
JOUIWG.\L OI’ ALGIIBR.\ 20, 435-475 (1972) 

Finite Groups with a Split BN-pair of Rank 1. I* 

CHRISTOPH HERING AND \~ILLIAJI M. KANTOR 

AND 

GARY >I. SEITZ 

TO PROFESSOR RICHAND BRAUER, TO COMMEMORATE HIS SEVE.NTIETII BIRTIIDAY, 

FEBRUARY 10, 1971 

Received June 13, 1970 

I. INTRODI~CTION 

A group is said to have a split &V-pair of rank 1 if it has a homomorphic 

image G having a (faithful) 2-transitive permutation representation on 

a set -0 such that, for 01 E Q, G, has a normal subgroup Q regular on Q CL 

That is, Q is transitive on 9 - 01, and no nontrivial element of (, fixes a 

point of 52 -- a. 

‘rHEOREM 1. I, Let G be a jinite group 2-tram&e on a set Q. S’upposr that, 

SOY a: t Q, G, has a normal subgroup Q regular on Q - 01. Then G has a normal 
subgroup 121 such that LV < G sz Aut iVi atld 111 acts on L? as one of the following 
groups in its usual 2-transitive representation: a sharply 2-transiti,ve group, 
PSL(2, q), Sz(g), PSU(3, q), OY a group of Ree t3gpe. 

For / R 1 odd, this result has been proved by Shult [31]. The purpose of 

this paper is to prove Theorem 1. I when j Sz I is even. 

We remark that the groups listed in Theorem 1 .l all satisfy the hypotheses 

of the theorem. Also, sharply 2-transitive groups have been completely 

classified by Zassenhaus [44]. 

This theorem is one of a number of results of a similar nature. Zassenhaus 

groups are easily seen to satisfy the hypotheses of the theorem. The classifica- 

tion of Zassenhaus groups, due to Zassenhaus [43], Feit [lo], Ito [20] and 

Suzuki [33], is implicitly required in the proof. Suzuki [34-361 has considered 
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other special cases of Theorem 1.1. Further special cases are found in [ 15, 2 I, 

23, 24 and 261. We also note that recent results of Shult [30] and Kantor, 

O’Nan and Seitz [22] are similar to Theorem 1.1, and led to it. 

The theorem can he view-cd in a different manner. Tits [38] has classified 

all finite groups having a faithful irreducible KY-pair of rank ~3. ‘I’heorem 1.1 

extends this classification to finite groups having a split Il.\--pair of rank I. 

Verv recently, P. Fong and G. Seitz have used Theorem 1 .I in order to 

study finite groups having a W-pair of rank 2. 

T\‘c now indicate the approach used in the proof of ‘l’heorem 1. I when Q I 

is even. The basic idea is to use induction in order to obtain the structure of 

the 2-Sylow subgroups of G. Once this has been accomplished, results of 

,4lperin, Brauer and Gorenstein [I, 21 and \Valtcr [39] can be applied. 

‘l’hc study of the 2-Sylow subgroups of G is based primarily on a study of 

the fusion of 2-elements of G. Standard fusion and transfer arguments arc 

applied rcpeatcdly. A useful tool is the fact that G,:i controls the fusion of 

those of its subsets which fix at least 3 points. 

Another basic tool is the Hrauer-MYelandt ‘Theorem [41], which is applied 

to Klein groups in G,l, acting on 9. The structure of Q is studied only when 

it is clear that either 0 is a p-group or some element of G,%, of prime order is 

fised-point-free on Q; the Feit-Thompson Theorem [I l] is never applied 

to Q. \Ve also do not use Suzuki’s method of generators and relations [33. 

34, 351. 
The structure of the paper is as follows. Sections 2 and 3 contain back- 

ground material. In Section 4 WC begin the proof of Theorem 1.1 bp taking ;t 

countcresample of minimal order. Then 1 Q / ‘. lb even by Shult’s result [31]. 

This section contains the fusion result mentioned above, together with an 

inductive lemma to be used throughout the proof. 

By a result of Bender [4], we may assume that G,, has even order. Let t be 

an involution in G,,,? . The action of C(t) on the fixed points of t might he 

solvable, of unitary or Ree type, or contain I’SL(2, q) in its usual reprcsenta- 

tion. ‘l’hese possibilities are further divided as follows: the action is solvable 

of degree -4 (Section 5); t fixes just 2 points (Section 6); the action is of 

unitary or Ree type (Section 7); the action contains PSL(2, q) (Sections 8, 9j. 

In the latter case, Section 9 considers the possibility that C(t) has S1,(2, q) 
as a normal subgroup. In Section 8, it is assumed that, for any involution f  

in G,!, , the action of C(t) on the fixed points of t contains PSL(2, q) for some 

odd prime power q depending on t, and that in each case C(t) has PSL(2, q) 

as a normal subgroup. Rithin this framework, there arc also a large number of 

subcascs which must be considered. 

:Votnlz’on. Most of our notation is standard. All groups will be finite. I f  
G is a group, G# --= G ~~ (11, G(1) is the derived group of G, @b(G) is the 
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Frattini subgroup, O(G) is the largest normal subgroup of odd order, and 

Aut G is the automorphism group of G. If  G is a p-group, Q,(G) = 

(x E G / XP = 1). 

I f  x: E G and Y _C G then xy = (a+ 1 y  E I-). I f  x, y  E G we write x N y, or 

.Z - y  in G, when x and y  are conjugate in G, and we write x + y  otherwise. 

If  X _C f1 < G, then X is weakly closed in H (with respect to G) if g E G 

and Xg _C H imply that X = Xg. 

If  p is a prime and m a positive integer, mp will denote the p-part of m. 

We use Wielandt’s notation for permutation groups [42]. I f  G is a permuta- 

tion group on Q and 01 E *Q, G, is the stabilizer of N. If  Q: -f p E Q, then G,, 

is the stabilizer of 01 and /3, while G:ol,al is the setwise stabilizer of {ol, /3). I f  

X C G, d _C !J and dx = d, then 1\1-’ denotes the set of permutations induced 

by X on d. Our notation for the pointwise stabilizer of a subset of D will, 

however, differ from that of Wielandt (see Section 4). G is said to be semi- 

regular on Sz if only 1 E G fixes a point of 9. G is regular on 0 if it is transitive 

and semiregular on Q. We shall abuse this terminology slightly: if t E G is an 

involution, then t will be called a regular involution if(t) is semiregular on Q. 

1Ve shall employ a useful but unusual convention concerning equality of 

certain types of groups. The following are typical examples. Let t be an 

involution in a permutation group G, d its set of fixed points, and C,)(t) a sub- 

group of C(t). Then, we write C&t) = SL(2, q) to mean that Co(t) = X(2, y) 

and that C{,(t)” acts on d as PSL(2, q) in its usual 2-transitive permutation 

representation. Similarly, we write C&t)” = PSU(3, q) to mean that Co(t)-’ 

acts on d as PSU(3, q) in its usual 2-transitive permutation representation. 

2. BACKGROUND LEMNAS 

The Rrauer-Wielandt Theorem is basic to our approach: 

LEMMA 2.1 (Wielandt [41]). Let (t, u> be a Klein group acting on a 

group X of odd order. Then 

(i) X = Cx(t)Cx(u)Cx(tu); and 

(4 ICAt) lC&)I lCx(tu>I = I x I lCx(<C u>)l’. 

LEMMA 2.2. Let S be a 2-Sylow subgroup of a group G. Suppose that 

S, Q S, where S/S, is abelian, and let x E S - S,, . Assume that, for eachg E G 

and each integer m, if (P)Y E S then (xm>” = xm(mod S’J. Then G has a 

normal subgroup G,, such that x E G - Go and G/G, is a 2-group. 

Proof. Compute the image of .2: under the transfer map G + S/S, . 

hmlLlA 2.3. Let S be a 2-Sylow subgroup of a group G and let SO 4 S 
zcith S/S, cyclic. Suppose that x is an ineolution in S - S’, conjugate to no 
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element of S0 . Then G has a normal subgroup G, such that N E G - G, and 
G/G,, is a 2-group. 

This is clear from Lemma 2.2. Lemma 2.3 is essentially Thompson’s 

transfer lemma. 

Lwb1.k 2.4 (Burnside [S, p. 1551; [14, 11 2031). IfS is a 2-Sylow subgroup 
of a group G, then N(S) controls.fusion in Z(S). 

LEMMA 2.5 (Burnside [8, p. 1561; [14, p. 461). I f  S is a 2-Sylow subgroup 
of a group G, t is an involution in Z(S), and t N t, E S - (ti, then there is an 
elementary abelian subgroup X of S such that t E X and N(X) has an element 

of odd order movirg t. 

Lmmm 2.6. Let G be 2-transitive on a set Q, and let oi, p E Q, a: ;t p. 
Suppose that t is an involution central in a 2-Sylow subgroup of G,, and such 
that C(t) is 2-transitive on thejxedpoints oft. I f  S is a 2-Sylow subgroup of C(t) 
such that SI,,,) is a 2-Sylow subgroup of C(t){,,,), then S contains a conjugate 
t’ == (a/3) ‘.. of t. 

Proof. As C(t) has an element interchanging 0: and /3, S1,,,l is a 2-Sylow 

subgroup of Gil,i-j . Since G contains a conjugate (a/3)... of t, the lemma 

follows. 

LEMMA 2.7 ([22, Lemma 3.41). Let _y be a 2-group and I’ <1 X, where 
1 X/l’ 1 :== k i : 4. Let a4 be a subgroup ($ Aut X of odd order centralizitlg 1’ 

atld transitive on (X/Y)+. Then either 

(i) Theve is a unique .4-iwariant subgroup -IFI qf S such that 
x = s, ,-; Y; or 

(ii) k =~- 4 and theve is a unique A-invariant subgroup S, of X such that 

S, is quaternion of order 8, X == X,Y, 1 XI n Y 1 = 2 and [XI , Y] = 1. 

3. PSL(2, q), PSU(3, q), AND GROUPS OF REE TYPE 

In this section we have compiled the properties of the groups of even degree 

characterized by Theorem 1.1 xvhich will be required later. 

LEMMA 3.1. Set G = PSL(2, q), where y is odd. Let G be PrL(2,q) in its 
usual 2-transitive representation of degree q + 1 on a set 9. 

(i) G = Aut G. 

(ii) G/G has an abelian 2-Sylou: subgroup. 
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(iii) I f  q is not a square then 1 G/G ~z = 2. 

(iv) I f  q is a square and ac, p c Q, 01 # p, then a 2-sylow subgroup of G,, 

is metacyclic. 

(v) Each involution in % - PGL(2, q) Jixes di 4~. I points ofJ2. 

(vi) I f  q is a square then G is a subgroup of index 2 in precisely 3 subgroups 

of e : PGL(2, q), G(a) with a an involution in e -- PGL(2, q), andPcL(2, q), 

which acts on B as a Zassenhaus group. 

(vii) I f  q > 3, the covering group of PSL(2, q) is SL(2, q), unless q L= 9. 

The Schuv multiplier of PSL(2, 9) has order 6. 

Proof. It is easy to check (ij-(iv). For (v) and (vi), see Fong and \Vong 

[12, Section 11. For (vii), see Schur [29]. 

LEMMA 3.2. Let G be PSU(3, q) in its usual 2-transitive representation of 

de<Tree q3 + 1 on a set Q, where q is odd. Let a, ,B E Q, a: f  p. 

(i) G, has a normal subgroup Q of order q” regular on Q - Y. 

(ii) Z(Q) = D(Q) = Q(l) is elementary abeliau of order q; Gyo is 

irreducible on Q/Z(Q). 

(iii) G has a single class of involutions. 

(iv) I f  t is an involution in G,, , then Co(t) = Z(Q) and C(t) 0 Co(t) = 

SL(2, q), where C(t)/C,(t) is cyclic. 

(v) A 2-Sylow subgroup S of G is quasidihedral ; f  q -1 I(mod 4) a?ld 

wreathed Z,, 1 Zz ifq 3 3(mod 4). 

(vi) Set e .= Aut G. Then G is a permutationgroup on Q. 

(vii) G - G contains a single class of involutions of G, each of which 

fixes q $- 1 points. 

(viii) I f  a E GaD - Gti, is an involution, then C,(a) mm= PGL(2, q) and 

C,(a) n Z(Q) = 1. 

(ix) -4 central extension of G by a 2-group splits. 

I’roof. (i)-(vi) These are easy to verify. 

a E (iviij-(viii) G/G h as a cyclic 2-Sylow subgroup (Steinberg 1321). Let 
-i 
ai: - G,, be induced by the involutory field automorphism of GF(q’). 

Then C,(a) is the full 3-dimensional orthogonal group over GF(q), that is, 

C,(a) = PGL(2, q). .-. 
G acts on the projective plane PG(2, q2). An involution x E G - G is a 

collineation of this plane, and thus fixes q2 + 2 or q2 + y  + 1 lines. If  x fixes 

no points of J2, then x fixes precisely (q” + l)/(q + 1) lines, each meeting Q 

in q + 1 points, a contradiction. 
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Now assume that x E ea,? . Let (y) be the 2-Sylow subgroup of GU:,, , so 

, y  / = (9’ -~ 1)2 . I f  q <: 1 (mod 4), then J~-‘,v” == yq-i is an involution. If  

q EC 3 (mod 4), then yy” = 3 l’ltl is an involution. In either case, a 2-Sylow 

subgroup of G,, has a single class of involutions not in G,, . This implies 

(vii) and (viii). 

(ix) Let fri be a central extension of G by a group (z> of order 2. Let t 
be an involution in 11 ~ (2,) and set 1, CH(t). Then L/(Z) contains a 

characteristic subgroup E/(z) isomorphic to SL(2, y) such that LIE is cyclic. 

By Lemma 3.1 (vii) it follows that E has a characteristic subgroup E, such 

that 1:’ H, :J (z’,. 

4 Sylow 2-subgroup S of ;VH(<t, z;) is 2-Sylow in H. Set So -: S n E,, . 

‘I’hen S CZ, S, , S;‘& is abclian, and z $ $C;,, . Now Lemma 2.2 implies that H 

has a normal subgroup II,, of index 3, and 11 .m- H0 s (z; 

\1T:e define groups of Ree type by means of the axioms of \Vard [40]. 

Alternative characterizations are found in [15, 22, 28, 391. 

LEMMA 3.3. Let G be a group of Kre type, in its usual 2-transitive repre- 

sentation on a set Q, j Q / = q3 A- 1, q _- 3’Uf1, a > 0. Let 01, /3 E Q, 01 # 13. 

(i) .4 2-Sylou; subgroup S of G is elementary abelian of order 8. 

(ii) C(S) = S and l\r(S)/C( S) NC s on S+ as a Frobenius group of I 

order 21. 

(iii) G, has a normal subgroup 0 regular on 52 -- cy. If  q > 3, then 0 has 

class 3, Z(Q)~ = q, Q(l) = D(Q), and / @@)I = q2. 

(iv) G,, is cyclic of order q -~ I. 

(v) An involution t E G,,9jkes q + 1 points, and is the only element of 

(G,,)*‘jxing more than 2points. 

(vi) C(t) =- <‘tj X PSL(2, q). 

(vii) C,(t) n Z(Q) :--z 1, and if q -2 3, then Co(t)Z(Q) = Q(Q). 

(viii) G is simple if q > 3, and if q = 3, then G m PrL(2, 8). 

(ix) Aut G/G has odd order. 

(s) A central extension of G by a 2-group splits. 

Proof. (i)-(viii) See Ward [40]. 

(ix) This has been checked for Ree groups by Ree [27]. The following 

proof for groups of Ree type is in the spirit of later sections. The notation is 

that of Section 4. We may assume that q > 3. 
Aut G acts on 9. Let x E Aut G - G, where / x 1 = 2 or 4 and x2 E G. We 

may assume that x centralizes the involution t in G,, . Let G be G(x), d 

the fixed points of t, and TV the subgroup of G fixing each point of d. Then 
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/ IV 1 is either 2 or 4. I f  / W 1 = 4 then G,, has a central 2-Sylow subgroup of 

order 4. If  / IV 1 = 2, then (C,,(~)<X>)” = PGL(2, ‘1) and again G&,, has a 

central 2-Sylow subgroup of order 4. 

Now O(G,,) is irreducible on Q/@(Q), 4 { (; Q,@(Q)1 - l), and t is fixed- 

point-free on Q/@(Q). Thus, a 2-Sylow subgroup of G,, must be a Klein 

group, say (t, u). As G,, is irreducible on Q/@(Q), it follows that u or tu is 

in C(Q), and hence fixes each point of fi, a contradiction. 

(x) If  X is a 2-Sylow subgroup of a central extension H of G by a group 

<z> of order 2, then l\‘&-Y’) has a subgroup of order 7 transitive on (X/(z;:)“. 

By Lemma 2.7, S splits over (z), and consequently M splits over (x,J 

[14, p. 2461. 

4. BEGINNING OF PROOI~ 

Assume that G is a group of least order satisfying the hypotheses but not the 

conclusions of Theorem 1.1. Thus, G is 2-transitive on Sz, 1 !J j = n is even, 

and G,, has a normal subgroup Q of odd order n - I regular on 9 - 01. 

LERlhlh 4.1. 

(i) G has no proper normal subgroup containing Q. 

(ii) G has 120 normal subg,group of index 2. 

(iii) G contains no odd permutations. 

(iv) G has no regular normal subgroup. 

(v) G has an involution fixing at least 4 points. 

(vi) FRY each involution II, the number of fixed poittts of II is -=?I 
(mod 4). 

Proof. (i) Let G D K > Q. If  K has a unique normal subgroup M as in 

Theorem 1, and clearly C,(M) = 1, so that G < Aut M and G satisfies the 

conclusions of Theorem I. 1. I f  M is not unique, then K has a unique minimal 

normal subgroup L, and 111 = LQ is a normal sharply 2-transitive subgroup 

of G. 

(ii) As 1 Q 1 is odd, such a subgroup would contain Q. 

(iii) This is clear by (ii). 

(iv) Let K be a regular normal subgroup of G. Then KQ is a sharply 

2-transitive normal subgroup of G, contradicting (i). 

(v) If  1 G, / is odd, then G is solvable or contains a normal subgroup 

PSL(2, q), q = 3 (mod 4), containing Q (Bender [4]). I f  some involution 

fixes 2 points, but no involution fixes more than 2 points, then G has a normal 
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subgroup PSL(2, q) containing Q, or G is A, in its usual representation 

(Hering 1171). None of these possibilities can occur. 

(vi) By (iii), u is an even permutation, hence has an even number of 

2-cycles. 

An involution fixing no points of .Q will be called a re~ulur involution. 

Kotation. Let o( and /3 be distinct points of 8. 

Let X be any subset of G fixing at least two points. Define: 

A(S) ~2 set of fixed points of *V:; 

X(X) il(K) s-1 permutation group induced by :V(&y) on d(X); 

Cd-~) <C,,(‘\-) / cd’ E A(X) : 

nfx : pointwise stabilizer of d(S) in N(S). 

For an involution denoted t, we write A A(t) and W -= IV, . 

LEMMA 4.2. If  ,Y is a subset of G jisirl‘y at least 3 points, then CO(X)“(x) 

is a 2-transitive group satisfying the hypotheses of Theorem 1. I with 1 A(X)1 even. 

PYOO~. We may assume that a E A(-Y). I f  p, y  t A(S) J(, then y  -= /3’“, 

lr E p. Let .\: F .I-. Then /3’~~’ ~- fl” ~-= /3.ch implies that 

Thus, h E Co(X), so that C,(S) is transitive on A(X) - CV. As (Y. is any point 

of A(X) and C,(.U) a I\‘(X),~ , (,‘,j(X)A(“) is 2-transitive and satisfies the 

hypotheses of Theorem 1.1. Finally, PA) =z= ~C,(S)i + I is even as 

! Q / is odd. 

I,EniAIA 4.3. Let X and I‘ be subsets of Gao , each jixing at least 3 points. 

!f X and Y aye conjugate in G then they are conjugate in G,,, , 

I’roof. Let Y = A?, g E G. Then IU, /3, (~8, j3” E A(Y). Let C@ = 31, 

ph = p, where h E C,(Y) (Lemma 4.2). Then gh E G,, , and X@ = Y” =m:- 1’. 

LERI&IA 4.4. Let S be a subset of Gc fixing at least 3 points. Then 

[C,(X), W,] = 1, and one of the following holds. 

(i) IA(X)1 =z 2”, 1 C,,(X)“(“) 1 -= 2”(2R - l), and C,,(X) is a sharply 

2-transititle group. 

(ii) iA(X)l = q + 1 and C,,(X) = PSL(2, q)foy some odd prime power q. 

(iii) IA(X)1 = q -I-- 1 and C,,(X) x SL(2, q) for some odd prime power q. 
(iv) IA(X)! = q3 -I- 1 and C,,(X) is a central extension of PSU(3, q) b3 

a group of odd order, where q is an odd prime power. 
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(v) BAG = q3 f  1 and C”(S) is a central extension of u group of Ree 

type h~v a group of odd order, where q :~ 32” ’ I. 

Proof. Let S c G, . Then [C,(X), JVr] :< Q n Wx = I. As N(X) 

normalizes W,r , we have [C”(X), II’,] == I. By Lemma 4.2, the minimality of 

/ G 1, and the definition of C,(X), it follows that C,,(S)“(x) is solvable of 

order 2’“(2” ~- I), CO(zY)“x) = PSL(2, q), C,,(-Y) Aa) =- PSU(3, q), or C,(X)“‘~Y’ 

is of Ree type. 

Clearly, C,(X)“(x) Q= C,(X)/C,(,Y) n IIJx and C,,(X) n PI’, :< Z(C,(A’)). 
From the definition of C,(X) it follows that C,,(X) has no normal subgroup of 

index 3. 

If  C,,(X)“‘X’ is unitary or of Ree type, then (iv) or (v) holds by 

Lemmas 3.2(k) and 3.3(x). Suppose that CO(X)d(x) = PSL(2, q) with 9 :> 3 

and 4 odd. In this case we have C,(X) < C,,(X)(l), so that C,(X) = C,(X)(r). 

Thus, if neither (ii) nor (iii) holds, then C,(X) is a homomorphic image of the 

covering group of PSL(2, 9) (Lemma 3. I (vii)). However, in this case, if P is a 

3-Sylow subgroup of C’,,(X), , then P = C,(X) x (P n FITx), so that a 

result of Gaschiitz [14, p. 2461 implies that C,(X) splits over P n If:, , 

a contradiction. 

Finally, suppose that CO(X)“(x) IS solvable of order 2”(2” ~- 1). Then C,(X) 

has a normal 2-Sylow subgroup R such that R”lx) is regular. It follows that 

C,(X) = R . C,(X). Using Lemma 2.7 and the fact that C,(X) has no 

normal subgroup of index 2, we have ~ R n JVx I ,’ 2. Consequently, 

(i), (ii), or (iii) holds. 

LEMMA 4.5. I f  (t, uj is a Klein group in G,, with t N u N tu, 

lA((t, u:j)i = 2, and C,,(t) A(t) = PSL(2, y), then 8 is elementary ahelian and 

n L ‘13 -+ I. 

Proof. t N u N tu in Gas (Lemma 4.3). As ~<t, u) acts on Z(Q), one and 

hence all involutions in (t, u) centralize elements of Z(Q)+‘. However, CO(t)&s 
is irrcducihle on C,(t). Thus, C,(t) < Z(Q), and it follows that ,O < Z(Q). 
Also, ?z == q3 T 1 follows from Lemma 2.1. 

LEaliIlA 4.6. Let t be an inaolutiovz in GtiG such that C(t),, contains a 

I?-Sylow .subLgroup of Geu . Then C(t) contains a 2-Sylow subgroup of Gprooided 

that either 

(i) n, < j A lz , or 

(ii) Q is a p-group of order pa, i C,(t)1 = pn, and either b is odd OY a 
is even. 

Jloreover, it1 either case n, = j A I2 , 
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(ii) I f  a is even then n, -: 2 .: , Lt i . I f  a is odd and b is odd then 

nz = (p -{- I)2 := (p” -I- l)‘L. . 

5. 'L'HE SOLVABLE C'ASI; 

'I(HEOREM 5.1. Let t he an involution in G,Y, such that C(t)A is solvable und 

1 d ( > 2. l’hen 

(1) jd j -4; and 

(2) if G,, contains no Klein group, then Co(t) = SL(2,3). 

Proof. Suppose the theorem is false. Let ) d : -= k 3 4. If  k : 4, we 

are assuming that Gna contains no Klein group and C,,(t) = =3, . 

I f  there is an involution z E G,, fixing just 2 points, then z E Z(G,,). Also, 

z f  t and zd fixes just 2 points. Then ’ d / = 4 and G,, has a Klein group, 

a contradiction. Thus, there is no such involution z. 

Write k = 2f, f > 2. 

hvMA 5.2. C,(t) has a normal 2-Syloz~ subgroup Tof order k. I f  W contains 

no Kleingroup then T x (t) is the unique elementary abelian subgroup of C(t) of 

order 2k. If t” is in 7‘ x (t), then g is in N( T(t)). 

I’yoof. The first assertion follows from Lemma 4.4 and our conditions on t. 

Suppose that IV contains no Klein group, and let S be a 2-Sylow subgroup of 

C(t). I f  k =- 4, then G,, contains no Klein group, and the second assertion is 

clear. 

Suppose that k ; 4. I f  ,S - T(S n IV) contains no involution, the 

uniqueness of T(t) is again clear. Let u E S - T(S n W) be an involution. 

Since C(t)A is solvable, it is a subgroup of the group of l-dimensional affine 

semilinear mappings on GF(/z) (Huppert [19]). By hypothesis, ud # 1, so 

that ud acts as a field automorphism. Thus, ud fixes 4X points, that is, 
IC,(u)! =m= 4. As II’(S n W) =: 7‘ x (S n W), the second assertion follows. 

If  t” E T x it), then (T(t>)g-l ..g C(t). By the uniqueness of T(t>, we 

have g E N( T(t)). 

LEMX~ 5.3. Suppose that k ;:, 4, M’ contains 110 Klein gsoup, and 

T(t) -- (t) contains conjugates oft. Then: 

(i) T(tj contains k conjugates oft, namely, the elements of Tt; 

(ii) N(T(t)) is transitive on Tt; and 

(iii) (t) is a 2-Sylozu subgroup of TV. 
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Proof. (i) and (ii). I f  T(t) does not contain k conjugates of t it contains 

2k - 1 such conjugates and, by Lemma 5.2, N( T(t)) is transitive on (T(t))“. 

Then H = N( T(tj)/C( T(t)) is a linear group acting on (T(t))” as a 

primitive group of degree 2k - 1 with subdegrees 1, k - 1, Iz - 1. / 111 is 

odd (Wielandt [42, p. 8, Ex. 3.13]), so that 11 is solvable (Feit-Thompson [I I]). 

Let dl be a normal subgroup of H regular on (T(t))“. Then 121 is fixed- 

point-free on T(t), so that M is cyclic and Ijr/.VZ G Aut G2;(2k). Xow 

2f -- 1 = iCo(t); dividesf + 1, n-hereasf > 2. 

Thus, T(t> has k conjugates of t. Let t” E T’, 0” E G. By Lemma 5.2, 

9 E A’( T<(t)). However, To 72 T and T v  To i :P /z --I- 1, whereas T,,‘t\ has 

only k conjugates of t. This contradiction implies that 7% is the set of 

conjugates oft in T-/t). 

(iii) A 2-Sylow subgroup of C(T(t)) has the form 1’ ;: 1’ with I- 

2-Sylow in W. Let S be a 2-Sylow subgroup of N( I’(t>) normalizing T 2: 1: 

Since : Tt / = h = 2f, S is transitive on Tt. I f  j I’ 1 :> 2, then t is the only 

involution which is a square in T x I;, so that S .$ C(t), a contradiction. 

For purposes of Lemmas 5.4 and 5.5, we recall that we are assuming that, 

if G,, contains a Klein group, then k .._’ 4. We also make the following 

observation, which will be used frequently in Sections 5, 6 and 7. If  <‘u, V> 

is a Klein group in G,, , and z@(V) -# 1, then either C’(C)‘(~) is solvable, or 

the action of z&CL) has been described in Section 3. 

LEMMA 5.4. G,, contains no imolution u such that C(U)~(~) is nonsolunble. 

Proof. Suppose that C(U)‘(~‘) is nonsolvable. We first assume that u E C’(t). 
Since C”((t, ~1) < C,,(t) n C,,(U), lA((t, u))/ = 4 and I d ~ =: 16. By 

Lemma 4.I(vi), ion = 28 and lo( -: 4, 16 or 28. Also, W contains 
no Klein group, as otherwise there is an involution z’ E 1V such that 

tA(l’) f  1 (Lemma 2.1) and then we must have lO( == 162 (see Section 3) 

whereas (162 - 1) { i Q / (Lemma 2.1). 

C,,(u)A(~‘) is a Ree group. For otherwise, it is unitary. By I,emma 4.4, 

C,,(t) .r C,,(t)“, so that ;1, = (Co(t) n C(u))” x (Co(t) n C’(U))~(‘~). Then 

tAc2’) is a field automorphism (Lemma 3.2). I f  v  is the involution in C,,(U),~ , 

then (t, U, 21) is elementary abelian of order 8, and <t, u, a> n TT’ -~ <t>. Thus, 

(u, z’+’ is a Klein group in C(t)$ , which is not possible. 

Let S be a 2-Sylow subgroup of C(U) containing CT(u)(tI:. Then 

E == S n C,(U) > S n CJ(t, uj) my C,(U). By Section 3, there is no 

involution .Y E W’,A such that zP(~) f  I and C((u, x.))~(~) is a Ret group. Thus, 
IV?, contains no Klein group, so that Q,(S) mm= Ecu‘. Note that S,, :- 

c’t>(,S n WI/,,) is 2-Sylow in C(U),, . 

I f  u is weakly closed in S then S,, is a 2-Sylow subgroup of G,, , contra- 
dicting Lemma 2.6. As in Lemma 5.3(i) it follows that u is conjugate to all 
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elements of Eu. Then t must be conjugate to all elements of (E<u))+ - Eu 

E+ 3 C,(u), contradicting Lemma 5.3(i). 

Thus, u $ C(t). Let ‘u be an involution in C(t),, n C(U)&~ . Since ZJ E C(t),, , 
qay 1 and C(k)““” must be solvable. If  id(v)1 > 8, we can replace t by z, 

in the above argument. Thus, iA( 4. As lA((t, c:), 7’: 2, we have 

id((t, ~1); -= 4 and / A : ~~~ ,A(ta)i 16. Then 1 Q ; 15:! . 319 .~m- 

3iC,(U)l j C,(uv);/,C&u, Zjl’)i’ (Lemma 3.1). I f  !C,( MU, z;>)l 2.: 3 then 

C,(U) is a 3-group and 5” 7 ! Q /. I f  C,(c,u, v;) :- 1 then 5z ~- ‘Co(u)] iC,Juv)‘, 

so that iC,(u): m= 5, contradicting Lemma 4. I(vi). 

LEMiUA 5.5. G& contains no h%in group. 

Proof Let (s,y,~ be a Klein group in G,,,; containing t such that C(.V)&~ 

contains a 2-Sylow subgroup of G,, . Set i = iA((;\, y>)i. Since 1 A 1 1‘. 4, 

e >- 2. Bl- Lemma 5.4, X, y  and my fix / or P points. By Lemma 2.1, at most 

one of these fixes L points, and II 1 -- ((2 ~~ l)“(/i l)i’(d - 1)” :: 

(G -I- l)“(li ~~ l), i ~ 1 or 2. I f  i 1, II -& 0 (mod 2/). In either case? 

n + 0 (mod /a). Thus, 1~~. I,emma 4.6, !O(X), I: P, so that iA( / 

and C(.X) contains a 2-Sylow subgroup of G. 

Let I’+ be the 2-Sylow subgroup of C,,(y). C(X) contains a conjugate ,Y of 

T+ x J, . Then / XA(zj : .__ /, so that / S n lZJJ 1 .> W/L 2 8. Choose 

w F (S n IV,J’ such that IA( is maximal. Then i(S n Wz)d(vJ 1 3 4. 
However, C(w)J”) is solvable by Lemma 5.4, so that this is impossible. 

Lr;n,rhrA 5.6. (i) 1~ = 112‘). 

(ii) T* consists of Iz ---. I regular involutions. 

(iii) Il‘t consists of k conjugates of t, permuted tuansitiwly by :V( T(t\). 
(iv) lt{,7 : ; i, t; . 

Proof. By Lemmas 2.6, 5.2, 5.3(.“) 111 , and 5.5, or their proofs if h :== 4, ;t:: 

is a 2-Sylow subgroup of IV, T(t) contains all involutions in C(t), and 

either (ii) and (iii) hold or h = 4 and (T(t))” consists of 7 conjugates of t. 

We first show that either (i), (ii), and (iii) hold or n -~= 28 and G has a single 

class of involutions. If  y  $ A, then t normalizes GYYt and hence centralizes 

some involution t, E C;,,, _ Then t, E T(t). By Lemma 5.5, no 2 involutions in 

T(t\ ha\:e common fixed points. Thus, the conjugates of t lying in i”(t\ 

determine a partition of Q into subsets of k elements. It follows that either 

n -= lz iz or k = 4 and n 7 . 4 = 28. In the latter case, G has one class 

of involutions. 

Since C(T:t>) L= I’ x IVt, for each conjugate t, of f  inside T<,t:,‘, it also 

follows that O(W) =z 1. Thus, W = (t). 

It remains to show that n :# 28. If  n : 28, then k = 4, all involutions in G 

are conjugate, and 1 G,, I2 : : 2 or 4. Let M z= O(G,,) and let t N t’ = ((u, p) .‘. 

with t’ t C(t) (Lemma 2.6). Then M =: C,(t)C,,(t’)C,(tt’). As W = (t), 
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Cfir(f) --.: 1. I f  C&t’) > I, then, since ?z = 4 and LVb, = (t’i, C.,[(t’) ,- Co(l), 

which is impossible. Thus, Cl\[(t’) = 1, and similarly Cfi,(tt’) = 1. Conse- 

quently, / G,, ~ :z 2 or 4. I f  G&, = (t), a result of Ito [21] yields a contra- 

diction. If  1 GRfi 1 = 4, then no involution in 1’ is a square in TGa8 . However, 

if f ,  E T n Z( TG,,)++, then t, and t are conjugate in N(Z’G,J (Lemma 2.4), and 

this is a contradiction. 

M’e now complete the proof of Theorem 5.1 (compare Harada [ 161). Since 

IV p- ‘t> and C(f)$ is cyclic, C(t),, is cyclic (Lemma 5.5). 

Set .P = Tt, and regard N(T(t\) as a permutation group on 9. By 

Lemma 5.6(iii), N(?“(t>)” is transitive. Set A = Co(t). Then 

and L1 ’ is regular on .f - (t>. Thus, N(T(t >).’ satisfies the hypotheses of 

Theorem 1.1. By Lemma 5.6(iv), T(t\ = C(9). illso, :V(T<t‘~) n C(t) acts 

on .P as C(t), acts on T, that is, as C(f), acts on A. 

1\‘c claim that N(T(t))x is solvable. This is clear if j 9 ( -2~ k = 4. Let 

9 == h = 2’ \ 4. I f  N( T(t))g is not solvable, the minimality of G implies 

that S( T(t)),” contains PSL(2 , 21 ~- l), and then (,V(T(tj) r\ C(t))-’ j 2: 
(2’ - 1)(2f --- 2)/2. On the other hand, ~(X(T~~t>~) n C(t))” / :: C(t): I L< 

(21 - I)$ This is a contradiction unless f  = 3. If  f  = 3 and (LIF(Tc:t:,))g 

contains PSL(2, 7), then C(t),, contains an element f  of order 3 inverted by 

an element of N(T(tj). Moreover, in this case, n = 64 and n ~- 1 7: 7 . 3”. 

Thus, C,(g) :b 1 and IO(g)! > 2. By Lemma 4.3, g is inverted in G,,j, whereas 

g is ccntralizccl by a 2-Sylow subgroup (t) of Go0 This is a contradiction. 

Thus, N(RIf’) has a normal subgroup R containing C(J) =: T(f) such 

that R” is regular. Clearly, 1 R == 2K3 and .-l is regular on (R/T(t))“. By 

J,emma 5.6(ii), T is a minimal normal subgroup of Rd, so that T -< Z(R). 
Suppose that h = 4 and R,/T is quaternion of order 8. Then T(tj/T -= 

Z(R/T), so that 9 L- t” E Tt for some .II E R. Then C(t*) 2,. CT, XI>, where 

T -I Z(R) :-:< C(x), so that x t C(T<f)), contradicting Lemma 5.6(iv). 

By Lemma 2.7, R/T : T,/T x T,:tl ,‘T, where C(t), normalizes T, --= 

[I?, C(t),]. Then 7’ -< Z(T,), and A is regular on (TJT)“. 

Let .S be a 2-Sylow subgroup of N(T(t)) containing both R and a 2-Sylo~ 

subgroup of C(t),, . Then / S” ! = Izj S$ I, and by Lemma 5.6(i) we have 

S I := I$ C(& + = n2; GOB ,2 = I G i2 , Thus, S is a 2-Sylow subgroup of 

G. Clearly, S = T,&, D T, , where t E S1,o , S,, is cyclic, and 1; n &, ~ I. 

By I,emma 2.3, t N t, E T, . Then t, $ 7’ (Lemma 5.6(iii)). Since _-I is 

transitive on (T,/T)* and T 5s Z(T,), each coset +T of 7‘ in 7; consists 

of R involutions. Thus, Tl is elementary abelian of order k’. However, 

t A’ t, and C(t) contains no elementary abelian subgroup of order ~~211. 

This contradiction proves Theorem 5.1. 
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6. 2-1NVOLI:TIONS 

In this section we consider the possibility that G contains 2-inv-olutions, 

that is, involutions fixing exactly two points. 

THEOKEAI 6. I. (i) G contains no 2-iwz~o1ution.s. 

(ii) I f  t is u nonregular imdution such that C,(t)A -: I’SL(2, (I), tlzen 

n y. q” .!. 1. 

Proof. Suppose that G,, contains a ‘I-involution z. Then z inverts every 

element in Q and u” t Z(G,,). By Lemma 4.1(v) there exists an involution t in 

G,, which has more than 2 fixed points. TTe consider the Klein group (t, z”. 

Since z E C’(t) fixes just 2 points of d, WC have Co(t)” - PSL(2, q) for some 

odd prime power y. Clearly-, G is the only 2-involution in G,, . Hence, 

‘A(tz)! > 2 and Co(tz)4(tzl 7 PSL(2, q’) for some ‘1’. By Lemma 2.1, 

n ---- 1 7-m qq’. If, say, q > q’, w-e have n :.‘. $ - 1. 

It thus suffices to prove (ii). Suppose that t E G,, is an involution such that 

I L3 j :b 2 and Co(t)” 2~ PSL(2, g), where II :.:. 4’ 4 1. Then / Q -- il j 5:: q” . y. 
Let y  be an arbitrary point in Q A, and set y’ == yf .  

I,EiMiVA 6.2. c,(t) =-- I’S1,(2, q). 

Proof. Otherwise, Co(f) a SL(2, II) by Lemma 4.4. Let u be the unique 

involution in C<,(t). Then d(u) >_ il. Hence, j Q -.-- d(u)1 :$ q2 ~~~ q. I f  

y  ED -- d(u), then i C,‘,,(t), i l.5 q($ ~~. l)/(q’ q) =~- Q ~! 1. On the other 

hand, C,(t), has odd order since the unique involution u of C,,(t) does not 

fix y. Also, (y, 1 C,(t), 1) L 1 since Q is regular on 0 ~~ iy. However, SL(2, p) 

has no such subgroup (Dickson [9, pp. 285-286]), a contradiction. 

LEMMA 6.3. (i) n = q2 -! 1. 

(ii) 9 -1. 1 (mod 4). 

(iii) (,“,,(t)~,,.8,,) is a dihedral group of order q + 1 zdich is self-normalizing 

i/Z C,(t). 

(iv) C,,(t) acts tunnsiticely on the set of nontrizGa1 orbits qf c<t>. 

Proof. I,et S :I= Co(t)(,,,,,) As above, i X > q{- 1 and (p,/Xl) r= 1. 

\\Te thus have one of the following situations (Dickson [9, pp. 285-2861): 

(a) AY is a dihedral group of order q I- I ; 

(b) X % ~2~; 
(c) X q S, and (1 ~~~ &I (mod 8); or 

(d) .Y a A5 and y  &l (mod 10). 

I f  (a) holds then n = 4” + 1 and C,,(t) is transitive on the orbits of (t> on 

Q d. Clearly (iii) holds, and (ii) follows from Lemma 4.l(vi). 
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Suppose that (b), (c) or (d) holds. As j S : Co(t),,, 1 < 2, C,,(t)SY, contains 

a subgroup isomorphic to A, . Then there exists a Klein group {z’, , V& :;-;. G,,,] 

such that q N v2 N qua . Thus, 

by Lemma 2.1. Assume now that p is a prime. JVe have q ( 1 Q /, so that 

by (*) 9 1 IGA4 and q 1 iC’o(vr , zajl since 1 Q I .< y2. Then 1 Cog 

/Co((q , zz>)Ia > q2 > n - 1, a contradiction. 

Thus, q is not a prime. For each of the cases (b), (c) and (d), 3 ) 1 X 1 and 

hence 3 f  q. Also, p is an odd prime power and q < 1 X 1 - 1. This implies 

that y  = 49 and that we have case (d) for any choice of y  in fi -~ 3. Hence, 

&(y” - 1)/60 divides 

(; Q i -- q)/2 = q((i Q i/p) - 1)/2, and 40 ] ((I Q l/q) - 1) < y  - 1 = 48. 

Therefore, we have j Q ; = 49 . 41. By (*), 41 . 7 1 I C,(v,, v2), and 

; il(v,), > n, a contradiction. 

LEMMA 6.4. All involutions in Co(t) are 2-involutions. 

Proof. As / Co(t)aa / = (q - 1)/2 and y  .~~ 1 (mod 4), there is an inr-olu- 

tion u E CO(t)aG . If  u is a 2-involution the lemma is clear. Suppose that u 

fixes some point y  E G - A. Then u fixes y’ = yt. Hence, by Lemma 6.3, 

a% = c”(t)wr = Co(t)(w’) * This group is a dihedral group of order 

q + 1 and contains (q + 1)/2 conjugates of U. The total number of conjugates 

of u in C,,(t) is q(q + 1)/2. Counting in two ways the pairs (u, y) with u an 

involution in C’“(t) and y  $ A a fixed point of U, we find that 

;q(q -1 1)1 A(u) - (A n A(u)) I = / Q - A ,(q + 1)/2 = q(q -. 1) (q f  1)/2. 

Then i A(u)1 = q + 1, and tu is a 2-involution by Lemmas 6.3(i) and 2.1. 

A 2-involution x’ E GyY, centralizes t and fixes no points of A. Let 

H -= (z’)Co(t). Then N is PGL(2, q) and I-r,,, is a dihedral group of order 

2(q -/- 1). The product of z’ with an involution in C,,(t)YY, is an involution in 

H;,,,,, - C,,(t)Yy, conjugate in H to x’. This is a contradiction since G,.,, contains 

only one 2-involution. 

LEMMA 6.5. (i) G,, contains a unique 2-involution z. 

(ii) C,,(t),, is cyclic of order (q + 1)/2. 
(iii) If u is an involution in G, then either IA(u)1 = 2 OY IA(u)/ = q + 1 

and C,)(u) = PSL(2,q). 

Proof. (i) is obvious. By Lemma 6.4, j C,,(t)Y / is odd, so that (ii) follows 

from Lemma 6.3(iii). Let u be an arbitrary involution in G. If  u has no fixed 

481/20/3-z 
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points, then u is an odd permutation. By Lemma 4.l(iii), u has at least 2 fixed 

points. Assume that u E GaLJ and IO(u)1 > 2. Then C’,~(U)~(~‘) == PSL(2, y’) 

for some y’. The argument at the beginning of the proof of Theorem 6.1, 

together with Lemmas 6.2 and 6.3(i) for u or ZU, shows that y’ y  and 

C,,(u) PSL(2, y). 

LEMMA 6.6. (i) IV =: <t;. 
(ii) I f  u is an involution d@erent from 1 in C(t), then A n A( 2. 

Proof (Hering [18]). (i) By Lemma 6.3, C,(t) acts transitively on the set 

of nontrivial orbits of (t> and, for each of these orbits fr, y’), Cc,(t)c,,:,,l is 

self-normalizing in Co(t). Hence, C,,(t)i.,,,.,,,: fixes only one nontrivial orbit 

of !t;. As IV centralizes C,(t), IV must fix each orbit {y, y’j, so that II’ is an 

elementary abelian 2-group. If  W contains an involution u I_~ I, then 

‘Co(u); :‘: ‘C,(<t, u,)i” ---_ q2 == t1 I, a contradiction. 

(ii) Let ,d f7 O(u)1 7- 2. Then ,A n A( -z ,d(jt, u>)i ~mm v/(1 ~; 1 

since u 6 IVby (i). Let y  E d(u) (A n O(U)). By Lemma 6.5(ii), 1 C,,( /t, ui), 

divides ~ C,,(t),, ! (y -C 1)/2. On the other hand, ’ C,,((t, u;),, divides 

(‘Ju)., 1, where C,,(U):, ~ y(y ~ l)i2 by Lemma 6.5(iii). It follows that 

(I”( f ,  d): I, so that 

Y ~~ \ u J(u) - (A f-l Ll(u))i 4 ‘C”((f, ui) = \fl’& - 1)/2, 

a contradiction. 

IAWMA 6.7. Let C,(t) be the subgroup of C(t) g enerated by the 2-involutions 

in c’(t). Then 

(i) C’,(t) PGL(2, y); and 

(ii) .A11 involutions in C,(t) are ?-involutions. 

Proof. Since t t C,,,,,! , t commutes with the unique 2-involution 2’ in 

(;;,:,f . ‘l’his involution fixes no points of A, so that (z’>C,,(t) = PGL(2, y). 

Hence, the number of involutions in (z’>C,(t) is q(q TV I)/2 -I- q(q 1 p. 

If  ZL is an arbitrary 2-involution in C(t), then t leaves invariant d(u). Hence, 

by Lemma 6.5(i) the number of 2-involutions in C(t) is not greater than the 
number of subsets of cardinality 2 of Q which are invariant under t. Obviously, 

this number is y(q -1. 1)/2 + q(q - 1)/2. Hence, Cl(t) ;- <AC,(t). 

For the rest of this section let t’ be an involution in Gc~,~,, - G,, which is 

conjugate to t. Furthermore, let C,(t’) be the subgroup of C(t’) generated b! 

all 2-involutions and H = CI(t’)aLj . 

LtcwuA 6.8. (i) El is a cyclic group sf order q -I- I containing z. 

(ii) His semiregular on R ~-- {OI, /3>. 

(iii) Cl(t’)(n,f3} is a dihedral group of order 2(y + I). 
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Proof. By Lemma 6S(ii), C,,(F) is transitive on 9 -- o(t’). Hence 

! Cl(t’)% j = q + 1. Also, Co(t’)a is a cyclic group of order (q -+ 1)/2. Since 

q = 1 (mod 4) and .a E Ci(t’)E, we get Cr(t’)n = (z) x Cg(t’)d . Here 

Ci(t’)& === Ci(t’)40if, = H, so that we have (i). 

Let h E H be an element of prime order. I f  1 h ) = 2, then k = z and h 

fixes only cy and /3. Let 1 h / > 2. Then h E C,,(t’). Here (hj is the only 

subgroup of C&t’) fo,,Bj of its order. By Lemma 6.3(iv), C,,(t’) acts on the 

nontrivial orbits of (t’> as it does on the conjugates of (h). Thus, Iz again 

fixes only OL and ,Q. As 1f is regular on o(t), this implies (ii). 

Finally, (iii) follows from (i) together with Lemma 6.3(iii). 

~&VMA 6.9. H contains an r-Sylow subgroup R fey some prime Y such that 

(i) R acts irreducibly on ,O; 

(ii) C(R),, < C(f&; 
(iii) N(R),, is isomorphic to a subgroup of the group of l-dimensional 

semilinear transformations over GF(q2); and 

(iv-) R is an Y-Syloz subgroup of G. 

Proof. Let q = p” with p a prime. As q m+ 1 (mod 4), there is a prime I 

such that Y j (q’ - 1) and Y f  (p” - 1) for I < i < 2s (see Birkhoff and 

\‘andiver [5, Theorem V]). Let R b e an r-Sylow subgroup of G. Then R 

has at least 2 fixed points, because r f  q”(q* -f- I). Let R .< G,, . Because of 

the property Y +’ (pi - 1) for 1 < i < 2s, we have C(X) n Q : 1 for x E KS. 

Hence, 1 R 1 ) (qa - I) and therefore i R 1 1 (q + l), so that we can assume 

that R ‘< tl. Then Q is elementary abelian, R acts irreducibly on Q, and (ii) 

and (iii) follow from a lemma of Huppert [19, Hilffsatz 21. 

LE~I~IA 6.10. 1 GceFli) : li(R)(,l,,j 1 is odd. 

Proof. Suppose that this index is even. Then the involution t’, which 

centralizes R, must normalize a second conjugate of R. Thus, there exists an 

element R E Gc,,,l such that t’ E N(R”) and Rg ;t R. 

Suppose that RC < C(t’). Then RI < H since H = Cl(Qo 4 C(t’)i,,oj 

and II contains an r-Sylow subgroup of G by Lemma 6.9(iv). However, 

this is impossible as N is cyclic and we assumed that Rg # R. 

Therefore, Kg 6 C(t’), and t’ inverts every element in Kg. By Lemma 6.g(iii) 

there exists a 2-involution y  E Cr(t’fl)ja,e) - C1(t’Q which inverts every 

element in Hg. Then yt’ E C(Rg),B, and by Lemma 6.9(ii), yt’ E C(HJJ),~. 

Hence, t’ acts on HQ in the same way asy does, and D = (t’, HY) is a dihedral 

group of order 2(q + 1). As x = 20 E Hg and q = 1 (mod 4), (z, t’) 

is a 2-Sylow subgroup of D. Also, z E Cr(t’) and t’ $ C1(t’), so that 
at’ E C(t’) - Cl(t’). By Lemmas 6.7 and 6.5(iii), zt’ fixes q + 1 points, 
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Thus, all elements in D - Ho fix q -+ I points. Furthermore, each of them 

interchanges m and p since D,, = Hg. Hence, d(x) n {CL, p> -:m + for all 

1̂  E D Hfl. Let x1 and s., be involutions in D ~- H!J and consider 

il(x,) n A(Q). Clearlv qxs E HI. I f  y  t Q --- {a, /3], then (FI”), .-~ I by 

Lemma 6.8(ii). ‘I’hqVA(x,) n 0(x2) -7 Q if x, -F xz This implies that . 

which is a contradiction. 

\l’e can now complete the proof of ‘l’heorem 6.1. Let 7’ I) 1 ’ t, be a 

2-Sylow subgroup of (C,(t) Y \:t\)i,,,i;, where D is a dihedral group and a 

2-Svlow subgroup of C,(t) (Lemma 6.7). Then 1’ ::/ Gt,,,:) and, 1~) 

I,&ma 6. IO, m--e may assume that 7’ is contained in a 2-Sylow subgroup S of 

G,,,,:: such that S -‘I N(R)~,l,.~l Since II -= q2 + 1 2 (mod 4) S is a 

2-Svlow subgroup of G. 

is q I (mod 4) we can write D ,,e, .z’, , where e : (q 1): 3 
q*‘P ) 2: , z ‘ is a 2-invwlution, ::c, z’) is a dihedral group, T -.CP, :’ \i Lt ( 
r7 I ,,I3 Y ,‘tb, and cue, 2’ is generated bv the 2-involutions of 7’. 

Since k is cyclic of odd order, Z’;C, (R) is cyclic. I f  x is any 2-involution in 

C’(R) then d(.v) i- d(R) m= 131, PI and x :_ a. Hence, (e, 3’,~ n C(R) : ‘e‘ 

Since ?‘/:,e; is a Klein group, C,(R) must be a subgroup of index 2 in 7’ 

containing ,‘e ~. On the other band, C’,s(K),, is cyclic by I,emma 6.9. This 

implies that 1 C,(R),,, ) f> (‘I -~- I), ) since G contains no odd per- 

mutations. ‘I’hcrefore, C’,(H)+ {e ‘, and C,(K) 7= (‘r(R). Since S n (‘(A’) 

and s n c,,; are normal subgroups of S, 

Hy Lemma 6.9, X(R),,/C(K),,, is cyclic. Hence, Stii;;<e, is cyclic. Also, 

C,(R) c-1 S. Then S/(e> := S&,(R)/(e) is abelian with 2 generators, so that 

Q,(S) T. Ther-efore, (e, x ‘) is the subgroup of S generated by all 2-involu- 

tions. and (e, 2”; <I S. Also, S’/(e, z’\ is cyclic and u E S - (e, c’ . This 

contradicts Lemma 2.3 and proves Theorem 6.1. 

7. ‘I’HE tjNITARY AND KEE CASE 

Ry Ixmma 4.4 and Theorems 5.1 and 6. I, for each involution u E G,,, , 

C()(U)~(‘~) is PSL(2, q), PSU(3, q), or of Pee type. In this section, WC show 
that the second and third possibilities do not occur, and that Klein groups 

fix just two points. 
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Lemmas 3.1, 3.2, and 3.3 will be used very frequently throughout this 

section. 

rhZOREM 7.1. G,, contains no Klein group jixitg more than 2 points. 

Proof. TVe begin with two lemmas. 

LEMMA 7.2. For each involzrfion f E G<,,? , M: contains no Klein group. 

Proof. Let (t, u) be a Klein group in IV’* . In view of Section 3, 

{,C,(t)l, [C’,(u)~, ;C,(tu).> = {q, q2, q”], (q, q”, y”j or (y, @, $1, where 

4 = lC,((t, u))I. By Lemma 2. I, n -- 1 -. q3, yA or y5, respectively. By 

Theorem 6.1, we must have IC,(t); 1 q, iC,(u)l = IC,(tu)~ = q3, and 

C,,(U)-‘(~) and CO(tu)A(‘U) are unitary or of Ree tvpe. Thus, by Section 3, 

neither IV(, nor IV’,, contains a Klein group. 

Both C,,(U) n IV, and C&tu) n Wt,, have odd order (Lemma 4.4). I f  

t-‘r”) E C’&ZL)~(*~), there is a conjugate t’ of t in C(U) such that (t, 2’) is a Klein 

group. Suppose that td(lr) 6 C&U)~(J~), so that CO(u)-‘r”) is unitary. By 

Lemma 3.2, C(F”)) n C,)(U) 3(~) does not contain a 2-Sylox subgr-oup of 

C,,(u)‘(~“. Thus, there is an involution t’ conjugate to t under C,(U) such 

that ;t, t”> is a Klein group. In either case, (f, t’, u:; is elementary abelian of 

order 8 and t N f’. 

However, t’, f’3(l’), and t ‘d(f~~) fix 4 -, 1 points (Lemmas 3.2 and 3.3). Thus, 

d(t’) il A(U) n A(tu) = A. Then A(t’) = .il, contradicting Lemma 2.1. 

\i:e mention one immediate consequence of Lemma 7.2: for each non- 

regular involution t such that C,,(t) a SL(2, q), <t) :: Z(C,(t)). 

1,et It, U\ bc a Klein group in G,, fixing more than 2 points. 

~LEMILIA 7.3. Ib'e may assume that C(t)ns contains n 2-Syloz~’ subgroup of G,, . 

Proof. Let T be a 2-Sylow subgroup of G,, containing (t, u), and 

suppose that u E Q,(Z( T))“, 2) 4 /t, u). I f  Theorem 7.1 is known for Klein 

groups in G,, containing v, then (t, u) n IV’, == 1 and (t, u)“(“) contains an 

involution acting as a field automorphism (Section 3) hence fixing more than 

2 points of d(v), a contradiction. 

Let 5’ be a 2-Sylow subgroup of C(t) such that (t, u> -G SE8 and Sja,R: is 
2-Sylow in C(t){,,a}. Set 4 = ICd(t, u))I. Then Icdt)l, lCd2i)l, and 
;C,(tu)l are among the numbers 42, q3 since C,,(<t, u))~(~~.~I)) = PSL(2, Q) 

(see Section 3). Consequently, {ICY,(t):, iC,(u)l, iC,(tu)l} = {q2, q2, q”}, 
((f”, q2, q3), (p”, q3, q”}, or (q3, q3, ~“1. By Lemma 2.1, 1 ,Q 1 = $, q5, 4” or q7, 
respectively. Theorem 6.1 eliminates the first possibility. 
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Case 1. {p’, 42, 43). 

Here 9 I (mod 4) (Lemma 4. I (vi)). Let (i, u’> = (,a, b,> with iCo(u)j -= 

iC,(b)l = q2 and Co(ub)d(ub) = I’SU(3, 9) (Lemma 3.3). I f  C,((a, b)) is 

SL(2, (1) then, since C(,((a, b>) .:T: C,,(a) n C,,(b), both C’,(a) and C,)(b) are 

SL(2, q2) with involutions u and b respectively. Then a = b is the involution 

in C”(<a, b,\), a contradiction. 

If  C,,(<a, b)) is PSL(2, y), let ‘u be the unique involution in C,,(ub),,) _ 

Then C,,(<ab, ZI)) = SL(2, q), :Co(v)l and ,C,(uba)\ are 2, cl” or q3, and 

Y 3 == j Q = y3;Co(v); jCQ(aba)j/$. 

By Lemma 7.2, iC,(v)l = jC,Jubz)’ ~: q”, and the argument of the 

preceding paragraph, applied to (ub, z:,,, yields a contradiction. 

Case 2. {q”, 4”, q:q. 

Once again, 4 I (mod 4) (Lemma 4.1(vi)), so that S is a 2-Sylow 

subgroup of G (Lemma 4.6). Suppose that Co(t)d =: PSL(2, y*), so that z/ 

is a field automorphism. Then S has a normal subgroup S, such that u +z! S, 

and all involutions in S -- S, act on d as field automorphisms, and such that 

S/S, is cyclic (Lemma 3.1). Then u - u’ ES, (Lemma 2.3), where zJd 

fixes 0 or 2 points. Since t d(71’) E C(U’)“(~~‘), this is impossible by Lemma 3.2. 

Thus, C,(t);l = PSU(3, y). Clearly, S 0 (S n C,(t)) x (S n IV) with 

S n C,(t) quasidihedral and S n TV cyclic or generalized quaternion. If  

t ,- f’ 7 (a/3) ... t S (Lemma 2.6), then t’ fixes 4 + 1 points of il (Lemma 3.2). 

Thus, there is a Klein group c:t, tI> in S,,9 with t N t, . Consequently, 

there is an elementary abelian subgroup S of S,, containing t such that 

AV(S),~, has an element g of odd order moving t (Lemma 2.5). X contains no 

Klein group “t, tz> with t N t, y  tt, , as otherwise 1 Q j = (q3)3/q2. Thus, 

s 1 A 4. On the other hand, SA Y’ C(t)‘& implies that / X 1 .< 8 (b! 

Lemma 7.2). 

Thus, I S j == 8. If  10” 1 z 7, we could find a Klein group (t, t2) in S of 

the above ty-pe. Thus, / g 1 :-: 3, so that A’ contains a Klein group in, n’> with 

v  - 7:’ - vv’. lW@)l = $1 as \Co((t, E>)I = 4 and i Q ( # ($r)3/q2. 

Now the proof of Lemma 4.5 shows that Q is abelian, whereas C’,(t) is 

nonabelian. 

Case 3. {q3, q3, q3). 

Once again, S is a 2-Sylow subgroup of G (Lemma 4.6). 1Ve have 

S k E s F with E = S n C,(t), F z-: S n IV, E quasi dihedral, wreathed, 
or elementary abelian of order 8, and F cyclic or generalized quaternion. By 

Lemmas 3.2 and 3.3 and the preceding cases, all involutions fix q3 + 1 

points. 

I f  C,,(t)” is of Ree type, then S = E x F (Lemma 3.3). Clearly, Q,(S) = 
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E x (t) < Z(S) and C(t) n N(S) p ermutes Q,(S)+ with orbits of lengths 

1, 7, 7. Thus, N(S) is transitive on fir(S)+. It follows that N(S)/C(S) acts 

on Q,(S) as a subgroup of GL(4,2) a da of order 15 . 7 . 3, which is 

impossible. 

If  C,,(t)” is unitary, then by using a different Klein group if necessary we 

may assume that C,,((t, u)) = SL(2,q) (Lemma 3.2). Then C,((t, u?) = 

q&(t)) = Z(C,(4> = z(G(4), and it follows that Z(Q) = Z(Co(t)). 

I f  t % t, E C(t),, , then t and t, are conjugate in G,, , so that Z(C,(t)) = 

Z(Q) :: Z(C,(t,)). By Lemma 3.2(viii), it follows that S -- EF contains no 

conjugate of f.  I f  t N t’ E S - It), then f’ E EF. Als C,,(t) has one class of 

involutions, we may assume that t’ E &(Z(EF)) < Z(S). By Lemma 2.4, 

all in\rolutions in QIz,(Z(EF)) are conjugate. By Lemma 2.3, Q,(S) :$ EF. 
Thus, Q,(S) = Q,(E) x (t}. However, t is not a square in Q,(S), whereas 

a central involution in E is a square in Qr(E) < 9,(&Y). This contradicts 

the fact that V(S) is transitive on Q,(Z(S))*. 

This completes the proof of Theorem 7. I. 

COROLLARY 7.4. For each nonregular involution t, C,,(t) is PSL(2, q) 01 
SL(2, q) for some q. 

Z’roqf. Theorems 5.1, 6.1 and 7.1. 

COROLLARY 7.5. (i) If t is an involution in GaB , then C(t)$ ‘;‘; 1. 

(ii) If t is an involution weakly closed in a 2-Sylow subgroup of GAB , 

and {f Co(t) 7: d, , then a 2-Sylozc subgrou? of G,, is a Klein group. 

Proof. (i) Otherwise, by Corollary 7.4 and Theorems 5.1 and 7.1, 

Co(t) = SL(2, 3) and GaB contains no Klein group. Let S be a 2-Sylow 

subgroup of C(t). Then, S is a 2-Sylow subgroup of G as S = EF with 

E ~: S n Co(t) quaternion of order 8 and F = S n Wa cyclic or generalized 

quaternion group. By Lemma 2.6, S contains a conjugate t” -+ t of t. Since 

f” = ef with e E E, f EF and ) e I = 1 f 1 = 4, me have e E C(tq) but e” $ (t”). 

However, S contains no element e”-l whose square is not in <r;), a contra- 

diction. 

(ii) By Theorem 7.1 and part (i), a 2-Sylow subgroup S of C(Z) has the 

form S = TF, where T < Co(t) is a Klein group, 1 F : F fl TV 1 = 2, and 

F n W is cyclic or generalized quaternion. S - (t} contains an involution 

t’ N t (Lemma 2.6). I f  t’ $ T x (F n W), then t’ fixes 2 points of A, which 

we may assume to be 01 and p. However, this contradicts the fact that t is 

weakly closed in a 2-Sylow subgroup of Gao (Lemma 4.3). Thus, 

t’ E T x (F n W) and we may assume that t’ E Z(S). T x (t> is the only 
subgroup of C(t) that is elementary abelian of order 8 and contains 4 conju- 
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gates of t. Thus, I’ x (ti is weakly closed in C(t) and T :< (F n IV) :_ 

C,( T x (I)) is also weakly closed in S. Therefore, the fusion of the conjugates 

of t in I’ x (t> is controlled by N(T x (I; n IV)). I f  1 F n LV ~ ; 2, then t is 

the only square in T Y (En IV), which is a contradiction. Thus, 

1 F n Il- i = 2 andF is a Klein group by Theorem 5.1 (ii). 

COROLLARY 7.6. G,, rontains no elementary abelian subgroup of order 8. 

Proof. Let X be such a subgroup and t t X. By Theorem 7.1, S n W’ -_ :~t, 
and XJ contains no field automorphisms, contradicting Lemma 3.1. 

THEOREM 7.7. G is simple. 

Proof. Let I 7 K gG. If Q 6 k’ then K = G by Lemma 4.1(i). Let 

Q z& K. As G = KG, k KQ, G = K(). Let t be an involution in G,,, . 

Then t E K as / 0 / is odd. 

Since [t, Q] :-: K n Q, 0 = C,(t)(K n Q), so that G =-- KQ = KC,(t). 

Let C,(f)J ~-- PSL(2, y) with ‘1 -== p’, p prime Then G/K is an abelian 

p-group, and C,(t) n G(l) ~--: 1 as C(l),, is irreducible on Co(t). Thus, 

[C,(t), c’(t),,] 5 C,(t) n G(l) := 1, contradicting Corollary 7.5(i). 

THEOREM 7.8. Suppose that a 2-Sylow subgroup S of G is not dihedral. 

Then S contains a proper elementary abelian subgroup of order 8. 

1’roof. I f  G has no elementary abelian subgroup of order 8, then, by a 

result of Alperin [2, Proposition 11, S is (a) the 2-Sylow subgroup of PSU(3,4), 

(b) quasidihedral, or (c) wreathed Z,, 1 Z, . 

In (a), &(S) == Z(S) is a Klein group. If  t E Z(S)“, then 

S Q (S n C,(t))(S n W). 

However, S has no normal yuaternion subgroup. 

Thus, S has the form (b) or (c), or is elementary abelian of order 8. G is 

not isomorphic to ;II,, [7]. Consequently, for some prime p and e ; 1, 

G is isomorphic to PSU(3,p’), PSL(3,p”) or a group of Ret type and 

p = 3 (Theorem 7.7, Alperin, Brauer and Corenstein [I, 21, and Walter [39]). 

In view of the known structure of C(t), t an involution, we have p 1 1 Q I. 

A p-Sylow subgroup P of G thus fixes just one point, say N, and then -V(P) 

fixes o(. I f  N(P) is maximal in G, then G is PSU(3,p”) or of Ree type in its 

usual 2-transitive representation, which is assumed to be false. Similarly, 

G is not isomorphic to PSL(3, p”). 

\Ve remark that the possibility that S is dihedral will not arise in Sections 8 

and 9. 
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8. THE I’SL CASE 

For each involution u E G,, , we hav-e C,(u) = PSL(2, q) or SL(2, y) for 

some q (Corollary 7.4). In this section, we assume that each such group C,(u) 

has the form PSL(2, q); in Theorem X.9 we will show that this situation 

does not occur. 

Let f  be any involution central in a 2-Sylow subgroup of GOB . Let S be a 

2-Sylow subgroup of C(t) such that Si,y,n) is a 2-Sylow subgroup of C(f)cn,Bi . 

1,ERlJIA 8.1. I&t c,,(t) = PsL(2, q). 

(i) II == CO(t) n 5’ is a dihedralgroup. 

(ii) C r= Jk’ n S is a cyclic or generalized quatemiorz group. 

(iii) D X C’GS. 

(iv-) Tllere is an involution r t Ll n Z(S). 
(v) If v  E S -- DC is a nonsegular involution, then LJ<v‘, is dilledral 

and C<v> is dihedral or quasidihedral. 

(vi) C,j(t)uij i.y$sed-point-free on 0 if q : 3 (mod 4). 

(vii) 0 is nilpotent ;f  q L 3 (mod 4). 

Proof. (i), (iii), and (iv) are clear. (ii) follows from Theorem 7. I. 

I f  z’ E S - DC is a nonregular involution, then (Cl,(t)<v>)3 = PGL(2, q), 

so that (Z&v>)” - D(Y~, is dihedral. C,(V) acts faithfully on A(z) 

(Theorem 7.1). I f  y  == 3 (mod 4) tl len ;il n A(v):) = 9, while if y  1 

(mod 4), then / A n A(@) = 0. It follows from Lemma 4.1 (vi) that t3(‘) is in 

C(v)-” ) ~- C,)(V)3(, ‘, and by Theorem 7.1 and Lemma 3.1 C’,(E) = (t>. Thus, 

(v) holds. 

Let q >y 3 (mod 4). Then C,,(t)aB is cyclic of odd order (q - 1)/2. Also, 

C,,(t)i,j centralizes S$ and W, so that Co(t)as centralizes SUB. Suppose 

that 1 -+ Y E Co(t)l,i and :.4(x)~ > 3. A s x is inverted in C,,(t), it is inverted in 

G,, (Lemma 4.3). Since Cam contains a 2-Sylow subgroup S,, of G;,, , this 

is impossible. This proves (vi). 

I f  (q - I)!‘2 > 1, then (vii) follows from a theorem of Thompson [37]. I f  

(q - I);2 = 1, then Co(f) 7: A, . By Theorem 5.1, S,, contains a Klein group 

<I, u>. If  t N u then t N u in G&, . By C’orollary 7.6 and Lemma 2.5, we may 

assume that t N u N tu, so that / 0 _ ~ = 3” (Lemma 2.1) and Q is nilpotent. 

We may thus suppose that t is weakly closed in A’,, . Let t N 1’ =-= 

(a,@ “’ E C(f) (L emma 2.6). Then t’ E C’,,(t) >: 11’. It follows that C(t) 
contains 4 or 7 conjugates oft. I f  y  E 52 - A, then t normalizes G*,,,t . Since t is 

weakly closed in kS,xn , G+ contains an odd number of conjugates of t. Then t 
centralizes some involution t, y  t, t, E G,.,[ . Since no 2 conjugates of t lying 
in C,,(t)W’fix cnmmon points, the 4 or 7 conjugates of t inside C,,(t)W deter- 

mine a partition of Q into sets of 4 points. Thus, fz = 2X or 16, 10 1 = 27 or 

15, and Q is nilpotent, as claimed. 
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\Ve note that J,emma 8.1 (i)-(v) holds for any involution u in G,, , where S 

is then taken to be a 2-Mow subgroup of C‘(U) such that JY:,,Rj is 2-Sylow in 

(‘(&,i? 

THEORE~I 8.2. 1f z' is an iwolution in G,!, and C,,(v) my= PSL(2, 9), then G,,: 

rorltains ~1 Klein poup. 

Proof. Supposc that G,, contains no Klein group. Then C(t),, w C(c),,, 

contains a 2-Sylow subgroup C, ‘,: C of G,,!, Also, ~ C,,(t),u ~ is odd, so 

that 9 mu 3 (mod 4). Clearly, S D(‘, , c, : c - 2, and Q,(S) :C I)(,‘. 

Let 7 be as in Lemma 8.1(k). 

Proof. Let t y  t’ == (a/3) .‘. E S (Lemma 2.6). Then t’ E DC. As C,,(t) 

has one class of involutions, t’ --c r or rt under C,,(t). Choosing 11 suitably, we 

mav assume that t’ ~7 Y  or vt. Then C, I ; C(t’), so that q 3 (mod 4) implies 

that C, is cyclic. 

LEMMA 8.4. ,\’ is not a 2-Svlow sub<youp of G, and C(t) contains regular 

inaolutions. 

Proof. Clearly-, the first statement implies the second. Suppose that S 

is a 2-Sylow subgroup of G. Ry Lemma 8.3, Srl) :;’ 11 and t N r or rt, where 

,L:r, t I: Z(S). 

I f  D is not a Klein group, then ‘~,F, t,,, mu Q,(Z(S)) and Y  E S(i). B! 

Lemma 2.4, ,V(S) is transitive on (r, t: &, whereas t $ S(i). 

Thus, I1 is a Klein group. If  C, ;. C then we may assume that 

I.~ t Z(F) n (P)(*). As above, Lemma 2.4 yields a contradiction. ‘I’hus, 

C, ~~~ C, S is abelian, and Q,(S) ~~~ D >< ‘of’ . As t v  t’ -= r or rt and 
/ C”“” ~~- / (‘ ~) S is clemcntaq abelian of order 8, contradicting 

Theorem 7.8. 

Proof. By Lemmas 4.6 and 8.4, lz 0 (mod 4) and 0 is not a p-group. 

By Lemma 8.l(vi), Q 1 P s L with y  1 ; P /, (I P 1, i L 1) = 1, and L f  1. 

Suppose that t $ Z(G,,) and let X = C(L),, . ‘I’hen tX E Z(G,,/X) and 

[t, X] + 1. Clearly, IO(X)1 >c 1 I; j- 1. By Lemma 4.3, (r, t) acts on d(X). 

Also, 1 C(X),, i is odd as tX is the set of involutions in G,, . Thus, (i) C,,(S) 

PSL(2, P) for some / _= 3 (mod 4), or (ii) C,(X)3(“) is solvable. 

(i) Suppose that C,(X) = PSL(2, P). As S,, = S$x), S’,, = ,<t,, . Since 

(CO(X)(t))d(X) ~= PGL(2,6), C,,(X)&t; is cyclic. The proof of Lemma 8.l(vi) 
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shows that both CO(t)aB and C,(X),, are fixed-point-free on ,O. Then 

C,(X),, 5: C(t),, implies that &(i; - 1) i (q - 1). Also, as C,,(t),o is fixed- 

point-free on L, i(y - 1) j (1 L 1 - I) -= f  - 1. However, i(q - I) and 

i(/ - 1) are odd, so that q - I = / - 1, a contradiction. 

(ii) Thus, C,,(S)“(Xl is solvable. Since C,)(<t, S)) .< C,(X) n C,,(t), 

10(,X) = 4 or 16. Consequently, /L / = 3 or 5. Since Co(t)tiB is iixed- 

point-free on L and since 1 C,(t),, i is odd, it follows that C,)(t) = i-1,) and 

this contradicts Theorem 5. I. 

Proof [22, Lemmas 4.3 and D.11. If  x = (a, /3) ... is an involution then 

x E C(f) (Lemma 8.5) and xLl is regular. There is a conjugate f, E C,(t)(t> oft 

such that fr3 = xd. Now it, E W < C(C,,(t):<t>) < C(t,), so that (~t,)~ = 1 

and sf, t it:. There are thus 2 . (q - 1)/2 involutions (01, p) .... By Lemma 8.4 

there are regular involutions in C(t). It follows that there are (q - 1)/2 

conjugates of t interchanging n and /3. On the other hand, t has (R - 1)/q 

cor?jugates in G,, and n(n -~ l)/(q -+ I)q conjugates in G. Thus, 

n(n - I)/(q $- 1)q = (72 - 1)‘q + (n - l)(q - 1):‘2, 

which implies that n == 1 + q(q2 -1 1)/2. 

LEMMA 8.7. C,,(f)& W is cyclic. 

PYOO/. Let Y E (C,lV)+ have prime order and fix a point not in 13. Then 

1 .s / is odd and x E W. Thus, d C d(x) and, by Lemmas 8.5 and 8.6, C(X)“(~) 

is solvable. As C,,(t) < Co(x), Id(~)1 = 16 and C<,(t) = -4, , contradicting 

Theorem 5.1. 

Thus, if t N t’ m= Y or rt, then (C,W)“ct’) is semiregular. It follows that 

C,W is cyclic of order dividing q + 1. Also, C,,(t),&‘,W/W is cyclic and 

W :: Z(C,,(t),,C,W), so that C,(t),,C,Wis abelian. As 1 CO(t)nB 1 = (q - 1),‘2, 

C,(f),& W is cyclic. 

We can now complete the proof of Theorem 8.2. By Lemma 8.7 and 

122, Theorem 1.1 or Lemma D.51, G,, :, Co(t)J’I W. That is, C(t)A must 
have odd field automorphisms. Let q = q’” with b an odd prime. 

By Lemmas 8.1 and 8.6, Q = Co(t) x L with 1 L j = (q2 + 1),‘2, and 

(k,(t)~&t) is fixed-point-free on L. If  1, has a proper nontrivial characteristic 
subgroup L, then we have 1 L, ! 2 q - 1 and 1 L/L, 1 3 q - 1, whereas 

1 L 1 = (q2 $- 1)/2. Thus, L is an k-group for some prime /. 
\T:e have $2” ~,~ 1 =: q’ + 1 = 2/” for some n. Then q” -i- I is an even 

divisor of 2/“, so that qlB + 1 == 2/U’, a’ < a. Yaw 

2d” = (2P’ - I)* $- 1 > La,*, 
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so that a >; a’6 > 3~‘. Then 

or 0 2h ~ 4dU’6(b - I),‘2 (mod P’), Thus, 0 2b (mod /^‘), b [(I’ 

(as b is prime), and finally 0 2h 4/“‘h(0 1):2 Y” (mod P’), 
This contradiction proves ‘l’heorem 8.2. 

‘~HEORE~U 8.9. For some involution u t GOB , C,(u) SL(2, q) for some q. 

Proqf. Assume that c’,,(u) has the form PSL(2, q) for each nonregular 

involution u. By ‘L’heorem 8.2, G,;! contains a Klein group. Let t be an 

involution central in a 2-Sylow subgroup of G,,, . J1.e use the notation of 

Lemma 8.1. Let lt, u lx a Klein group in S,,!, . 

LE~IA 8.10 (Bender [4, Lemma 3.81). Let z (c@) ..’ be an involutio?z, 

cud let a, b EQ satisfy nb -~ hu and (a~)~ (by)” 1. I’hen h = n or upi. 

ProoJ Assume that b -- a. Set e (a-%)’ $ G, . ‘I’hen 

uraru tlrtwtl = r, 

a = r(r %brba -II. ~.~ mm VW . b YK %I 

(f-le)" == b--lf'l& .2 feel _ ((f- Ip)-l)l-', 

and hence (fple)b’ = (f- ‘e) l. However, 6f E 0 has odd order, so that 

(bf)’ t C(f-~‘e) implies that bf E C(f le). As f  ECJ and e 6 G, , ,f‘mre $ G, . 

Then Elf E Q fixes both a: and &I’, so that bf -= 1 and n = f/$ = 6-l. 

I,E~rnrA 8.11. Suppose that u is u nonregular involution. Let S, be a 

2-st@roup of C(u) and let v  be a nonre‘gular involution in C(u). Assume: 

(a) S, n C,,(u) = 11, is dihedral; 

(h) S, Cl TV,, = Cl is cycZic; 

(c) s, =-: (/~,c,);@); 

(d) v“(~) $ C,(u)“““‘; and 
(t!) 1I),l FGz /Cl’. 

Then /V( S,) :< C(u). 
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Pmof. As in Lemma 8.1, Dr(U) is dihedral and C,(V) is dihedral or 

quasidihedral. Let Dr(v) = (e, V> and C, = (f >, where 1 e / = j D, 1 < 1 f  1. 

As S, : (Dl x C,)(v), Sil) = le2,f2). Thus, Q,(S’p)) = /Y, u\, where 

‘(Y\ = Z(D,(z)). 

Ke claim that ZL is the only involution in <<Y, u) contained in a normal cyclic 

subgroup of S, of order ~ f  I. Clearly, C’r dl S, Let h E S and suppose that 

//1,:=lf1,th)(~,S1,alldu~(h?.~4s f~;-~e~I,D,xC,hasexponent 

1 f  / and h $ D,C, . Also, [f, h] E (.f‘,b n (hj = 1. However, /I acts on <f\ as 

2’ does, and C,(r!” is dihedral or quasidihedral. This is a contradiction as 

~ Cl ~ y  1 D, ~ 1‘ 4. 

Thus, X(S,) d’ C(U). 

LEJIMA 8.12. I f  t E %(S,,) is suitably chosen, tken S is a 2-Sylozo subgroup 

?f G. 

Boof. Otherwise, for each involution 1 E Z(&), C(t) does not contain 

a 2-S\-low subgroup of G. 

By- Lemmas 2.1, 2.5, 4.l(vi), 4.5, and 4.6, and Corollary 7.6, we have 
: 0 (mod 4), / A : :::I 

rhus have S == (D x 

1 il(u)I _ j il(tu)l z 0 (mod 4), and t + U, tu. We 

C)( u), and all conjugates oft are in DC. By Lemma 8. I, 

I)(u is dihedral, say (e, u,\ with 1 e 1 ::= 1 D ‘, and C/,uj is dihedral or 

quasidihedral, say c;f, u) with 1 f 1 = j C :. Choose r as in Lemma S.l(iv). 

We have S(i) =-; (e?,f”) and (Y, t) = Qr(Z(S) f’ S(i)). 

By hypothesis, nr(S) moves t to t’ = Y or vt. As C :-I C(l’), C is cyclic. 

By Lemma 8.11, 1 e2 / > ‘f’ 1. Thus, N(S) :I< C(r) and t’ = Pt. 

Clearly, C(Y) has a 2-Sylow subgroup R >B S. \Ye claim that r is a regular 

involution. For otherwise, C,(Y) = PSL(2, w), nz ~~ 3 (mod 4) (Lemma 

4.l(vi)). Then R p (R n C,,(Y)) x (R n W,.), where Ii n IT) is cyclic or 

generalized quaternion. As d n A(Y) -7 4, t t (R n C,(y))(R n M;). It 

follows that t is conjugate in C(Y) to an involution in Z(R), which is not the 

case. Thus, Y is regular. 

As ,O 1 = n -- 1 :- 3 (mod 4), (, is not a p-group (Lemma 4.6). By 

Lemma 2.1, we may assume that C,,(U) = PSL(2,/“) with (q, /) = I. By 

Lemma 4.l(vi), L = 3 (mod 4). As Y E C(u), Y E C,(u)II’, . 

I f  u E Z(&,) we can repeat our previous argument and find a regular 

involution Y’ E C,(u) such that u -v UY’. Since C,(U) has a single class of 

involutions, it follows that Y E C,(U). 

I f  u g Z(S,,) let S, = (D, x Cl)(t) be a 2-Sylow subgroup of C(U), with 

D,: t, dihedral and C,(t dihedral or quasidihedral. I f  S, is a 2-Sylow 

subgroup of G, then some conjugate ur of u centralizes S,, = C(u). Fl’e may 

then assume that ur E C,(C(u)) <z DC, whereas u is not conjugate to any 

element of (Y, t). Thus, X(S,) moves u to some other element u’ of Z(S,). 
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Then C, _ C(u’) implies that C, is cyclic. By Lemma 8.11, i D, ~ ,) 1 C, 1. 

As before, an involution in Z(S,) <; D,C, centralized by a 2-Sylow subgroup 

of ,V(S,) must he in 11, . Since Q,(Z(S,)) m=- Qr(Z(D,(t>)) ,s: u) contains u’, 

and since I’ t c,(u)!J’,, , some conjugate of r is in D, . ‘Thus, we again find 

that T E C,,(u). 

‘l\‘e may assume that Y = (a/3) .... Li’ L mce r E C,,(f) n C;,(U), C,,(t) = PSL(2, q), 

and C,,(U) ~~ PSL(2, /), we can find elements n t C,(t) and b t C,(U) such 

that (~1’)~ emu I m-m (6~)~. However, (1 o ~, I b 1) : 1 and Q is nilpotent 

(Lemma 8.1 (vii)), contradicting Lemma 8. IO. 

The proof of Theorem 8.9 now splits into four cases. 

CUSP I . (I 3 (mod 4) and C(L),,~ - (t / contains no conjugate of t. 

Here S - (D x C)(U). By Lemma 2.3, u --c I’ or vt. I f  t - t’ := (a/3) ‘.. E S 

(Lemma 2.6) then t’ E DC, and we also have t’ w Y or vf .  Since Q,(Z(S)) =.: 

(r, t\, all involutions in ( Y, t) must he conjugate (Lemma 2.4). Then u h t, 

which is not the case. 

Case 2. 4 s~~ 3 (mod 4) and there is a Klein group \t, u> in G,I,V with 

1 - u. 

By Corollary 7.6 and Lemma 2.5 we may assume that t A u ,w 1~. Once 

again, Q,(Z(S)) :- (r, t>. Suppose that two of r, f ,  rt are conjugate. Then all 

arc conjugate in N(S) (Lemma 2.4). As C :c C(Y), C is cyclic, say C mm ~%‘f). 

By Txmma 8.1, D(u) is dihedral, say D m: /‘e, U‘ with / e = / I> 1, and 

C(z1 / -- ,‘.f, IL,: is dihedral or quasidihedral. ‘l‘hus, Y1) (e2, f 2;j, where 

X(S) is transitive on B,(S(‘))t, so that I e2 -= if‘” 1, contradicting 

Lemma 8.1 I. 

Thus, Y, t and rt are nonconjugate. As u N t and C’u> is dihedral or 

quasidihedral, S,, : C(U) has at most one class of involutions +t. Since 

S,,j is a 2-Sylow subgroup of G,, , s = 1’ or rt is a regular involution. In 

particular, no conjugate of s is in S - DC. 

I,ct x t G be such that ZLU _ f  and ,,,t, s, u;fl _. S. Then sg E DC and 

u” =- t imply that sgt + SC’, f  and hence s’lt N st. Also, su N SW 

s’ft - St + t - 21. 

If  Y is a regular involution, take s 7 Y. As D(u) is dihedral of order >8, 

u - YU =y: su, a contradiction. 

Thus, s = rt, and su N st states that r(tu) N Y. However, from the 

dihedral group D(tu) WC find that tu N v(h). Then t N tu N r(tu) NY, 

a contradiction. 

Case 3. 4 I (mod 4), and C(t),>, -~ {tj contains no conjugate of t. 

As usual, (r, t) < Z(S), w h ere now Y E G,, Thus, none of Y, t and rt are 

conjugate, and we have t N t’ = (a$) ... E S - DC (by Lemma 2.6). Let 
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R E G be such that t’” = t and (Y, t, t’>q -.< S. Then tq E S --- DC, 
i(r”, t”; n DC ; _- 2, and hence ~g or (rt)” E IX’. 

I f  TO t DC then r”t + Y, t implies that r’jt ,- rt. However, as Dt’t” is 

dihedral, t -, t’ w rt’ - rgt’” = rqt N rt, a contradiction. 

Thus, (vt)” E DC. As above, t’ k rt’. Now S ” DCc:rq:, where C(v” is 

dihedral or quasidihedral (Lemma 8.1). I f  C I > 2, then r” y  r”t - 

(yt’)” -, t’g, a contradiction. Thus, C := ,<t‘, and fin,(S) = IkIt’~ :i “t, . 

Clearly Q,(S’,,) = {r, t;>. It follows thar C(Y) contains a 2-Sylow subgroup S 

of G, and C(Y),>~ contains a 2-Sylovv subgroup S,, of G,ln , but C(r),,, -- {Y] 

contains no conjugate of r. Replacing t by Y in the preceding argument, we 

find that r, like t, is not a square of an element of -Q,(S). Since Y is certain]!; 

a square in D’t’ , this is a contradiction. 

Case 4. q 1 1 (mod 4) and C(t),,< - {t] contains a conjugate oft. 

By Corollary 7.6, Q,(SJ -= ,<Y, t:;, so that t, r and vt are conjugate in 

N(S,,),, and hence in N(S) (Lemma 2.4). Also, IJ x C -.d .S with ,S;‘DC 

abelian (Lemma 3. I). I f  Pi) 5: D, then W) -= 1. 

Suppose that S - DC contains no involutions. Then Qr(S’) :: D x ,t, . 

However, Y - t in ;V(Q,(S)), so we have j D = 4. Then q 7; I (mod 8), 

so that q is not a square and 1 S : DC ) z; 2. Since S = DS,,, , Y is not a 

square in S. As Y N t in N(S), w-e have ; C I m-z 2 and S = D >: i:t is 

elementary abelian of order 8. Although this already contradicts Theorem 7.8, 

we wish to point out the simple reason why this is impossible. Clearly, 

X(S),iC(S) is a Frobenius group of order 21. By Lemma 4.5, n =~ p” -1 1. 

As C(S) ~= s x O(W) : s .‘( O( Lf’,) = s ?< 0( IV& 0( IV) fixes Q point- 

wise, so that C(S) = S. Since ;V(S) ‘. t 1s ransitive on the Klein groups in S, 

there is an element g t N(S) n A’((t, u>) such that (t, u’>Q,. Y JJ. As g 

normalizes (t, u>, 6 E Gal9 . Since <t, u, R? acts on Q and C,((t, u,,) : I, we 
have C,(g) f  1. Now C,,(f) is not SL(2, /) f  or some L, since G contains no 
quaternion subgroup. Thus, C,,(R) contains a Klein group ~cj, 2”‘ . This 

group is conjugate to (t, u> ; hence <a, s’> fixes 2 points, say y  and 6. Then g 

must fix y  and 6. However, I?‘, u’,~, ~..: C,,(g), so that ;v, z“ cannot fix points 

of d(R), a contradiction. 

C’onscquently, there is an involution ‘1 E S ~. DC. By Theorem 7.1 and 

Lemma 3.1, Q,(S) << DCfzl,, and S/ZX’ is abelian. Since r w t -c rt, ‘11 Y t 

by Lemma 2.2. 
Ily Lemma 8. I, D(v) =: (e, ~1, and C<o; =: <f, , V> with 1 D ! : e and 

c: ifi I. Then Q,(S) ’ (e, fi2, v). Since Q,(S)/0 -: Q,(DC’(z~)/D) a 
Q,( fi , z“ ), WC have Qr(S) = ie, f, v,\ with f =~- fi or fi". I f  C is cyclic, then 

ft C‘, while if C is generalized quaternion, then once again f = fi” E C. Thus, 
Ql(S) = (c,e;‘, ea‘~lf))(z’:, 7, ~ e ev>,f ,kow 

,/2 /\ , / 

B (;)ith (es, ez“\ and c’f, z?: dihedral groups and 

1' 
’ (II = ($,,f” and h’(Q,(S)) is transitive on 
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<r, t’ +‘, sv that l<e2, ea,/ :- if Applying Lemma 8.1 1 to &(S) thus yields 

a contradiction. 

‘This completes the proof of Theorem X.9. 

9. THE SI, CASE 

III view of the preceding sections, the proof of Theorem 1.1 will be com- 

pleted once we have proved. 

‘Z’HEOREhI 9.1. For each involution t E G,, , C,(t) is not SL(2, 9). 

Pro($ Assume that C’,,(t) = SL(2, cl) f  ‘or some involution t E G’,, We 

begin by introducing some of the notation to be used in Section 9. 

1,EnIxI.t 9.2. Let S be a 2-Sylow subgroup of C(t) such that S1,,,) is a 

‘-Sylow subgroup vf C(t)!,,,; . 

(i) E == C,(t) n S is n generalized quaternion group qf ovdev 

((I” - l), -_ 4k, zohere k is apoaev of 2. 

(ii) F -_ TV n S is cyclic or generalized quaternion of order $14. 

(iii) I?’ ,-:I S, F . 3 S, l? n F -: it,, and [E,F] : 1. 

(iv) E and F have cyclic subgroups :,el, and <IfI:, respectively, zuhich are 

normul in ,Y(;, such that / e, 1 -= i(q” l)2 212 nnd j F : (fl;>j = 1 if F is 

cyclic 01 2 if F is gelleralixed qunternion. 

(x-) s is a 2-Sylow subgroup of c. 

Proof. As E is a 2-Sylow subgroup of C”(t), we have (i). By Theorem 7.1, 

F is cyclic or generalized quaternion. 

By Lemma 3.l(ii), S(l) 4 EF. Thus, N(S) normalizes Q,(Z(S) n SL)) = (t), 
and (v) follows. 

If  ,F, P: 2 and t - t’ = (u., p) ... E S (Lemma 2.6), then CE(t’) == ’ f:: 

and ~‘1’ R is quasidihedral since t is not a square in C(Y) (Lemma 3.1 and 

TlleorcIn 7.1). Also, Q,(S) :’ ‘,t’, B (I, emma 3.1). ‘rhis contradicts Theo- 

rem 7.8, and proves (ii). 

LEMMA 9.3. Let t N u,, E EF - it). 

(i) There is an element e, t S --- 1W such that e1 N e, , (uj = 

.$((e,)) -i; EF and 1 + u ,- t. 

(ii) If F is a geneuulixed yuatevnion group, then 

e2d E PGL(2, ‘1) - PSL(2, y). 
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(iii) IfF is cyclic and S - EF cofltains an imolution, then 

e,” E PGL(2, q) .-- PSL(2, q). 

(iv) I f  the hypotheses of (ii) OY (iii) ho/~! then eo2 =- YS with Y E E, z kI< 
a77d : f ,  : I.,; I e, i z ~ e2 j =: s 1: 2k. 

FrooJ. (i) As C,,(t) has just one class of elements of order 4, we may 

assume that u0 == XL with s E ({e, , y  tF and j .x / 3’ I :I 4. ‘I’llc!11 

e1 E C’(u,,), l+’ 4 <Cl‘, so that S contains an element e, such that P? - ?I 

and t $ (e,\. Since 1 e, 1 i. 4 and no involution in S -- EF is a square 

(Lemma 3. I and Theorem 7. I), ,;u;> - Q,((e,,) < EF. Since e,“’ $ F, e.) P EF. 

(ii) We can find o E Band h E F such that ~ ab ~ = 2, .x” .x1, y” y  ’ 

and e,‘l r;‘. Then <e, , ab\ is a dihedral group centralizing IQ, Thus, 

S contains a dihedral group (e, , g’> with I R 72 2. Hereg or e,l is not in EF. 

By Ixmma 3. I and Theorem 7.1 , R or e,?,y is in EF and (C,)(t)<:a.?. )” 

PGL(2, 9). 

:,e (iii) I t .e z’ be an involution in S - ITF. Since (E<vj)-l is dihedral, 

i I;- 

, ~1‘ is dihedral. Also, z is a nonregular indutim, as otherwise 0 II 

I (mod 4) by Lemma 4.l(iii), whereas ZJ $ I’SL(2, y) is a rcgulal 

involution. Then C,(r) = i’f:~, as otherwise t is a square in C(v), contra- 

dicting Theorem 7. I, Lemma 3.1 and the fact that ~ d ~J(v)’ (mod 4) 

(Lemma 4.l(vi)). It follows that 71 inverts the subgroup *‘y‘~ of order 4 in the 

cyclic group F. As in (ii), from the dihedral group <‘e, , z ~ .-.- C(z+,), WC‘ 

obtain a dihedral group (e, , g; in S’, and (iii) follows as above. 

(k) By (ii) and (iii), ez2 E EF. Then ez2 = KS, where I’ E R, s EP’ and 
,y zz s ; as u -+ t. Since / ez2 -7 j p1 ,,2, (iv) follows. 

I,~mrx 9.4. S > EF. 

hoof. This follows from Lemmas 2.6 and 9.3(i). 

LEMMA 9.5. Let v  be an involution in S ~- EF. 

(4 v  is a zonregular involution. 

(ii) fi,‘:(v,j is quasidihedral, and Fit‘ is dihedral OY quasidihedral. 

(iii) Eivj = (e, vi>, where 1 e ; = 1 I? 1 =: 4k and e” = e-It. 

(iv) I f  a E: E and b EF have order 8, bi’ p: b--l, and 2: N t, then aW N t. 

l+oof. (i) I f  q = 3 (mod 4) this is clear. I f  q rmm I (mod 4) this follows 

from Lemma 4.1 (vi). 

(ii) By Lemma 4.l(vi), / d j z.: J(v)1 (mod 4). Thus, Jo is not a 

square, so that C,&U) = C,(z) =: \,t>. 
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(iii) This follows from (ii). 

(iv) Since a E <e2:\, u” (I r. Then (ab)’ = (ab) 1, so that ‘nh, 7’ is 

dihedral of order 8. It follows that ‘c’ - uv, where u _ a?. 

I f  t -’ 7.’ -: 5’ EF, then 7:’ z:rs, r cm I:‘, s CF. Since b” (6 I)“\ b or 
f,- 1 and F/y’ \ is dihedral or quasidihcdral, b” :~ f) ‘. 

As ‘1, u, 7’ C(a), TVC can fiud g E C such that v  f  and f, U, 7% ” ‘1 S. 
NO\\’ 27” (ZW.t)” _ IV’, where 7” . (VU)” Y z”’ - I. I f  %” r: S EF‘, then, 

using the dihedral group L/T’, ZJ, , we find that 2.’ - tv’. Thus, u - U” 
f.7,’ - 7” “u f, If %.’ E RF, then there is a dihedral group :F, , r’ I with Y, c- k’ ‘t 

and once again c’ - TV:‘. 

IJ:nlnrn 9.6. F is ~~~eneralized quaferniwl. 

Proof. Xssume that F is cyclic. I f  there are no involutions in S M, 

then S has no elementary abelian subgroup of order 8, contradicting 

Theorem 7.8. Let v  be an involution in ,5’ - ,W. Then 5’ = fF(a>cu; , 

where ~2~ is a field automorphism. By Theorem 7.1, F, 0‘) is cyclic ot 

gcncralized quatcrnion. 

Since C’,,(t) has one class of elcrnents of order 4, all involutions in El+’ f ,  

are conjugate itr C(l). Q,(S) .’ EF(o, (Theorem 7.1) and S/EF is abelian 

(Lemma 3.1). II)- Lemma 9.5(i), 7’ is nonregular. 

Define e, ,f; and e as in Lemmas 9.2(iv) and c).S(iii). ‘I’hen, /:e, -- ,P’,, 

and e E l:‘F: z: EF. 

Suppose that all involutions in f+X are conjugate to I. Let P, be as in 

I,emma9.3. \Yc have.f,’ E,f;l< t: ) t?,J tPGL(2, (I) -I’SI,(2, (1) e, E EF,‘7’ EF, 

and c., 3. Then e3 = xw, .s E R, 1’ F:F, so that 

p.,‘) z .qw,vyv t SZJ ‘: f ,Ayw -~- .Y((f: ,A-)’ c B, 

and t i- r, , a contradiction. 

‘l’hus, the involutions in ZS ~~ if arc not conjugate to t, and \Vc‘ ma\ 

assume that 7‘ - t (I.emma 2.6). Since P 3 is an odd permutation, whereas 

fl 1 is e\en, we have s,fi ;,ff-” ;I !2 A 2 ?_! t’ c, I. RF 
I,ernma 9S(iv), either : f ,  ) 4 or I’T:, f ,  is quasidihedral of order 16. 

\I’e claim that S ZW<,a, . For suppose that & . I, and set ,V,, 

Z?I;‘c Y ia”. By Lemma 2.2, there is an integer m and a s 6 G such that 
((z”‘)” ; S, but (~~)~)g -7: a”’ (mod S,,). I f  I” i EF then t” i, (u”‘)” ~“‘[a”‘, y], 

aId [a”‘, g]” E (c(t)y’ c’“(t)4 , so that [a”‘, ~1 E C,,(l)W n S =- HF S,, , 

a contradiction. If  t” $ ZS then t!’ is not a square in S. so that (a”‘)” f” 

a11d (7”’ t are in Z?F(z> .c S, , a contradiction, proving our claim. 
If  !Fl 4 then ,S (Ec~v))(zL,~ for an involution u E A’F I t All 

involutions in the quasidihedral group E(v) are conjugate to t. As u + t, 

this contradicts Lemma 2.3. 
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Thus, (,z’,fr> is quasidihedral of order 16. Set S, = E(fi2,;jz,, ~- ;e, z.‘,fiZ 

A conjugate of t lying in S - S, would have the form e%frj vvith j odd. If  

i is odd then eiv t E -1 C(F) and / eiz;fil := ~.f,’ / =: 8. I f  i is even then 

Thus, S, contains all conjugates of 1 lying in S. 

By Lemma 2.2, there is an integer ~7 and a s E G such that (fi’,‘)” c S 

but (fi”‘)!’ -:I ,f,‘” (mod St). \Ye have seen that fi"' -im f. ‘l’hus, fi”’ - 4 and 

(f~“‘)‘~ E EF. It follows that tg : I, c.f,““~” mm II7 r\ S = fit”‘ , and hence 

(f,“‘)” f,“’ (mod <f,z\), a contradiction. 

LIxM.4 9.7. s,,j is a 2-Sylo~w subgroup of GuB . 

Z’voof. By Lemma 9.6, no involution in EF - c<t:~ centralizes F. B! 

Lemma 9S(ii), the same is true of each involution in S EF. 

IawuA 9.8. (i) There is an involutiofz in S ~- EF. 

(ii) G,, rontains a Klein group. 

Proof. I f  y  km 1 (mod 4) (ii) follows from Lemma 9.6. If  Q 3 (mod 4), 

(i) and (ii) are equivalent. Assume that S ~ EF contains no involution. 

By Lemma 2.6, EF - (t} contains a conjugate of t. By Lemmas 9.6 and 

9.3(ii), S EF contains an element b such that bd is an involution in 

PGL(2, 9) - PSL(2, 4). Then b* EF* and F(b) is a generalized quaternion 

group (Lemma 9.6). Thus, Fib\ = i-f, b) with .f‘” ~7~ .f I and i.f / 8. 

1Vc may now assume that / b / = 4. 

Since bA =.f” is an involution in PGL(2, QJ) ~-~ PSL(2, y), it is an odd 

permutation. Then bR-” and f”m” are also odd permutations. However, 

t E :‘b)> n <f >, so that (b!PA and (f >1J--A are semiregular and have different 

orders, a contradiction. 

LEnmA 9.9. S z= EF<v), where E and F are generalized quatemion 

groups of order 4k, E n F rP (t), [E, F] = I, E <I S, F 4 S, v  is all irloolufion 

in S - EF, and E(v) and F(v> are quasidihedral groups. 

Proof. By Lemmas 9.6, 9.X and 9.5, 5’ := EF<vj(a) with E and F 

generalized quaternion, v  a nonregular involution in S - EF, E(vj and 

F(a) quasidihedral, and a3 a field automorphism. Also, (C,J(t)(v>)” =-- 

PGW, 4). 
LetE(v)=(e,v)andF(v)==(f,vjwith/E/=(eiandjFl -ifi. 

Then cJ and fA =z V~ are odd permutations and (e>“pd and (.f>Q-” are 

scmiregular. Thus, 4k z 1 e 1 =-: 1 f  j = 1 Q - A 1.’ . 
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It remains to show that S = IW(v;. Suppose that uj + 1. By Theorem 7. I 

and Lemma 3.1, F(a) is a generalized quaternion group. Then we may 

assume that a .:= 4 and F(a) --I (,,y, a,> with f  ; ~~ 1 F 1 :- , f  ~~ 

R .~ d j2 --- 4k :-= (q2 I), ..3 8. Since /s z SJ ’ is semiregular, it follows 

that gy-ed is an odd permutation. Then g d ~~= ud is also odd, so that (PA is 

odd. However, <R: 1J-13 and (~‘\o il arc semiregular and gn 3 -> 8 nil- A i7 
so that this is impossible. This proves Lemma 9.9. 

hMRIA 9.10. If  k = 2 the71 ull inaolutions in G are conjugate. 

Proof. Here S i -= 64. Define e by Lemma 9.5(iii), and fi by Lemma 

9.2(k). Then e” e-.lt, fi” - fl” -,f’r’, and e/l -: efi2 :=- tr. Also, 

C,(e) (e,,. Thus, a result of Brauer and Fong [6] implies that either all 

involutions in G are conjugate, or G Q dl,, . As the latter possibility does 

not occur [7], the lemma follows. 

In unpublished research, I’. hong has studied simple groups G whose 

2-Svlow subgroups have the structure described in Lemma 9.9 with k ‘;- 2. 

His main result is that all involutions in G are conjugate. We only require 

a special case of this result. 

In LWWZ~S 9.1 l-9. I8 we assume that k ,> 2. These lemmas are due to Fang. 

1x-c use the following notation: E(v; ‘e, v’ , F(v) Cfi a.>, 
e ~ :-: if’ _ 1 E! -; , F : =-: 4k, u 2 e’:f”‘, and m ~- vu. If  S ~-- EP contains 

a conjugate of t, we also assume that 2‘ w 1. 

Similarly, ,t‘“’ =-- . f  r. As 1 ezl I = fi, 4, ev c B, and fz E F, WC have 

6.’ ev(fv)--I := evfvt -: fvevt := fv(ev) ’ -== fe-1, ‘I’hus, .; e ‘-f i 2, and 

similarly, / <f 1 7: 2. Also, f I’ -=- e--.lfe =-- e-‘c ‘,f -I. 

I~EMRIA 9.12. ,7(l) = (e”, ,f2,;, ant1 C21(S(‘))e -= : t, U -r CO?l$i.~tJ Of the 

inxvlutions in S which aye squares in S. 

Proof. As s _ {e, f,  m>, (P, r~zj(r~ = (ez), <f, m;“’ ~ <,f’A , and 

i”f“ ’ e-zfm”, S(r) = (e2, f 2‘ _ Also e, f and m are involutions (mod S”‘). 

‘Thus, each invoiution in S which is a square must be in S”‘. 
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LEM~IA 9.13. Set V = S1)(emnf). 

(i) V = (e2> X (emf ;) i] S, where I ep = I emf I. 
(ii) m inverts V. 

(iii) I’ is weakly closed in S. 
(iv) N(V) co&roZs fusion in V. 

Proof. (i) By Lemma 9.12, j S : I’ 1 = 4. We have (ez)p’i’f = (e-.“)f = 

(e+)?j = e2. Similarly, (f2)‘“f = .fa so that V is abelian. Also, emfemf = 

ef -re--If = eeff(Lemma 9.11). Thus, I’ 1: (e”) >: (emf‘) 1’: (e2, emf, f 2;) = G7 
and j emf] := 21 e2f 2 1 = e2 i. 

(ii) em = e-l and (emf)m == e-lff-l = e-lf?tz =J’-‘em =J‘-$ne-l r= 

(emf )-l. 
(iii) I f  I’ # VQ .< S, g E G, then u E I’” (Lemma 9.12), so that 

I/Q < C,(u) = V(m). Th en VV~ = C,(U), and P’ n liS < Z(C,(u)). How- 

ever, m inverts V n I”9 and / I/ n Vg 1 = 4 i C’ / :, 4, a contradiction. 

(iv) This is immediate by (iii). 

LEMM.4 9.14. There is a 3-element b E N(V) surh that (b‘\ is fransitive 
on <t, 11)“. 

Proof. As u y  ut, it suffices to show that t N u (Lemma 9.13(iv)). I f  t is 

not weakly closed in EF, this follows from Lemma 9.3. We may thus assume 

that t N ‘u (Lemma 2.6). 

Let @ =: t and (ZJ, u, t)” < S, whereg E G. Since I(t”, u”) n EF / = 2, we 

may assume that z@ # EF. Also (e2f2)” = edzf p2, so that ZI N ‘ziu y  (VU)” == tug. 
However, uq E S - EF inverts e2 (Lemma 9.5), so that ug y  tug x ‘ZI ̂ v t. 

LEMMA 9.15. Each involutio?t in S is conjugate in S to one qfi t, u, ef, 
ef-I, mf, em, or m. 

Proof. 1Ye need only consider involutions in S - S(l). Suppose that 

eyi is an involution, with i and j integers. If  i is even andj is add, then 

eff j-‘fe7pxf = elfi-te-iffj-tf = f 21’ + 1, 

Thus, by symmetry i and j are both odd. By Lemma 9.11, f  e” = e-yes = 

e-ze-~3f. Then (ezy)e2 = ei-% so that ef - eff if i :I 1 (mod 4). Also, (etffj)f’ = 
f - ze+f j I 2 = eifit4. Thus, ef N eifj if i -1 j E 1 (mod 4). As (&ffj)” ;= e--ff-1, 

ef ,- e’fj if i = j (mod 4). Replacing f byfp1, we have ef -1 -, &f’ if i :: --j 

(mod 4). 
By Lemma 9.11, 1 S : (e,f>i = 2. An involution not yet considered must 

then have the form eimfj. Note that (e%$aj)p : eie-%$--%j =:z &%f -zi. 

I f  i is odd and 1 = e”mf 2jeimf 2; =: ezf-2ie-if2/ = f 4,, then eLmf 21 = ,i, or 

e’mt. As (e%rz)” = eimt and (&z>’ == ei 2m, em - eim h eimt for i odd. 

Similarly, mf - mfi m tmfj for; odd. 
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I,rixtnr.% 9.16. Eitfzev m - efol- m - ff I. 

Proof. Set U ~7 C,(u) -mm I'trn; -1 (e2,,f2, ef, m;. By Lemma 9.14 there 

is a 2-Sylow subgroup S, of C(u) such that S, I/- C. As / S : C / = 2, 
g -: 3 A 1 and tn = u for some a E !V( L’). Clearly, 1 N( U)/C( [“)I; Ia z-1 2. If  we 

let L/C( C)C == O(N(C;)/C(C;)I,), v  rh ere L > C(c’)D’, then N(U) z~: SL,. 

We may thus assume that a E LA and a 6 C(u). By Lemma 9.13(iii), <a‘> is 

transitive on (t, u)-. 

Thus, there is a 3-element d t N(C;) such that (d) is transitive on (,t, u;)*. 

By Ixmma 9.15, each involution in C’ I r is conjugate in S to m, ef, or q--i, 

where mS, (eflr, and (efm ‘)” c CT I’. I f  wz + ef and m + ej-r, then 

(ms)c7 m”. However, 1 ,S ; 1 S : C,(m)1 = / 5’ : (t, u, m;: = (4k)2/8 =- 

2k” 2 (mod 3). Thus, we can find distinct elements ml , m2 E ms CI C(d). 

Then d centralizes the element mrm, 7 1 of I’, whereas n centralizes no 

involution in I;. 

L1:nrnr.k 9.17. If fxf k t tlwn e+mf - e--"'a 

Proof. Let S, hc a 2-Sylow subgroup of C(u) containing C,(u). As 

mf N t w u, there is a g E G such that (mf)” = u and Cs(mf)” ET< S, . We 
have f  F ,<$‘L ( Cs(mf) since (e2)“lf := (epz)f -- e2. By Lemma 9.12, applied 

to s, ) t” = t or tu. I f  t’~ = t then mf and u arc conjugate in C(t). I f  P -: tu 
then, for a suitable h in Lemma 9.14, P ~. t and (mf)@ -= ub = tu, and 

once again mf and u are conjugate in C(t). 

Let (w$)” _= u, R’ E C(t). We may assume that Cs(mj)“’ -<: C,(u) = G7(m, . 

Then ($‘;o 5. V(m> and (P”)” E I’. Thus, (eJY)8’ E C,,(t) n I,? = (es), so that 

(e’Y e=“. Replacing g’ by $WZ if necessary, we have (eb)8 -~~ e“ and 

(mf)“’ :m= u. The result follows. 

LEMMA 9.18. (i) If ef - t, then muf -f‘” or emu -fL. 

(ii) I f  ef-’ - t, then muf -f k OY emu mf“;. 

(iii) If ef + t + ef -l, then e-'(rnf- e-h. 

Proof. (i) Let (ef>g = t and Cs(ef)” >G S, where g E G. As (ef)“f = 
r--i+fy])f =f-le-1 = ef, (,+f”)ef = ($f --I;)I -- e-kf -k: = u and umf z (e’y”)f : 

7, =-- ut, we have t E (mf, u>(r) s< CS(ef)(*). Then t -+ tg E S(l), so that 

P = u or ut. We may assume that tg : u. 



FINITE GROUPS WITH A SPLIT B,\7-~~~~ OF RANK I. I 471 

Also, muf = u . mf E Cs(ef), and emu = ef mf. u E CJs(ef), so that (wzu~)‘~ 

and (emu)” are in 

Cs(ef)g n C(t)” .$ S n C(v) = C,(U) Ly V(T~Z;) == ((e” :ccev$))(m>. 

Here mufmuf = ~f-‘~f = t, and (emu)a :: t. As m inverts Ir(Lemma 9.13(ii)) 

and (enlf)” -= e2f a, (muf)” and (emu)” are in (P’:‘> x (e”“yf k!‘:2>. In :V( I’) these 

are conjugate to elements with square t. Thus, muf - e: b’ or ,f+““:, and 

emu 1 e+-l’ or,f*“. However, e’; +,j‘l’ as these are not conjugate in C(t), and 

mzdf + emu as otherwise (m~f)” : ((emu)g)il and g E C(t). Thus either muf 
orenlf-f’; -f--i.. 

(ii) As (rn~f)~’ = muf -l we can replace f brf‘~mi in the above argument. 

(iii) Suppose first that v7f N t, and set S,, = Su<e, 777ff\. Then 

S -= S,,(em\, and each involution in S’, is conjugate in 5’ to t, u or mf 
(Lemma 9.15). By Lemmas 9.14 and 2.3, em N t. Similarly, if ~2777 - f 

then mf N t and (iii) holds bp Lemma 9.17. 

Suppose now that em + t + mf. Set S, = S’(l)(ef, m,;, so that S =. S,(wzfj. 

By Lemma 2.3, mf is conjugate to an involution in S, -- &Y(l), hence to ef. <f-l, 

or m (Lemma 9.15). By Lemma 9.16, mf - ef or ef -l. 

Using Lemma 9.11, we find that C,(g) = (ef, f ,  u, mfj and Cs(ef--‘) = 

(@-I, t, U, mf -‘> have order 16, while C,y(m) = (m, t, u) has order 8. Also, 

IC&f)l 3 mzf, em, e”)i = 2 2 .2/z > 16 and iC,(em)/ = 1CJnzf)i. Thus, 

since w7f + t - u, Cs(mf) is a 2-Sylow subgroup of C(mf). 

Let efhl N mf. Then (et&l)” = mf and C,(<fj‘*‘)~ :/ S for some g c G. 

Then <t, u>” < S. However, f  h 11 + ef, <f-l, em, mf, m, so that <t, u’,‘J .~ = /t, u> 

(Lemma 9.15). Then mf = (ef+zr)rJ E C(it, u))? = C(!t, u;;), which is not 

the case. 

Iqrom now on we again allow the possibility that Ir = 2. 

LEMMA 9.19. (i) All involutions in G are conjugate. 

(ii) All eleme&s c$ ordeer 4 in W are conjzigafe in iv(W) := C’(t). 

Proof. Recall that, since (t) = Co(t) n W z Z(W), X(W) -.= C(t). 

We first show that (i) and (ii) are equivalent. Suppose that (ii) holds. By 

Lemma 9.10, we may assume that 17 >. 2. Since t h’ U, (i) follows from 

Lemma 2.3 and the fact that all elements of order 4 in C,,(t) are conjugate. 

-Xow assume that (i) holds. Let y1 and y2 be elements of order 4 in II:. Then 

e$ and e$ are involutions, so that (eAy# 7 e731z for some g E G. Since 

e2*g C(e’<yJ G C(e’y& t is a square in C(e”y,) and C(e7;yiyz). By Lemma 9.12 

(vvhich holds even if k = 2) we may assume that <e”y, , t)” -.: (e7yz , t:. 

Since f  N eJyat in C(eky2), WC may now assume that t” := t. Then 

g E C(t) : : N(W) and (e”)“e-~“’ =- (y;‘)gy2 E Co(t) n W = (t),. It follows that 

yi N yz in C(t), so that (ii) holds. 



472 HERING, KAISTOR, ANII SEITZ 

In particular, by Lemma 9.10 both (i) and (ii) hold if k := 2. 

Assume that k ::a 2. The quasidihedral groupF(v> has 2 classes of elements 

of order 4. Recall that m = W. As ~VZU : ea E 15 and ,f‘” E F both have 

square t, they are not conjugate in G. By Lemma 9.18, either v f  .= f~f -f” 
or vf 1-L -,f”Umf _ e-“‘mf - g-L ZL -f ‘;. Thus, all elements of order 4 in F 

are conjugate in G, hence in N(W). 

We now- complete the proof of ‘l’heorem Y. I. By Lemmas 9.8(ii), 9.19 and 

4.5, Q is elementary abelian of order $. 

Since C(l)A is 3-transitive, C(t) = C,(t)(v)X, where X i;.- IV and X4 fixes 

more than 2 points. Let s E .y;. We claim that d(x) C il. Suppose that 

d(x) i$ A. Clearly, C,)(t) n C(s) is SL(2, ‘I’), where 4 is a power of 4’. As 

C,(<,t, .x,) :< C,)(t) n C(X), C,,((t, .x1’) ::: SL(2, 4’). As Q is abelian, 

C,(x) =: SL(2, q”), where 9” 1. q’ is a power of q’. The involution in 

C,,(x) n klTx must be the involution in C&t, ,x1) n W~,,z. , whereas t $ IV2 , 

a contradiction. 

Thus, S is scmiregular on !Z? -- d. It follows that X is fixed-point-free 

on W, 4. 
A comparison of Lemma 9.19(ii) . with the structure of Frobenius com- 

plements (see Passman [25]) shows that X/O(X) a SL(2, d) with L --: 3 or 5. 

I f  / = 5, s =z SL(2, 5) x O(X). I f  / 3, it is easily seen that S has a 

normal subgroup lyr such that Xi is the direct product of a quaternion group 

and a group of odd order. Thus, AT has a normal subgroup 9” such that 

S’ 1, \f, K, (’ L 1, I K 1) I, and cithcr S -= S* and 1, a SL(2, 5), 01 
I.y;:l-,k ~- 3, L is quaternion of order 8. and S/k’ - SL(2, 3). 

There is an clement of order 4 in C,,(t) n C(K). Also, K centralizes an 

element of order 4 in L :G IV. Thus, K centralizes an involution tg ,L t 

in C,,(t)JF, where g E G (Lemma 9.19(i)). Also, t t C,(P)?V~, . 

We claim that K : I. I f  this is not so, let M :< K have odd prime order. 

Then :11 : r C(P) = CO(t”)(v”>X-‘~ and d$ :.. C(t).It follows that N < C,(tg)K!‘. 

As t E C,,(tg)W,, , there is an element d ED such that / d j = 4 and t’” z:- t”f. 

Since d centralizes C,,(tg)KQ, :lf’ = AZ and O(M) =-: d(J/I”) c o(t) n A(tV). 
Then (t, tgt) is a Klein group fixing at lcast +l(M)j points of G. As M’ :;g AyA 

fixes more than 2 points, this contradicts Theorem 7.1. 

Thus, C(t) = C,(t)X(v>, where C,,(t) is SL(2, 4) and S = SL(2, d) for 

I( =- 3 or 5. We claim that S centralizes C&t). I f  ( = 5, then X < It’, 

and this is clear. I f  C = 3, then either -XT :< W or W :m: S* =X n W is 

quaternion of order 8 and S” is generated by a field automorphism of order 3. 

In the latter case, since W(V) is quasidihedral C(t)/C,(t) is isomorphic to the 
group S, . However, C(t)/C,,(t)W is abelian of order 6, a contradiction. Thus, 

[Co(t), 4 = 1. 
By a result of Fang and Wyong ([ 121, hI ain ‘Theorem or (3H) and (3J)), 
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4 is a power of &. However, L is fixed-point-free on the group [Q, t] of order @. 

This contradiction proves Theorem 9.1, and completes the proof of 

Theorem 1.1. 

10. COROLLARIES 

\Ve now note some easy consequences of Theorem I. I. 

COI~OZLARY 10.1. Let G be a 2-primitive group in which the stabilizer of a 

point is solvable. Then PSL(2, q) < G < PrL(2, q) for some q. 

Results of this type are in Passman [26]. 

COROLLARY 10.2. Let G be a 3-transitive group on a set Q in which the 

stabilizer of 3 points is cyclic. Then PSL(2, q) s G < Pl’L(2, q) for some q. 

l’roof. Let a E Q. If  Gf-” has a regular normal subgroup, we can apply 

Theorem 1.1. If  Gf-” has no regular normal subgroup, then by [22], Gf-” is 

PSL(2, q), PGL(2, q), Sz(q), PSU(3, q), PGU(3, q) or of Ree type, in its 

usual 2-transitive representation. The corollary now follows from a result of 

Suzuki [36]. 
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