {#', H?) is a dihedral
group of order 2{(g+1). As 2 =27 H? and ¢ =1 (mod4), {z,1
is a 2-Sylow subgroup of D. Also, ze€ Cy(') and t'¢ Cy(#'), so that
2’ € C(t') — Cy(t'). By Lemmas 6.7 and 6.5(ii1), =2’ fixes ¢ - 1 points.
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Thus, all elements in D — HY fix ¢ -+ | points. Furthermore, each of them
interchanges « and B since D,; = HY Hence, 4(x) N {x, B} == ¢ for all
xeD  H9 Let x and x, be involutions in D — HY and consider
A(x) N A(x,). Clearly ap, e H9. M ye£2 - {a, f}, then (H?), = | by
Lemma 6.8(i1). Thus, A(x,) N A(x,) = ¢ if x; % x, . This implies that

U Al =gt e

teD—HY
which is a contradiction.

We can now complete the proof of Theorem 6.1. Let 7' -: D » ¢ bea
2-Sylow subgroup of (Cy(t) < {t*),. s, where D is a dihedral group and a
2-Sylow subgroup of Cy(#) (Lemma 6.7). Then T =< G, and, by
Lemma 6.10, we may assume that 7' is contained in a 2-Sylow subgroup S of
Gy, such that S =0 N(R),, .. . Since n =¢*+ 1. 2 (modd), S is a
2-Svlow subgroup of G.

As ¢ 1 (modd) we can write D = (e, 5", where (e - (¢ 1),
(e ) x>, 5" isa2-involution, {e¢, "> is a dihedral group, T —= (e, &7 4,
T, (e > (£, and {e, ¥ 1s generated by the 2-involutions of 7.

Since R is cvelic of odd order, T/C;(R) is cyclic. If x is any 2-involution in
C(R) then A(x) © A(R) = {a, B} and x == 2. Hence, (e, 3> N C(R) - = {e..

Since T'<e)> is a Klein group, C7(R) must be a subgroup of index 2 in 7'
containing {e:. On the other hand, Cy(R),; is cyclic by Lemma 6.9. "This
implies that | Co(R)s) <7 ;€. = (¢ — 1),, since G contains no odd per-
mutations. Therefore, C4(R),; = {e>, and Cgx(R) == Cp(R). Since S N ((K)
and S N G, are normal subgroups of .S,

G CR)y = SN CR)N G, < S.

By Lemma 6.9, N(R),s/C(R), is cyclic. Hence, S,4/<e> 1s cyclic. Also,
Cr(R) <1 8. Then Sj(e> = S,sCr(R)/{e> 1s abelian with 2 generators, so that
Q(S) == T. Therefore, (e, 2" is the subgroup of S generated by all 2-involu-
tions, and <e, 2" <1.5. Also, S/<e, 2> is cyclic and we S — {e, 3" This
contradicts Lemma 2.3 and proves Theorem 6.1.

7. THe UNITARY AND REE CASES

By Lemma 4.4 and Theorems 5.1 and 6.1, for each involution ue G,;,
Cy(u)?™ is PSL(2, q), PSU(3, ¢), or of Ree type. In this section, we show
that the second and third possibilities do not oceur, and that Klein groups
fix just two points.
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Lemmas 3.1, 3.2, and 3.3 will be used very frequently throughout this
section.

TueoreM 7.1. G, contains no Klein group fixing more than 2 poinis.

Proof. We begin with two lemmas.

LevMa 7.2. For each involution t € G, , W, contains no Klein group.

Proof. Let {(t,u> be a Klein group in W,. In view of Section 3,
{:Co(t)i', [CO(u)\’ ;CO(tu)} - {q’ 42’ 92}: {(Z> 7% QK} or {(1, [13’ (13}? where
q = |Cy({t,w>)]. By Lemma 2.1, n — 1 = ¢% ¢* or ¢° respectively. By
Theorem 6.1, we must have [Cy(t)] = q, |Co(u)l = |Co(tu)| = ¢%, and
Co(u)?® and Cy(fu)? are unitary or of Ree type. Thus, by Section 3,
neither W, nor W, contains a Klein group.

Both Cy(u) n W, and Cy(tu) N W, have odd order (Lemma 4.4). If
100 e Cy(u)?™, there is a conjugate ¢’ of ¢ in C(u) such that (¢, ') 1s a Klein
group. Suppose that 402 ¢ C(u)?™, so that Cy(w)?“” is unitary. By
Lemma 3.2, C(#4%) N Co(uy*™ does not contain a 2-Sylow subgroup of
Cy(uy?™w. Thus, there is an involution ' conjugate to ¢ under Cy(u) such
that {t, #'> is a Klein group. In cither case, ¢, ¢', 1> is elementary abelian of
order 8 and t ~ 1.

However, t', "4t and ¢4 fix g - | points (Lemmas 3.2 and 3.3). Thus,
A’y C Au) N A(tu) = A. Then A(t') = 4, contradicting Lemma 2.].

We mention one immediate consequence of Lemma 7.2: for each non-
regular involution ¢ such that Cy(2) &~ SL(2, q), {t> == Z(Cy(2)).
Let ¢, u) be a Klein group in G, fixing more than 2 points.

Lemma 7.3, Wemay assume that C(t),, contains a 2-Sylow subgroup of G 5.

Proof. Let T be a 2-Sylow subgroup of G,; containing (¢, u;, and
suppose that v € Q(Z(T))*, v ¢ {t,u>. If Theorem 7.1 is known for Klein
groups in G, containing v, then {z,u> N W, = 1 and ¢, u)4® contains an
involution acting as a field automorphism (Section 3), hence fixing more than
2 points of 4(z), a contradiction.

Let S be a 2-Sylow subgroup of C(z) such that {t, u> < S,z and Sy, 4, is
2-Sylow in C(t). . Set ¢ = |Cu(<t, wp)i. Then |Co(?)], [Co(x), and
Co(tu)] are among the numbers ¢% ¢° since Cy(<¢, up)d“t»» = PSL(2, ¢)
(see Section 3). Consequently, {|Cy(?), |Co(w)l, [Co(tw)]} = {g% ¢% ¢},
{¢% ¢% ¢}, (6% &% ¢%, or {g% ¢°, ¢%). By Lemma 2.1, | Q| = ¢%, ¢5 4% or ¢,
respectively. Theorem 6.1 eliminates the first possibility.
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Case 1. {¢% ¢° ¢°}.

Here ¢ -+ 1 (mod 4) (Lemma 4.1(vi)). Let <t, uy = {a, b, with {Cy(a)] =
Cod)] = ¢* and Cy(ab)d» =PSU(3, ¢) (Lemma 3.3). If Cy(<a, b>) 1s
SL(2, ) then, since Cy(<{a, b>) st Cyla) N Cy(h), both Cifa) and Cyb) are
SL(2, ¢%) with involutions a and b respectively. Then a = b is the involution
in Cy(<a, b>), a contradiction.

It Cy(<a, by is PSL(2, ¢), let v be the unique involution in Cy(ab),, .
Then Cy(<ab, v») = SL(2, q), 'Cp(v)| and Cy(abv)| are ¢, ¢* or ¢° and

¢ =10 = ¢iCofv) iColab)ljg

By Lemma 7.2, [Cy(v)] = [Cylabr) = ¢?, and the argument of the
preceding paragraph, applied to {ab, v, vields a contradiction.

Case 2. {¢° ¢% ¢*)-

Once again, ¢ == | (mod 4) (Lemma 4.1(vi)), so that S 1s a 2-Sylow
subgroup of G' (Lemma 4.6). Suppose that Cy(t)? = PSL(2, ¢?), so that »?
is a field automorphism. Then S has a normal subgroup .S; such that u ¢ .5,
and all involutions in .S - S act on 4 as field automorphisms, and such that
S8y s cyclic (Lemma 3.1). Then # ~ #' € S5; (Lemma 2.3), where »'4
fixes 0 or 2 points. Since 147 e C(w')4®", this is impossible by Lemma 3.2.

Thus, Cy(#)* = PSU(3, ¢). Clearly, S (SN Cyt)) x (SN W) with
S M Cy(t) quasidihedral and S N W cyclic or generalized quaternion. If
t~1 =z () - € S (Llemma 2.6), then ¢’ fixes ¢ + 1 points of 4 (Lemma 3.2).
Thus, there is a Klein group ¢, ;> in S,; with £ ~ ¢, . Consequently,
there is an clementary abelian subgroup X of S,; containing ¢ such that
N(X),; has an element g of odd order moving ¢ (Lemma 2.5). X contains no
Klein group <t,t,> with t ~ 1y ~ tt,, as otherwise | O | == (¢%)*/¢% Thus,
. X{ > 4. On the other hand, X4 < C(#)J; implies that | X | 28 (by

Lemma 7.2).
Thus, | X| = 8. If | g ] == 7, we could find a Klein group (i, #,> in .\ of
the above type. Thus, { g | == 3, so that .\’ contains a Klein group (o, @) with

ot ~ot (Co@) = @ as [ColCte) = ¢ and Q] # (@Pig.
Now the proof of Lemma 4.5 shows that O is abelian, whereas Cy(f) 1s
nonabelian.

Case 3. {¢° ¢° ¢}

Once again, S is a 2-Sylow subgroup of G (Lemma 4.6). We have
S> E x Fwith E == SN Cyt), F = SN W, E quasi dihedral, wreathed,
or elementary abelian of order 8, and I cyclic or generalized quaternion. By
Lemmas 3.2 and 3.3 and the preceding cases, all involutions fix ¢% - 1

points.
If Cy(t)4 is of Ree type, then S = E X F (Lemma 3.3). Clearly, £,(S) =
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E x &> < Z(S) and C(t) © N(S) permutes £,(S)* with orbits of lengths
1, 7, 7. Thus, N(S) is transitive on Q,(S)*. It follows that N(S)/C(S) acts
on 2,(S) as a subgroup of GL(4,2) ~ Ag of order 15-7 -3, which is
impossible.

If C,(t)4 is unitary, then by using a different Klein group if necessary we
may assume that Co(<f, ud) = SL(2, q) (Lemma 3.2). Then Cy({t, >) =
Z(Co(t)) = Z(Cyp(u)) = Z(Cy(tu)), and it follows that Z(Q) = Z(Cy(t)).
If t+ ~1,€C(t),s, then ¢t and £, are conjugate in G,z, so that Z(Cy(t)) =
Z(Q) = Z(Cu(t;)). By Lemma 3.2(viii), it follows that .S — EF contains no
conjugate of t. If t ~ 1" €S — {t}, then ¢ € EF. As C\(t) has one class of
involutions, we may assume that ¢' € ,(Z(EF)) <J Z(S). By Lemma 2.4,
all involutions in Q,(Z(FF)) are conjugate. By Lemma 2.3, £,(S) < EF.
Thus, 2,(S) = 2,(E) x <{t>. However, t is not a square in £2,(.S), whereas
a central involution in E is a square in 2,(F) << £,(5). This contradicts
the fact that N(S) is transitive on £2,(Z(.5))*.

This completes the proof of Theorem 7.1.

CoroLLARY 7.4. For each nonregular involution t, Cy(t) is PSL(2,q) or
SL(2, q) for some q.

Proof. Theorems 5.1, 6.1 and 7.1.

CoROLLARY 7.5. (i) If t is an involution in G4 , then C(t)3; = 1.
(iiy If t is an involution weakly closed in a 2-Sylow subgroup of G4,
and if C\(t) = Ay, then a 2-Sylow subgroup of G, is a Klein group.

Proof. (i) Otherwise, by Corollary 7.4 and Theorems 5.1 and 7.1,
Cy(t) = SL(2, 3) and G, contains no Klein group. Let S be a 2-Sylow
subgroup of C(¢). Then, S is a 2-Sylow subgroup of G as S = EF with
E == S N Cy(t) quaternion of order 8 and F = .S N Wa cyclic or generalized
quaternion group. By Lemma 2.6, S contains a conjugate ¢/ 5= ¢ of ¢. Since
1" =ef witheeE, feFand |e| = | f| = 4, we have e € C(27) but €2 ¢ {17).
However, S contains no element ¢¢” whose square is not in {f, a contra-
diction.

(ii) By Theorem 7.1 and part (i), a 2-Sylow subgroup S of C(¢) has the
form § = TF, where T << Cy(#) is a Klein group, |F:FN W | = 2, and
F W is cyclic or generalized quaternion. S — {¢} contains an involution
t' ~t (Lemma 2.6). If t' ¢ T x (F N W), then ¢ fixes 2 points of 4, which
we may assume to be o and 8. However, this contradicts the fact that # is
weakly closed in a 2-Sylow subgroup of G,; (Lemma 4.3). Thus,
el x (' W) and we may assume that #' € Z(S). T x {¢> is the only
subgroup of C(t) that is elementary abelian of order 8 and contains 4 conju-
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gates of 1. Thus, T x {t) is weakly closed in C(¢) and T < (FN W) =
Cs(T x {t>)is also weakly closed in S. Therefore, the fusion of the conjugates
of tin T % {t>is controlled by N(T' x (FN W) If |FN W | > 2, then t is
the only square in T x (FN W), which is a contradiction. Thus,
[F W | = 2andFisaKlein group by Theorem 5.1 (ii).

CoroLLarY 7.6. G4 contains no elementary abelian subgroup of order 8.

Proof. Let X besuchasubgroupandte A. By Theorem 7.1, XN W = ¢,
and X9 contains no field automorphisms, contradicting L.emma 3.1.

Turorem 7.7. G is simple.

Proof. Let 1 = K <IG. If O <t K then K = G by Lemma 4.1(1). Let
QO £ K. As G = KG, > KQ, G = KQ. Let t be an involution in G, .
Thente Kas|Q|isodd.

Since [t, 0] == KN O, O == Co(t) (K N Q), so that G == KQ = KCy(1).
Let Cy()? -= PSL(2, ¢) with ¢ == p*, p prime. Then G/K is an abelian
p-group, and Cy(t) N GV =1 as C(t),s 1s trreducible on Cyt). Thus,
[Co(8), C(t).5] == Co(t) N GY == 1, contradicting Corollary 7.5(3).

TuroreM 7.8.  Suppose that a 2-Sylow subgroup S of G is not dihedral.
Then S contains a proper elementary abelian subgroup of order 8.

Proof. 1 G has no elementary abelian subgroup of order 8, then, by a
result of Alperin {2, Proposition 1], Sis (a) the 2-Sylow subgroup of PSU(3, 4),
(b) quasidihedral, or (c) wreathed Z,. \ Z, .

In (a), 2,(S) = Z(S) is a Klein group. If 1 € Z(S)*, then

S (SN GBS N ).

However, .S has no normal quaternion subgroup.

Thus, S has the form (b) or (), or is elementary abelian of order 8. G is
not isomorphic to M, [7]. Consequently, for some prime p and e 2= I,
G is isomorphic to PSU(3, p*), PSL(3, p*) or a group of Ree type and
p = 3 (Theorem 7.7, Alperin, Brauer and Gorenstein [1, 2], and Walter [39]).

In view of the known structure of C(2), ¢ an involution, we have p [ lQ |-
A p-Sylow subgroup P of G thus fixes just one point, say «, and then N(P)
fixes o If N(P) is maximal in G, then G is PSU(3, p°) or of Ree type in its
usual 2-transitive representation, which is assumed to be false. Similarly,
G is not isomorphic to PSL(3, p?).

We remark that the possibility that S is dihedral will not arise in Sections 8
and 9.



FINITE GROUPS WITH A SPLIT BN-PAIR OF RANK . T 457

8. Tue PSL Case

For each involution u € G5, we have Cy(u) = PSL(2, q) or SL(2, g) for
some g (Corollary 7.4). In this section, we assume that each such group Cy(u)
has the form PSL(2, ¢); in Theorem 8.9 we will show that this situation
does not occur.

Let ¢ be any involution central in a 2-Sylow subgroup of G5 . Let S be a
2-Sylow subgroup of C(t) such that Sy, g is a 2-Sylow subgroup of C(t);, g -

Lenva 8.1, Let Cy(t) = PSL(2, g).
(1) D = Cy(t) N Sisadihedral group.
(1) C = W .Sisacvclic or generalized quaternion group.
(i) D x C<I S
(V) There is an tnvolution r € D N Z(.S).
(v) If veS — DC is a nonregular involution, then D<{v) is dihedral
and C{v) is dihedral or quasidikedral.
(vi)  Cy(2).p is fixed-point-free on Q if ¢ - 3 (mod 4).
(vir) Q is milpotent if ¢ == 3 (mod 4).

Proof. (1), (111), and (iv) are clear. (ii) follows from Theorem 7.1.

If veS — DC is a nonregular involution, then (Cy(¢){2>)? = PGL(2, q),
so that (D{vp)? ~ D{z> is dihedral. Cg(v) acts faithfully on Ad(z)
(Theorem 7.1). If ¢ ==3 (mod4), then {4 N A(v)] = 2, while if ¢ =]
(mod 4), then | 4 N A(v)’ = 0. It follows from Lemma 4.1 (vi) that /4 is in
C(v)a") — Cy(v)?"), and by Theorem 7.1 and Lemma 3.1 C(z) = {z>. Thus,
(v) holds.

Let ¢ = 3 (mod 4). Then Cy(t).s is cyclic of odd order (¢ — 1)/2. Also,
Cy(t), centralizes S9%, and IV, so that Cy(t),; centralizes S,,. Suppose
that 1 5= & € Cy(t),p and ‘A(x)| > 3. As v is inverted in Cy(#), it is inverted in
G.; (Lemma 4.3). Since C(x),, contains a 2-Sylow subgroup S,4 of G, this
is impossible. This proves (vi).

If (¢ — 1)/2 > 1, then (vii) follows from a theorem of Thompson [37]. If
(g — 1)/2 =1, then C(f) == A, . By Theorem 5.1, S,; contains a Klein group
{tuy It t~uthent~win G, . By Corollary 7.6 and Lemma 2.5, we may
assume that ¢ ~ u ~ tu, so that | Q| = 33 (Lemma 2.1) and Q is nilpotent.

We may thus suppose that 7 is weakly closed in S,5. Let ¢t ~ 1 ==
(«B) - e C(t) (Lemma 2.6). Then t' e Cy(t) x W. It follows that C(z)
contains 4 or 7 conjugates of £. If y € 2 — A, then ¢ normalizes G,,.. Since ¢ is
weakly closed in .S, , G,,: contains an odd number of conjugates of . Then ¢
centralizes some involution #; ~ t, t; € G,.,... Since no 2 conjugates of ¢ lying
in Cy(1)W fix common points, the 4 or 7 conjugates of ¢ inside C,(£)I deter-
mine a partition of £ into sets of 4 points. Thus, # = 28 or 16, |Q | = 27 or
15, and Q 1s nilpotent, as claimed.



458 HERING, KANTOR, AND SEITZ

We note that Lemma 8.1(1)-(v) holds for any involution # in G5, where S
is then taken to be a 2-Sylow subgroup of C(u) such that Sy, 4 is 2-Sylow in

C(“){u,ul .

THeOREM 8.2. If v is an involution in G, and Cy(v) —PSL(2,q), then G,
contains a Klein group.

Proof. Suppose that G4 contains no Klein group. Then C(t),, ~ C(v),4
contains a 2-Sylow subgroup € 2= C of G, . Also, | Cy(t),, ! is odd, so
that g - - 3 (mod 4). Clearly, S  DC, ! C,:C, =2, and £,(S) = DC.

Let ¥ be as in Lemma &.1(iv).

Levma 83, (1) £ ~r or 7t
(1) We may assume that v == («f8) .
(i) s evelic.

Proof. Let 1 ~ 1t == (aff) -~ €5 (Lemma 2.6). Then t" e DC. As Cy(2)
has one class of mvolutions, #' ~ r or #t under Cy(t). Choosing D suitably, we
may assume that ¢’ == r or r#. Then C = C(¢'), so that ¢ = 3 (mod 4) implies
that () 1s cyclic.

Lemma 8.4, S is not a 2-Svlow subgroup of G, and C(t) contains regular
tnoolutions.

Proof. Clearly, the first statement implies the second. Supposc that S
is a 2-Sylow subgroup of G. By Lemma 8.3, S < D and t ~ r or rt, where
dry U5 Z(S).

If D is not a Klein group, then «r, t; == £(Z(S)) and re SV, By
Lemma 2.4, N(.S) is transitive on {r, 1 +*, whereas t ¢ S'U.

Thus, D is a Klein group. If C, =~ C' then we may assume that
e Z(59) N (S9)D. As above, Lemma 2.4 yields a contradiction. Thus,
C, — €, § is abelian, and £,(S) == D x (.. As t ~ 1t =7 or rt and
{ O = S is elementary  abelian of order 8, contradicting
Theorem 7.8.

LrvmMma 8.5. 1€ Z(Gp).

Proof. By lemmas 4.6 and 8.4, # -~ 0 (mod 4) and Q is not a p-group.
By Lemma 8.1(vi), Q -« P x L with ¢ [{ P |, (| P|, L) =1, and L =% 1.

Suppose that t ¢ Z(G,g) and let X = C(L),z. Then tX € Z(G,/X) and
[, X] £ 1. Clearly, |4(X)| == | L ; - 1. By Lemma 4.3, {r, t) acts on 4(X).
Also, | C(X),s | is odd as ¥ is the set of involutions in G4 . Thus, (1) Cy(X) =
PSL(2, /) for some ¢ == 3 (mod 4}, or (i) Cy(X)4Y is solvable.

(i) Suppose that Co(X) = PSL(2, 7). As S, ~ S3*), S, = {t,. Since
(Cy( XK )X == PGL(2, £), Co( X),5(t > is cyclic. The proof of Lemma 8.1(vi)
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shows that both Cy(t),; and Cy(X),s are fixed-point-free on Q. Then
Co(X)us < C(1),, implies that 17— 1) | (g — 1). Also, as Cy(t),s is fixed-
point-free on L, ¥¢ — 1) |(JL| —1) =/ — 1. However, }(¢ — 1) and
I/ — 1) are odd, so that ¢ — | =/ — 1, a contradiction.

(ii) Thus, C(X)*™) is solvable. Since Cy({t, X)) << Cy(X) N Cy(t),
|4(X)! =4 or 16. Consequently, |L| =3 or 5. Since Cy(t),s 1s fixed-
point-free on L and since | Cyff),s | 13 odd, it follows that Cy(f) = A, , and
this contradicts Theorem 5.1.

LEMMA 8.6, n == 1 4 g(¢g® + 1)/2.

Proof [22, Lemmas 4.3 and D.1]. If ¥ = («, ) -+~ is an involution then
x € C(1) (Lemma 8.5) and x4 is regular. There is a conjugate #; € Co(£)¢) of ¢
such that 4 = x4. Now at; € W << C(Co(2){t>) < C(t;), so that (xt,)* =
and xt; € {t>. There are thus 2 - (g — 1)/2 involutions («, 8) -**. By Lemma §.4
there are regular involutions in C(t). It follows that there are (¢ — 1)/2
conjugates of ¢ interchanging « and 8. On the other hand, ¢ has (n — 1)/q
conjugates in G, and n(n — 1)/(g + 1)¢ conjugates in G. Thus,

n(n — Df(g + Dg = (n — 1)ig + (n — D)(¢ = 172,

which implies that # = 1 + g(¢% + 1)/2.

LemMa 8.7, Cy(2),sCy W s cyclic.

Proof. Let x e (C,W)* have prime order and fix a point not in 4. Then
i x{is odd and x € W. Thus, 4 C 4(x) and, by Lemmas 8.5 and 8.6, C(x)4®
is solvable. As Cy(t) < Cy(x), |d(x)! = 16 and Cy(t) == A,, contradicting
Theorem 5.1.

Thus, if t ~ ¢ = r or #t, then (C;¥)?%" is semiregular. It follows that
C, W is cyclic of order dividing ¢ -- 1. Also, Cy(1),zC;W/W is cyclic and
W < Z(Cy(),sC1 W), so that Cy(2),,Cy W is abelian. As | Co(t),p | = (g — 1)/2,
Co(t)sC1 W 1s cyclic.

We can now complete the proof of Theorem 8.2. By Lemma 8.7 and
[22, Theorem 1.1 or Lemma D.5], G,5 = Cy(t).sC;W. That is, C(¢)? must
have odd field automorphisms. Let ¢ = ¢’® with b an odd prime.

By Lemmas 8.1 and 8.6, Q = Cy(t) x L with |L| = (g2 + 1)/2, and
Co(#),5<t> 1s fixed-point-free on L. If L has a proper nontrivial characteristic
subgroup L, then we have |L,]| > ¢ — 1 and |L/L;| == q — 1, whereas
|L | = (g% + 1)/2. Thus, L is an /-group for some prime /.

We have ¢’ -+ | == ¢> 4- 1 = 2/° for some a. Then ¢'2 -1 is an even
divisor of 2/¢, so that ¢'2 -+ | == 2/*, a2’ < a. Now

20 = (26— 1Y | > Lo,
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so that @ 2> a'b = 3a’. Then

4

0 = 201yt k RERCC T ’ , ) (mod 74),

or 0:x2b —4/96(b — 1)/2 (mod />). Thus, 0 -2b (mod /), b -/
(as b is prime), and finally 0 = 26 —4/9b(b - 1)/2 - 2/*" (mod /27),

This contradiction proves ['heorem 8.2

THEOREM 8.9.  For some involution u e Gz, Cy(u) - SL(2, q) for some q.

Proof. Assume that Cy(x) has the form PSL(2, ¢) for each nonregular
involution #. By Theorem 8.2, G, contains a Klein group. Let t be an
involution central in a 2-Sylow subgroup of G,,. We use the notation of
Lemma 8.1. Let <#, u - be a Klein group in S, .

Lenvma 8.10 (Bender {4, Lemma 3.8]). Let r «~ («f) = be an involution,
and let a, b € O satisfy ab --- ba and {ar)* - (br)? - = 1. Then b = a or a ..

Proof.  Assume that b 5= a. Set e == (a*'6) ¢ G, . Then

arara = brbrb =y,
a = ra Ybrbrbaly = ra~tbr - b - ra~tbr
(as ab == ba), so that a == ebe. Set { .= b= (ba)'/%. Then f € Q and
fbf = b"Y(ba)t? - b - b'(ba)' 2 - bYba) - a.

Now ebe == a = fbf,

(F1e) = b1 f1eb = fert = ((f1e) 1),

and hence (f~te)"/ = (f le)'l. However, bf€Q has odd order, so that
(f 2 e C(fe) implies that bf c C(f le). As feQ and e¢ G, [ le¢ G, .
Then bf € Q fixes both « and /¢, so that &f -~ | and @ = fbf = b-L,

LLemMa 8.11. Suppose that u is a nonregular involution. Let S; be a
2-subgroup of C(u) and let v be a nonvegular involution in C(u). Assume:

(a) Sy N Cy(u) == Dyis dihedral,
by Sy W, = Cyis cyclic;

(e} Sy = (D, C){v>;

(d) v ¢ Cy(w)2™; and

(&) 1Dl =G

Then N(S;) << C(u).
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Proof. As in Lemma 8.1, D;(v) is dihedral and C\{v) is dihedral or
quasidihedral. Let D;{(v) = {e, v) and C; = {f>, where|e| = | D; | <|f].
As S, = (D x C)Xv>, SO = e, 2. Thus, 2,(SP) = <r,u>, where
= ADE).

We claim that u is the only involution in {r, #> contained in a normal cyclic
subgroup of S, of order | fI. Clearly, ', <1.S,. Let #€ .S and suppose that
Vhi== | f|,<h> <08, and ug > As  f| > 1 e*|, Dy X C) has exponent
|fland k¢ D,C; . Also, [f, Al € {f> N ¢hy = 1. However, & acts on {f ) as
z does, and C,{v> is dihedral or quasidihedral. This is a contradiction as
Oy T D =4

Thus, N(S5,) = C(u).

Levva 8.12. Ift e Z(S,,) is suitably chosen, then S is a 2-Sylow subgroup
of G.

Proof. Otherwise, for each involution t e Z(S,;), C(#) does not contain
a 2-Sylow subgroup of G.

By Lemmas 2.1, 2.5, 4.1(vi), 4.5, and 4.6, and Corollary 7.6, we have
n =20 (mod4), {4 =|d4w)| = |4(tw)| == 0 (mod 4), and ¢ + u, tu. We
thus have S = (D x C){u), and all conjugates of t are in DC. By Lemma 8.1,
D is dihedral, say (e, u> with |e| = 1D and C{u) 1s dihedral or
quasidihedral, say ¢f, «> with | f| = | C . Choose 7 as in Lemma 8.1(iv).
We have S == (&% [ and {r, t) = L,(Z(S) N SW).

By hypothesis, N(S) moves ¢ to t' = r or ri. As C =L C(2'), C is cyclic.
By Lemma 8.11, | é? | > ! f2|. Thus, N(S) << C(#) and t' =rt.

Clearly, C(r) has a 2-Svlow subgroup R = S. We claim that  is a regular
involution. For otherwise, Cy(r) = PSL(2,m), @ := 3 (mod4) (Lemma
4.1(vi)). Then R > (RN Cyr)) x (RN W,), where RN IV, is cyclic or
gencralized quaternion. As AN Ad(r) =4, te(ROCFNRNW,). It
follows that ¢ is conjugate in C(r) to an involution in Z(R), which is not the
case. Thus, # is regular.

As (Ol =mn—12:3 (mod4), O is not a p-group (Lemma 4.6). By
Lemma 2.1, we may assume that Cy(u) = PSL(2,/) with (¢,/) = 1. By
Lemma 4.1(v1), / = 3 (mod 4). As r € C(u), r € Cy() W, .

If ue Z(S,;) we can repeat our previous argument and find a regular
involution 7’ € Cy(u) such that u ~ wr’. Since Cy(«) has a single class of
involutions, it follows that » € Cy(u).

If ué¢ Z(S,,) let S, = (Dy > Cy){t» be a 2-Sylow subgroup of C(u), with
Dyt dihedral and C{t> dihedral or quasidihedral. If ) is a 2-Sylow
subgroup of G, then some conjugate u; of # centralizes S,; = C{u>. We may
then assume that u, € Cg(C<u>) <I DC, whereas u 1s not conjugate to any
element of {r, t>. Thus, N(S,) moves u to some other element ©” of Z(.5)).
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Then C; <. C(') implies that C; is cyclic. By Lemma 8.11, { D, | = | C; .
As before, an involution in Z(.5}) < D,C; centralized by a 2-Sylow subgroup
of N(Sy) must be in D . Since £,(Z(S,)) = (Z(D<(t>)) X <u> contains ',
and since ¥ € Cy(w) W, , some conjugate of r is in D, . Thus, we again find
that r e Cy(u).

We may assume that r = (o) ---. Since r € Cy(2) N Cy(n), Cy(t) = PSL(2, ¢),
and Cy(u) — PSL(2, /), we can find elements a € Cy(t) and b € Cyu) such
that (ar)® = | == (br)®. However, (Ja!,}d1) =1 and O 1is nilpotent
(Lemma 8.1(vit)), contradicting Lemma §.10.

The proof of Theorem 8.9 now splits into four cases.

Case 1. ¢ .= 3 (mod 4)and C(t),; — {1} contains no conjugate of ¢.

Here S == (D < C){u>. By Lemma 2.3, u ~yorrt. it ~ 1 =(aff) - € 8
(Lemma 2.6) then ¢ € DC, and we also have t' ~ r or rt. Since Q,(Z(S)) =
{r, t>, all involutions in <r, > must be conjugate (Lemma 2.4). Then u ~ ¢,
which is not the case.

Case 2. ¢ =:3 (mod4) and there is a Klein group {t,u> in G, with
t~u.

By Corollary 7.6 and Lemma 2.5 we may assume that £ ~ u ~ fu. Once
again, Q,(Z(S)) == <r, t>. Suppose that two of 7, 7, rt are conjugate. Then all
are conjugate in N(S) (Lemma 2.4). As C =2 C(r), C is cyclic, say C == {f>.

By Lemma 8.1, D<u> is dihedral, say D = <{e, u> with e = | D, and
Cluy = < f,u> 1s dihedral or quasidihedral. Thus, S® = (€2 f2>, where
N(S) is transitive on (S, so that e’ == [f?!, contradicting

Lemma 8.11.

Thus, 7, t and #¢ are nonconjugate. As u ~ ¢ and C<u> 1s dihedral or
quasidihedral, S5 == C<u)> has at most one class of involutions ~4#. Since
S, 1s a 2-Sylow subgroup of G,z, s = v or rt is a regular involution. In
particular, no conjugate of sis in S — DC.

J.et ge G be such that w¥ = ¢ and ¢, 5,427 <. S. Then s9e DC and
uw =t imply that 92 4%t and hence st ~ st. Also, su ~ s7uf -
§Tt ~ st AL~ .

If r is a regular involution, take s = r. As D{u) is dihedral of order 28§,
u ~ ru = su, a contradiction.

Thus, s =7f, and su ~ st states that r(tu) ~ r. However, from the
dihedral group D{tu> we find that tu ~ r(tu). Then t ~ tu ~ r(tu) ~r,
a contradiction.

Case 3. ¢ = | (mod4), and C(#),s — {t} contains no conjugate of .
As usual, &, 1) < Z(S), where now r € G, . Thus, none of 7, f and #t are
conjugate, and we have t ~t' = (¢8) - €S — DC (by Lemma 2.6). Let
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g€ G be such that t'Y =1t and {1,157 <L S. Then e85 - DC,
{[r9, 17 N DC = 2, and hence 77 or (rt)? € DC.

If r'e DC then 79 & r, t implies that r7t ~ ri. However, as Dt is
dihedral, t ~t" ~ rt’ ~ r9t'Y = vt ~ rt, a contradiction.

Thus, (rt)? € DC. As above, t' ~rt’. Now S == DC{7>, where C<rv> is
dihedral or quasidibedral (Lemma 8.1). If | C| > 2, then »? ~ % -=
(rt'y ~ t'9, a contradiction. Thus, C = {t> and ,(S) == D" % (.

Clearly £,(S,5) = <{r, t>. It follows that C(r) contains a 2-Sylow subgroup §
of G, and C(r),; contains a 2-Sylow subgroup S, of G5, but C(r),; — {r}
contains no conjugate of r. Replacing ¢ by » in the preceding argument, we
find that #, like ¢, is not a square of an element of 2,(.5). Since r is certainly
a square in D4 this is a contradiction.

Case 4. ¢ = 1(mod 4) and C(t),;, — {t} contains a conjugate of 7.

By Corollary 7.6, £,(S,s) == {r, t>, so that t,7 and r¢ are conjugate in
N(S,).s and hence in N(S) (Lemma 2.4). Also, D x C <1 .S with S/DC
abelian (Lemma 3.1). If S <7 D, then S = 1.

Suppose that S — DC contains no involutions. Then £,(5) = D x (t..
However, # ~ t in N(£2,(S)), so we have | D' = 4. Then ¢ = 1 (mod 8),
so that ¢ is not a square and | S : DC ! < 2. Since S = DS ;, r is not a
square in S. As r ~ ¢ in N(S), we have {C| =2 and S = D x (¢ is
elementary abelian of order 8. Although this already contradicts Theorem 7.8,
we wish to point out the simple reason why this is impossible. Clearly,
N(S)/C(S) is a Frobenius group of order 21. By Lemma 4.5, n = ¢* - |.
As C(S) == S x O(W) = 8§ x O(W,) = S x O(W,), O(W) fixes 2 point-
wise, so that C(S) = S. Since N(S) is transitive on the Klein groups in S,
there is an element g e N(S) N N((t, w>) such that <, ud{gr ~ A,. As g
normalizes (¢, uy, g€ G ;. Since {t,u, &> acts on Q and Cyu(<t, us) — 1, we
have C(g) # 1. Now Cy(g) is not SL(2, £) for some 7, since G contains no
quaternion subgroup. Thus, Cy(g) contains a Klein group <z, 2> This
group is conjugate to {Z, u>; hence {v, ¢’> fixes 2 points, say y and 8. Then g
must fix y and 8. However, {z, "> << Cy(g), so that {z, 2"
of 4(g), a contradiction.

Conscquently, there is an involution ©€.S — DC. By Theorem 7.1 and
Lemma 3.1, 2,(S) < DC{v; and S/DC is abelian. Since ¥ ~ t ~ rt, v ~ t
by Lemma 2.2,

By Lemma 8.1, D{o) == {e, v> and C{w> == {f,,v> with | D | == ‘e and
L C o= LA L Then £2,(S) 2= <e, fi3 ). Since £,(S)/D <X ,(DC{v)|D) ~
(< fi» v2), we have £2(S) - = e, f, v> with f == f; or f;2. If C is cyclic, then
/€ C, while if Cis generalized quaternion, then once again f = f,2 € C. Thus,
QUS) = (et evpf>)(x> with (% ev> and (f,v> dihedral groups and
v et evpf>. Now Q,(S)V == (e f2 and N(2,(S)) is transitive on

- cannot fix points
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{r, 107, so that [<e% e == | f . Applying Lemma 8.11 to £,(.5) thus yields
a contradiction.
This completes the proof of Theorem 8.9.

9. Tng SL. Case

In view of the preceding sections, the proof of Theorem 1.1 will be com-
pleted once we have proved.

TuroreM 9.1, For each involution t € G g, Cy(t) is not SL(2, ¢).

Proof. Assume that Cy(t) = SL(2, ¢) for some involution t& G, ;. We
begin by introducing some of the notation to be used in Section 9.

Lemva 9.2, Let S be a 2-Sylow subgroup of C(t) such that Sy, g is a
2-Sylow subgroup of C(t)y, g .

() E=Ct)NS s a generalized quaternion group of order
(g* — 1), == 4k, where k is a power of 2.

iy F = WnSis cyclic or generalized quaternion of order >:4.

(i) LS, F QS ENF =) and [EF] =1

(iv) £ and I have cyclic subgroups {e\; and < f, >, respectively, which are
normal in S, such that (e | = 3(¢* -~ 1)p == 2k and |F : {fi)| = 1 if F is
cyelic or 2 if I is generalized quaternion.

(v) Sisa2-Sylow subgroup of G.

T

Proof. As I is a 2-Sylow subgroup of Cy(t), we have (1). By Theorem 7.1,
F is cyclic or generalized quaternion.

By Lemma 3.1(ii), S® < £F. Thus, N(.S) normalizes £,(Z(S)N S = {t>,
and (v) follows.

If /I =2and t ~t = (e, B) €5 (Lemma 2.6), then Cgt) = <>
and ¢ FE is quasidihedral since # is not a square in C(#') (Lemma 3.1 and
Theorem 7.1). Also, ,(S) <= {¢'-F (Lemma 3.1). This contradicts Theo-
rem 7.8, and proves (ii).

LemMa 9.3, Let t ~ u,€ EF — ().

(1) There is an element e, .S — EF such that e ~e,, {u) =
QKep) <L EF and t # u ~ 1.
(i) If F is a generalized quaternion group, then

e e PGL(2, q) — PSL(2, ¢).
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(iii) If F is ¢yclic and S — EF contains an involution, then
e, € PGL(2, q) — PSI(2, q).

(iv) If the hypotheses of (1) or (ii1) hold then e,® == rs with rc E, seF
and i fy = le | = e | == s =2k

Proof. (i) As Cy(#) has just one class of clements of order 4, we muay
assume that uy = xy with xede,, yel and |a' — {3y ! ==4. Then
e, € C(uy), uy¢ <{e,», so that .S contains an element e, such that e, ~ ¢
and t¢ {e,>. Since |e,| 22 4 and no involution in S — EF is a square
(Lemma 3.1 and Theorem 7.1), <u) = £2,({eyr) < EF. Since e," ¢ F, e, ¢ EF.

(i) Wecanfindee Land beFsuchthat |ab ' == 2, " == a1, 97 !
and ¢,% -= %, Then <e;, ab> is a dihedral group centralizing u,. Thus,
S contains a dihedral group e, , g> with | ¢ ' == 2. Here g or e,g is not in EF.
By Lemma 3.1 and Theorem 7.1, ¢ or e,g is in EF and (Cy(t)e,. )’
PGL(2, q).

(1) Let ¢ be an involution in S - LF. Since (E(v))< is dihedral,
‘e, , v 18 dihedral. Also, ¢ is a nonregular involution, as otherwise 0 # -
g-i-1 (mod4) by Lemma 4.1(iii), whereas ¢4 ¢PSL(2,¢) 15 a regular
involution. Then Cp(v) = <t), as otherwise f is a square in C(2), contra-
dicting Theorem 7.1, Lemma 3.1 and the fact that | 4! = [d(v) (mod 4)
(Lemma 4.1(vi)). It follows that © inverts the subgroup <3 of order 4 in the
cyclic group F. As in (ii), from the dihedral group {e;, o> < C(y,), we
obtain a dihedral group (e, , g in &, and (iii) follows as above.

(iv) By (i) and (iii), e, € EF. Then e,2 = rs, where re Iy, sl and
frioz= s jasu A 1oSinee el m ey 2, (iv) follows.

Levaia 94, S > EF.
Proof. 'This follows from Lemmas 2.6 and 9.3(i).

L.EMMA 9.5. Let v be an involution in S — EF.

(1) o is a nonregular involution.
(i) E<v> is quasidihedral, and F{v > is dihedral or quasidihedral.
(1) Ev)y = {e,v)>, where | e | = | E| = 4k and ¢* = e7't.
(iv) IfaeE andbeF have order 8, b* = b1, and v ~ 1, then a?h* ~ 1.

Proof. (i) If ¢ = 3 (mod 4) this is clear. If ¢ = 1 (mod 4) this follows
from Lemma 4.1 (v1).
(1) By Lemma 4.1(vi), | 4| =z [A(z)| (mod 4). Thus, 7 is not a
square, so that Cp(v) = C(v) = ).

481/20/3-3
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(i) This follows from (ii).
(iv) Since ae {e*», a” — a'. Then (ab)” == (ab)"', so that Jab, v is
dihedral of order §. It follows that © ~ wuw, where 1 - = a%b2.

Ift ~2'cS — EF, then ¢ == ors, re E, s € F. Since b = (b 1Yy - bor
b~V and F{¢": is dibedral or quasidihedral, b*" == b1,

As it u, v w0 C(v), we can find g € G such thate? - fand ¢, u, v ¥ <7 S,
Now w¥ o= (vou)! == v, where @ = (o) ~ o/ ~ . If o' 2§ — EF, then,
using the dihedral group <%, &>, we find that @' ~ 2. Thus, u ~ u? -
1o ~¢' ~t.If¢' € LF, then there is a dihedral group r, , 2" withr e E - F
and once again @' ~ 1o’

LemMa 9.6, F is generalized quaternion.

Proof. Assume that F' 1s cyclic. If there are no involutions in S EF,
then S has no elementary abelian subgroup of order 8, contradicting
Theorem 7.8. Let @ be an involution in S — EF. Then S = EF{v)/a>,
where a? is a field automorphism. By Theorem 7.1, Fia> is cyclic or
generalized quaternion.

Since C(f) has one class of elements of order 4, all involutions in EF - <1,
are conjugate in C(f). £,(S) <7 EF<{v, (Theorem 7.1) and S/EF is abelian
(Lemma 3.1). By Lemma 9.5(1), » is nonregular.

Define e, f; and ¢ as in Lemmas 9.2(iv) and 9.5(111). Then, (¢, = (e
and e€ EF{v - — EF.

Suppose that all involutions in EF are conjugate to . Let e, be as in
Lemma9.3. We have ;" 51, e, € PGLA2, q) -PSL(2, ¢), es € EF v - - EF,
and ¢, - 2. Thene, = xye, ve i, v e F, so that

e2 = wyoxye € xoy Ky = o) C I,

and ¢ € e, -, a contradiction.

Thus, the involutions in EF — <t arc not conjugate to f, and we may
assume that @ ~ 1 (Lemma 2.6). Since e? is an odd permutation, whereas
fi2 is even, we have 11 = [ f¥9 - L4, - le. fe l. By
Lemma 9.5(iv), either | f, | -~ 4 or 7o, ;> 1s quasidihedral of order 16.

We claim that S - EF{v:. For suppose that «¢ -~ |, and set S,
EF{z <¢a?>. By Lemma 2.2, there is an integer m and a ge G such that
(@) e S, but (@) == @ (mod Sy). If ¢ € IF then ¥ - 1, (@) = a"[a", ¢],
and {a”, g]? € (C(HDY - = Cy(t)4, so that [a”, gl e C,OW NS = LF =28,
a contradiction. If #7 ¢ EF then t9 1s not a square in S, so that (@) - ¢
and a” tare in EF{z> < S, a contradiction, proving our claim.

If {F{ 4 then S = (ECw))u> for an involution we EF - <1 All
involutions in the quasidihedral group L{v) are conjugate to t. As u < f,
this contradicts Lemma 2.3.
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Thus, (z, f> is quasidihedral of order 16. Set S, = E{fi*;{v — {e, v, fi* .
A conjugate of ¢ lying in § — S; would have the form e‘ef,/ with j odd. It
7is odd then efv e F <L C(F) and | e'ofy/ ' = | f;/ | == 8. If i is even then

eivfjeinf ) — e fI(e)f,i = ef Pite ify) — .

Thus, S, contains all conjugates of ¢ lying in S.

By Lemma 2.2, there is an integer m and a g € G such that (fj") e S
but (f,")? == f;™ (mod .S;). We have seen that £, == . Thus, | £ 7= 4 and
(f3"y e EF. 1t follows that 2 =1, {f;"> — W NS = f;">, and hence
(fim) - fi" (mod { f,2>), a contradiction.

Levma 9.7, S, is a 2-Sylow subgroup of G4

Proof. By Lemma 9.6, no involution in £F — (¢ centralizes £. By
Lemma 9.5(ii), the same is true of each involution in .S - EF.

LemMa 9.8, (1) There is an involution in S — EF.
(i1) G, contains a Klein group.

Proof. 1f ¢ = | (mod 4), (ii) follows from Lemma 9.6. If ¢ -~ 3 (mod 4),
(1) and (ii) are equivalent. Assume that .S — EF contains no involution.

By Lemma 2.6, EF — {t} contains a conjugate of £. By Lemmas 9.6 and
9.3(11), S — EF contains an element & such that #4 is an involution in
PGL(2, g) —PSL(2, ¢). Then # ¢ F* and F<{b> is a generalized quaternion
group (Lemma 9.6). Thus, F(b> - {f,b> with f? = 1 and |f] = 8.
We may now assume that | b | = 4.

Since 64 = f4 is an involution in PGL(2, ¢) — PSL(2, ¢), it is an odd
permutation. Then 594 and f#4 are also odd permutations. However,
teb> M {f, sothat (%< and (f 99 are semiregular and have different
orders, a contradiction.

Levna 99, S = EF{v>, where E and F are generalized quaternion
groups of order dk, ENF = (), [E,F] = |, E <1 S,F <1 S, v is an tnvolution
in S — EF, and E{v) and F{v) are quasidihedral groups.

Proof. By Lemmas 9.6, 9.8 and 9.5, S = EF{(v)>{a> with E and F
generalized quaternion, ¥ a nonregular involution in S — EF, E{v) and
I{v> quasidihedral, and a4 a field automorphism. Also, (Cy(t){v})4 ==
PGL(2, g).

Let E(v) = {e,v) and F{v) = {f,v) with | E| = | e]| and |F| = | f].
Then ¢4 and f4 = v4 are odd permutations and {¢>?4 and {f>2-4 are
semiregular. Thus, 4k = |e| == |f| = |2 — 4 |,.
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It remains to show that S = EF{v};. Suppose that a® £ 1. By Theorem 7.1
and Lemma 3.1, F{a) is a generalized quaternion group. Then we may
assume that a4, =4 and Fla) = (g,ay with g = |F|= f' ==

(82— 4, = 4k == (g% — 1), == 8. Since (g is semiregular, it follows
that g9~4 is an odd permutation. Then g2 = a4 is also odd, so that a®4 is
odd. However, {g>%~4and {(a>% 4 are semiregular and ' g% =8~ g2,

so that this is impossible. This proves Lemma 9.9.

Lemma 9.10.  If k = 2 then all involutions in G are conjugate.

Proof. Here S| = 64. Define ¢ by Lemma 9.5(ii1), and f; by Lemma
9.2(iv). Then e == e, fi* ~:fi" »=f;1, and €1 = ¢fi2 = te. Also,
Cg(e) == <{e». Thus, a result of Brauer and Fong [6] implies that either all
involutions in G are conjugate, or G &~ M,, . As the latter possibility does
not occur [7], the lemma follows.

In unpublished research, P. Fong has studied simple groups G whose
2-5Svlow subgroups have the structure described in Lemma 9.9 with & > 2.
His main result is that all involutions in G are conjugate. We onlv require
a special case of this resulit.

In Lemmas 9.11-9.18 we assume that k > 2. These lemmas are due to Fong.

We use the following notation: [v), = {e,v>, Flvy = (f, v,
te = f = | El = |F =4k u-: " and m -= ou. If S — EF contains
a conjugate of 7, we also assume that ¢ ~ f.

Levnva 901, S = e, f, m>, where ¢ == 2% wo fm? = |, [e% f7] = |,
/1 e*2f‘—fl’ (e}l)z — (e\]f)2 - l) oM o ‘,71, andf'm, :\f 1

Proof. m* - efHefRy =1, (f5) = (¥ =f % e et and

il

£ m @t (efrlt)ekf’“ = e

Similarly, f™ == f-1 As |ev| =« : fv, 4, eve k) and fveF, we have
ef 1w ev(fo)t = evfot == foevt = fu(ev) ' = fe"'. Thus, je}f| - 2, and
similarly, | ef ! == 2. Also, f* = e"lfe == e~Te1f .

Levma 9.12. SW = {e?, f2:) and £,(SV)* = t, u>* consists of the
involutions in S which ave squares in S.

Proof. As S = e, fym>, {e.mpyV w={e?y, {(f,myV = {f%;, and
Jefrt e 80 o= (o2 f200 Also e, fand m are involutions (mod .SW).
"Thus, each involution in S which is a square must be in S,
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Levma 9.13. Set V = SV emf >.

(1) V =<e¥ xX<emf, <1.S, where |e* = |emf!.
(i) m inverts V.
(1) V s weakly closed in S.
(iv) N(V) controls fusion in V.

Proof. (i) By Lemma 9.12, | S: V' = 4. We have (¢2)*"/ = (¢72) =
(e72)* = €. Similarly, (f2)#™ == f% so that I’ is abelian. Also, emfemf —
ef e Yf = eeff (Lemma 9.11). Thus, I 2= (e2> X {emf ) = <e2 emf, f2) =V
and |emf | = 2| | = e L.

(i) em = eland (emf)* = e7linf ! = e Yfin = f~lem = f~lme ! ==
(enf).

(i) If V£V? < S, geG, then ue V7 (Lemma 9.12), so that
Ve <L Cg(u) = V{m). Then VV? = Cy(u), and V' N V¢ < Z(Cg(u)). How-
ever, minverts VN Vand | VN V9| = 1| 17| > 4, a contradiction.

(iv) This is immediate by (iii).

Lemma 9.14.  There is a 3-element be N(V) such that {b> is transitive
on {t, u)*.

Proof. Asu ~ ut, it suffices to show that # ~ u (Lemma 9.13(iv)). If ¢ is
not weakly closed in EF, this follows from Lemma 9.3. We may thus assume
that  ~ v (Lemma 2.6).

Let o# =: tand (o, u, t3¢ < S, where g € G. Since [{t7, u9> N EF | =2, we
may assume that u? ¢ EF. Also (¢%/?)® = e % 2, so that v ~ vu ~ (vu)! == tu’.
However, 4’ € S — EF inverts ? (LLemma 9.5), so that 47 ~ fuf ~ v ~ 1.

Lemma 9.15.  Each involution in S is conjugale in S to one of: 1, u, ¢f,
ef -1, mf, em, or m.

Proof. We need only consider involutions in .S — S®. Suppose that

#f7 is an involution, with 7 and j integers. If 7 is even and f is odd, then
Efi-Veif iVf = gif i-le=iff iU = f2 £ |

Thus, by symmetry i and j are both odd. By Lemma 9.11, f* = e~%fe? =
e=2¢%f. Then (e/f)*° = ¢~%f, so that ef ~ ¢/f it i = 1 (mod 4). Also, (¢if7)" —
[ 712 = of 74, Thus, ef ~ €f7if { == j = 1 (mod 4). As (eif )™ = e~ ~,
ef ~ e'fiif i = j (mod 4). Replacing f by /%, we have ¢f = ~ eif 7 if { == —j
(mod 4).

By Lemma 9.11, | S : (¢, f>| = 2. An involution not yet considered must
then have the form emf’. Note that (efmf2/)* = e'e lnef —¥ == " *mf —%,

If 7is odd and | = e'mfeimf? =: ef 2le~if* = f4 then e‘mf?> = e'm or
emt. As (elm)* = e'mt and (e'm)* == ¢ Zm, em ~ ¢lm ~ e'mt for i odd.
Similarly, mf ~ mf7 ~ tmf7 for j odd.
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As (Xmf ¥y = ¥ mf -2 and (¥mf VY = e Umf U m ~ e2mf¥ for all {
and J.

Finally, suppose that 7 and j are odd. Then emfieimf’ = e'me if mf7 -
e¥f2 -+ 1. This proves the lemma,

Lrvma 9.16.  Either m ~ ef or m ~ ¢f .

Proof. Set U == Cy(u) = Vim> = (€% f? ef,m>. By Lemma 9.14 there
is a 2-Sylow subgroup S; of C(u) such that Sy > U. As | S: U =2,
S§% == Sy and 1* = u for some a € N(U). Clearly, | N(U)/C(LHU |, == 2. If we
let L/C(U)U = ON(O)/C(UYU'), where L == C(U)U, then N(U) == SL.
We may thus assume that a €L and a ¢ C(u). By Lemma 9.13(1ii), {a> is
transitive on <{f, u)*.

Thus, there is a 3-element d € N(U) such that {d is transitive on {t, u>".
By Lemma 9.15, each involution in U - 1" is conjugate in .S to m, ef, or ef -1,
where mS, (¢f )5, and (¢f WO U ~ . If m < ef and m ~ ef 1, then
(mS)* = m. However, | m% | = | 8:C¢(m)| = | S: 4, u, myl = (4k)}8 =
2k - 2 (mod 3). Thus, we can find distinct elements e, , my € mS N C(d).
Then d centralizes the element mym, = 1 of IV, whereas d centralizes no
involution in V.

LeMma 917, If mf ~ t then e7"mf ~ e *u.

Proof. Let S; be a 2-Sylow subgroup of C(u) containing Cg(u). As
mf ~ t ~ u, there is a g € G such that (mf)! = u and Cg(mf)? << S;. We
have 1 € (e <L Cg(mf) since (e2)"/ == (7Y = ¢%. By Lemma 9.12, applied
to Sy, #7 ==t or tu. If 1 == ¢ then mf and u arc conjugate in C(¢). If ¢ = tu
then, for a suitable b in Lemma 9.14, ##* == t and (mf)”® == «® = tu, and
once again mf and u are conjugate in C(?).

Let (mf )" = u, g’ € C(t). We may assume that Cy(mf )" < Cy(u) = Vim).
Then {e23* < V{m)y and (e¥)?" € V. Thus, (e¥)" € Cift) N 7 = (€%, so that
(e"y" = =", Replacing g’ by g'm if necessary, we have (e)”" —= e and
(mf )" = u. The result follows.

Lemma 9.18. (i) If ef ~ t, then muf ~ % or emu ~ f*,
(i) If ef 2 ~ t, then muf ~ f* or emu ~ f*.
(i) If ef £t A ef -1, then e 'mf ~ eFu.

Proof. (i) Let {ef ) = t and Cglef)? << S, where ge G. As (ef y/ =
(Y =t = of (1) = (1Y — e E —uand ! — (1Y —
e 5k = uf, we have f € {mf, 1y < Cg(ef)V. Then t +# t9 € S, so that
17 = u or ut. We may assume that #¢ —= wu.
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Also, muf = u - mf € Cy(ef), and emu = ef - mf - u € Cg(ef), so that (muf)’

and (emu)? are in
Cylef ) N C@E)Y < SN Ct7) == Cglu) = Vimy == ({e*> < emf »)\m).

Here mufmuf = uf "uf = t, and (emu)?* = t. As m inverts I (Lemma 9.13(ii))
and (emf )? = €% %, (muf )’ and (emu)’ are in {e*> X {e*2f¥/2, In N(V) these
are conjugate to elements with squarc ¢. Thus, muf ~ e** or f#* and
emu ~ eth or f#*. However, ¢ £ f* as these are not conjugate in C(1), and
muf ~ emu as otherwise (muf)? == ((emu)")*! and g € C(¢). Thus either muf
or emf ~ fF ~ f~F

(1) As (muf)™ = muf -1 we can replace f by f ! in the above argument.

(i) Suppose first that mf ~ 1, and set S, == S®e, mf>. Then
S = Sy{em>, and each involution m S, 1s conjugate in S to #,u or mf
(Lemma 9.15). By Lemmas 9.14 and 2.3, em ~ t. Similarly, if em ~¢
then mf ~ ¢ and (ii1) holds by Lemma 9.17.

Suppose now that em % ¢ £ mf. Set S; = SUef, m>, so that S = S {mf ).
By Lemma 2.3, mf is conjugate to an involution in S —~ S, hence to ef, ¢f 1,
or #1 (Lemma 9.15). By Lemma 9.16, mf ~ ef or ef 7.

Using Lemma 9.11, we find that C¢lef) = {ef, 1, u, mf > and Clef 1) =
Cef 1, t, u, mf ~> have order 16, while Cy(m) = {m, t, u> has order 8. Also,
ICg(mf ), = |{mf, em, ¥ =2 -2 -2k > 16 and |Cy(em)| = |Cg(mf ). Thus,
since mf A t ~ u, Cg(mf) is a 2-Sylow subgroup of C(mf).

Let ef £1 ~ mf. Then (¢f 1) = mf and Cg(ef+1)? < S for some ge G.
Then (z,u>? << .S. However, t ~u ~Lef, ef 1, em, mf, m, so that {t, u>? == {1, uy
{Lemma 9.15). Then mf = (ef£1)? € C({t, wp)” = C({t, u>), which is not
the casc.

From now on we again allow the possibility that & = 2.

LemMa 9.19. (1) All involutions in G are conjugate.
(i) Al elements of order 4 in W are conjugate in N(W) == C(¥).

LProof. Recall that, since {¢t) = Co(t) N W L Z(W), N(W) == C(¢).

We first show that (i) and (ii) are equivalent. Suppose that (ii) holds. By
Lemma 9.10, we may assume that % > 2. Since f ~ u, (i) follows from
Lemma 2.3 and the fact that all elements of order 4 in C(¢) are conjugate.
Now assume that (1) holds. Let v, and y, be elements of order 4 in W. Then
ey, and ey, are involutions, so that (e¥y,)7 == efy, for some ge G. Since
e? e C(ery,) N C(ery,), 1 is a square in C(efy,) and C(ety,). By Lemma 9.12
(which holds even if & = 2) we may assume that {efy,, t>7 == (eby, , £
Since ¢t ~ efy,t in C(e*y,), we may now assume that £ == ¢. Then
g€ Ct) = N(W)and (e¥)e™ = (y7Y)v,e Co(t) N W = (¢ It follows that
¥1 ~ ¥y in C(#), so that (ii) holds.
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In particular, by Lemma 9.10 both (i) and (ii) hold if &£ == 2.

Assume that & > 2. The quasidihedral group F{v has 2 classes of elements
of order 4. Recall that m = vu. As emu == eve I/ and f* e F both have
square ¢, they are not conjugate in G. By Lemma 9.18, either of = muf ~ f*
or of !¢ = flumf = e""mf ~ e~?u = f* Thus, all elements of order 4 in F
are conjugate in G, hence in N(WW).

We now complete the proot of Theorem 9.1. By Lemmas 9.8(ii), 9.19 and
4.5, Q 1s elementary abelian of order ¢3.

Since C(#)4 is 3-transitive, C(t) = Cy(¢){v)X, where X = W and X4 fixes
more than 2 points. Let xe X». We claim that d(x) C 4. Suppose that
A(x) L 4. Clearly, Cy(t) N C(a) is SL(2, ¢'), where ¢ is a power of ¢'. As
Co(<t, &) < Cy(t) N C(x), Cy(<t, x>) = SL(2,¢). As O is abelian,
Cy(x) == SL(2, ¢"), wherec ¢" =~ ¢" is a power of ¢". The involution in
Cy(x) N W, must be the involution in Cy(<t, x)) N W, ., whereas £¢ W, |
a contradiction.

Thus, .Y is semiregular on 2 — 4. It follows that X is fixed-point-free
on[Q, t].

A comparison of Lemma 9.19(1} with the structure of Frobenius com-
plements (see Passman [25]) shows that X/O(X) ~ SL(2,¢) with £ -: 3 or 5.
If /=5 X =~ SL(2,5) x OX). If /7 - 3, 1t is easily seen that .\ has a
normal subgroup X; such that X is the direct product of a quaternion group
and a group of odd order. Thus, X' has a normal subgroup X* such that
X* = L x K, ('L|,{K;)=1, and cither .\’ = X* and L ~ SL(2, 5), or
JX  X* . -0 3, L is quaternion of order 8, and X/K ~ SL(2, 3).

There is an element of order 4 m C(r) N C(K). Also, K centralizes an
element of order 4 in L <C V. Thus, K centralizes an involution t7 =% ¢
in Cy()IV, where g € G (Lemma 9.19(i)). Also, t € Cy(t9) Wy, .

We claim that K == [. If this 1s not so, let M <{ K have odd prime order.
Then M < C(#?) = Cy(#9) (2> X7 and M = C{z).1t follows that M <C Cy(29)R7.
As t € Cy(tY)W,,, there is an element d € L? such that | d | -= 4 and t* = 19¢.
Since d centralizes Co(#9)K¢, M? = M and A(M) == A(M%) C A(#) N A(271).
Then <z, 19+ is a Klein group fixing at least | A(M)| points of 2. As M4 < X4
fixes more than 2 points, this contradicts Theorem 7.1.

Thus, C(t) = Cy(t) X<z}, where Cyt) is SL(2, ¢) and X =~ SL(2,/) for
¢ ==3 or 5. We claim that X centralizes Cy(z). If / =5, then X < I,
and this is clear. If £ = 3, then either X X Wor W= X*=XNWis
quaternion of order 8 and A is generated by a field automorphism of order 3.
In the latter case, since W<{v) is quasidihedral C(¢)/C(t) is isomorphic to the
group S, . However, C(¢)/Cy(t)W is abelian of order 6, a contradiction. Thus,
[C(n), X] = 1.

By a result of Fong and Wong ([12], Main Theorem or (3H) and (3])),
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q i1s a power of /. However, L is fixed-point-free on the group [0, t] of order g°.
This contradiction proves Theorem 9.1, and completes the proof of
Theorem 1.1.

10. COROLLARIES
We now note some easy consequences of Theorem 1.1.

Cororrary 10.1. Let G be a 2-primitive group in which the stabilizer of a
point is solvable. Then PS1.(2, q) << G < PI'L{2, g) for some q.

Results of this type are in Passman [26].

Cororrary 10.2. Let G be a 3-transitive group on a set L2 in which the
stabilizer of 3 points is cyclic. Then PSL(2, q) << G << PI'L(2, q) for some q.

Proof. Let a e 2. If G2 has a regular normal subgroup, we can apply
Theorem 1.1. If G has no regular normal subgroup, then by [22], GZ ™ is
PSL(2, q), PGL(2, q), Sz(g), PSU(3, g), PGU(3, ¢) or of Ree type, in its
usual 2-transitive representation. The corollary now follows from a result of

Suzuki [36].
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