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Abstract. The solution space of a constant coefficient ODE gives rise to a
natural real analytic curve in Euclidean space. We give necessary and sufficient

conditions on the ODE to ensure that this curve is a proper embedding of

infinite length or has finite total first curvature. If all the roots of the associated
characteristic polynomial are simple, we give a uniform upper bound for the

total first curvature and show the optimal uniform upper bound must grow at

least linearly with the order n of the ODE. We then examine the case where
multiple roots are permitted. We present several examples illustrating that a

curve can have finite total first curvature for positive/negative time and infinite

total first curvature for negative/positive time as well as illustrating that other
possibilities may occur.

1. Introduction

Throughout this paper, in the interests of notational simplicity, the word “cur-
vature” will refer to the “first curvature”. It is defined as follows. If t→ σ(t) is an
immersion of R into Rn, then the curvature κ and the total curvatures κ±[σ] are
given, respectively, by setting:

κ :=
||σ̇ ∧ σ̈||
||σ̇||3

, κ−[σ] :=

∫ 0

−∞
κ||σ̇||dt, κ+[σ] :=

∫ ∞
0

κ||σ̇||dt . (1.a)

The total curvature is then given by κ[σ] := κ+[σ] + κ−[σ]. In this paper we shall
construct a real analytic curve σ in Euclidean space which arises as the solution
space of a constant coefficient ODE. We examine when σ is a proper immersion
with finite total curvature. In the C∞ context, one could start with a straight
line, perturb it by putting a small bump in it, and get thereby a proper curve with
finite total curvature. Thus working in the real analytic context is crucial when
considering questions of this sort.

The curvature κ of Equation (1.a) is a local invariant of the curve which does not
depend on the parametrization. If ρ(t) is the radius of the best circle approximating
σ at t, then κ = ρ−1. One can extend the definition from the Euclidean setting
to the Riemannian setting. Let ∇ be the Levi-Civita connection of a Riemannian
manifold (M, g). If σ is a curve which is parametrized by arc length, then the
geodesic curvature is defined by setting κg(σ) := ‖∇σ̇σ̇‖; κg = 0 if and only if σ is
a geodesic. We have κg = κ if M = Rm with the usual flat metric.

1.1. History. Let κ[σ] := κ+[σ]+κ−[σ] be the total curvature. Fenchel [13] showed
that a simple closed curve in R3 had κ[σ] ≥ 2π. Fáry [12] and Milnor [15] showed
the total curvature of any knot (i.e. of a circle which is embedded in R3) is greater
than 4π. Castrillón López and Fernández Mateos [3], and Kondo and Tanaka [14]
have examined the global properties of the total curvature of a curve in an arbitrary
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Riemannian manifold. The total curvature of open plane curves of fixed length in
R2 was studied by Enomoto [7]. The analogous question for S2 was examined by
Enomoto and Itoh [8, 9]. Enomoto, Itoh, and Sinclair [11] examined curves in R3.
We also refer to related work of Sullivan [16]. Buck and Simon [2] and Diao and
Ernst [5] studied this invariant in the context of knot theory, and Ekholm [6] used
this invariant in the context of algebraic topology. Alexander, Bishop, and Ghrist
[1] extended these notions to more general spaces than smooth manifolds. The
total curvature also appears in the study of Plateau’s problem – see the discussion
in Desideri and Jakob [4]. The total absolute torsion has also been examined
analogously by Enomoto and Itoh [10]; we shall not touch on this. The literature
on the subject is a vast one and we have only cited a few representative papers to
give a flavor for the subject.

1.2. Curves given by constant coefficient ODE’s. Let P be a real constant
coefficient ordinary differential operator of degree n = nP ≥ 2 of the form:

P (φ) := φ(n) + cn−1φ
(n−1) + · · ·+ c0φ

where φ(k) := dkφ
dtk

for 1 ≤ k ≤ n and φ = φ(t). Let S = SP be the solution space,
let P = PP be the associated characteristic polynomial, and let R = RP be the
roots of P, respectively:

S := {φ : P (φ) = 0},
P(λ) := λn + cn−1λ

n−1 + · · ·+ c0,

R := {λ ∈ C : P(λ) = 0} .

We suppose for the moment that all the roots of P are simple (i.e. have multiplicity
1) and enumerate the roots of P in the form:

R = {s1, . . . , sk, µ1, µ̄1, . . . , µ`, µ̄`} for k + 2` = n

where si ∈ R for 1 ≤ i ≤ k and where µj = aj +
√
−1bj with bj > 0 for 1 ≤ j ≤ `.

Since we have assumed that all the roots are simple, the standard basis for S is
given by the functions

φ1 := es1t, . . . , φk := eskt,
φk+1 := ea1t cos(b1t), φk+2 := ea1t sin(b1t), . . . ,
φn−1 := ea`t cos(b`t), φn := ea`t sin(b`t) .

(1.b)

Of course, if all the roots are real, then k = n and we omit the functions involving
cos(·) and sin(·). Similarly, if all the roots are complex, then k = 0 and we omit
the pure exponential functions. We define the associated curve σP : R → Rn by
setting:

σP (t) := (φ1(t), . . . , φn(t)) .

1.3. The length of the curve σP . Let <(λ) denote the real part of a complex
number λ. Define:

r+(P ) := max
λ∈R
<(λ) = max(s1, . . . , sk, a1, . . . , a`),

r−(P ) := min
λ∈R
<(λ) = min(s1, . . . , sk, a1, . . . , a`) .

The numbers r±(P ) control the growth of ||σP || as t → ±∞. Section 2 is devoted
to the proof of the following result:

Theorem 1.1. Assume that all the roots of P are simple. If r+(P ) > 0, then σP
is a proper embedding of [0,∞) into Rn with infinite length. If r−(P ) < 0, then σP
is a proper embedding of (−∞, 0] into Rn with infinite length.
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1.4. The total curvature. We order the roots to ensure that:

s1 > s2 > · · · > sk and a1 ≥ · · · ≥ a` .

We then have r+(P ) = max(s1, a1) and r−(P ) = min(sk, a`). Section 3 is devoted
to the proof of the following result:

Theorem 1.2. Assume that all the roots of P are simple, that r+(P ) > 0, and
that r−(P ) < 0.

(1) If s1 > a1, then κ+[σP ] <∞; otherwise, κ+[σP ] =∞.
(2) If sk < a`, then κ−[σP ] <∞; otherwise κ−[σP ] =∞.

We note that if there are no complex roots, then s1 > 0 and sk < 0 and we may
conclude that κ+[σP ] and κ−[σP ] are finite. This is quite striking as these curves
are, obviously, not straight lines. On the other hand, if there are no real roots, then
a1 > 0 and a` < 0 and we may conclude that κ+[σP ] and κ−[σP ] are infinite.

1.5. Uniform bounds on the total curvature. Theorem 1.2 shows κ+[σP ] is
finite if s1 > 0, if all the roots are simple, and if s1 > <(µ) for any complex root
µ. In fact, one can give a uniform upper bound for k+[σ] if there are no complex
roots and if all the real roots are simple without the assumption that s1 > 0
where the uniform bound depends only on the dimension. If s1 > · · · > sn, let
σs1,...,sn := (es1t, . . . , esnt). We will establish the following result in Section 4.

Theorem 1.3. κ+[σs1,...,sn ] ≤ 2n(n− 1).

Remark 1.4. Let σn(t) := (et, cos(nt)e−t, sin(nt)e−t, e−2t). Since we have that
limn→∞ κ±[σn] =∞, no uniform upper bound on the curvature is possible if com-
plex roots are permitted. We picture below a 3-dimensional projection of such a
curve:

Theorem 1.3 shows that there exists a dimension dependent uniform upper bound
for the total curvature of a curve defined by an ODE of order n with simple real
roots. We now show the optimal uniform upper bound must grow at least linearly
in n. Let

uk,θ := ekθ and σn,θ(t) := (e−u1,θt, e−u2,θt, . . . , e−un,θt) .

We will establish the following result in Section 5:

Theorem 1.5. Let ε > 0 be given. There exists θ(ε) so that if θ > θ(ε), then
κ+[σn,θ] ≥ 1

3 (n− 1)− ε.

1.6. Examples. Section 6 treats several families of examples. We construct exam-
ples where κ+[σP ] and κ−[σP ] are both finite, where κ+[σP ] is finite but κ−[σP ] is
infinite, where κ+[σP ] is infinite but κ−[σP ] is finite, and where both κ+[σP ] and
κ−[σP ] are infinite.
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1.7. Changing the basis. We took the standard basis for S to define the curve
σP . More generally, let Ψ := {ψ1, . . . , ψn} be an arbitrary basis for S. We define:

σΨ,P (t) := (ψ1(t), . . . , ψn(t)) .

In Section 7, we extend Theorem 1.1 and Theorem 1.2 to this setting and verify
that the properties we have been discussing are properties of the solution space S
and not of the particular basis chosen:

Theorem 1.6. Assume that all the roots of P are simple, that r+(P ) > 0, and
that r−(P ) < 0. Then σΨ,P is a proper embedding of [0,∞) and of (−∞, 0] into
Rn with infinite length.

(1) If s1 > a1, then κ+[σΨ,P ] <∞; otherwise, κ+[σΨ,P ] =∞.
(2) If sk < a`, then κ−[σΨ,P ] <∞; otherwise κ−[σΨ,P ] =∞.

1.8. Roots with multiplicity greater than 1. Powers of t arise in this setting.
For example, if we consider the equation φ(n) = 0, then

S = Span{1, t, . . . , tn−1} .

More generally, if s is a real eigenvalue of multiplicity ν ≥ 2, then we must consider
the family of functions:

{φs,0 := est, φs,1 := test, . . . , φs,ν−1 := tν−1est} (1.c)

while if µ = a +
√
−1b for b > 0 is a complex root of multiplicity ν ≥ 2, then we

must consider the family of functions:

{φµ,0 := eat cos(bt), φµ,1 := teat cos(bt), . . . , φµ,ν−1 := tν−1eat cos(bt),

φ̃µ,0 := eat sin(bt), φ̃µ,1 := teat sin(bt), . . . , φ̃µ,ν−1 := tν−1eat sin(bt)} .
(1.d)

We will establish the following result in Section 8:

Theorem 1.7. Assume that r+(P ) > 0 and that r−(P ) < 0.

(1) If s1 = r+(P ) and if the multiplicity of s1 as a root of P is larger than the
corresponding multiplicity of any complex root µ of P with <(µ) = s1, then
κ+[σΨ,P ] <∞; otherwise κ+[σΨ,P ] =∞.

(2) If sk = r−(P ) and if the multiplicity of sk as a root of P is larger than the
corresponding multiplicity of any complex root µ of P with <(µ) = sk, then
κ−[σΨ,P ] <∞; otherwise κ−[σΨ,P ] =∞.

2. The proof of Theorem 1.1

Assume all the roots of P are simple. It then follows from the definition that

||σP ||2 =

k∑
i=1

e2sit +
∑̀
j=1

e2ajt .

Thus ||σP ||2 tends to infinity as t→∞ if and only if some si or some aj is positive
or, equivalently, if r+(P ) > 0. This implies that σP is a proper map from [0,∞)
to Rn and that the length is infinite. If s1 > 0, then φ1 = es1t is an injective map
from R to R and consequently σP is an embedding of R into Rn. If a1 > 0, then
ea1t(cos(b1t), sin(b1t)) is an injective map from R to R2 and again we may conclude
that σP is an embedding. The analysis on (−∞, 0] is similar if r−(P ) < 0 and is
therefore omitted in the interests of brevity. �
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3. The proof of Theorem 1.2

Throughout our proof, we will let Ci = Ci(P ) denote a generic positive constant;
we clear the notation after each case under consideration and after the end of any
given proof; thus Ci can have different meanings in different proofs or in different
sections of the same proof. We shall examine σP on [0,∞); the analysis on (−∞, 0]
is similar and will therefore be omitted. We suppose r+(P ) > 0 or, equivalently,
that max(s1, a1) > 0. We also assume that all the roots of P are simple. Suppose
first that s1 > a1 or that there are no complex roots. Let

ε := min
λ∈R,λ 6=s1

(s1 −<(λ)) = min
i>1,j≥1

(s1 − si, s1 − aj) > 0 .

This measures the difference between the exponential growth rate of φ1 and the
growth (or decay) rates of the functions φi of Equation (1.b) for i > 1 as t → ∞.
We have

||σ̇P ∧ σ̈P ||2 =
∑
i<j

(φ̇iφ̈j − φ̇j φ̈i)2 . (3.a)

Consequently, we may estimate:

||σ̇P ∧ σ̈P || ≤ C1e
(2s1−ε)t, ||σ̇P ||2 ≥ C2e

2s1t for t ≥ 0,
||σ̇P ∧ σ̈P ||
||σ̇P ||2

≤ C3e
−εt for t ≥ 0 .

(3.b)

We integrate the estimate of Equation (3.b) to see κ+[σP ] <∞.
Next suppose that a1 > 0 and that a1 ≥ s1 (or that there are no real roots).

Then ea1t is the dominant term and we have

||σ̇P ||2 ≤ C1e
2a1t . (3.c)

The term (φ̇iφ̈j − φ̇j φ̈i)2 in Equation (3.a) is maximized for t ≥ 0 when we take
φi = ea1t cos(b1t) and φj = ea1t sin(b1t). We have:

φ̇i = ea1t(a1 cos(b1t)− b1 sin(b1t))

φ̈i = ea1t{(a2
1 − b21) cos(b1t)− 2a1b1 sin(b1t)}

φ̇j = ea1t(a1 sin(b1t) + b1 cos(b1t)),

φ̈j = ea1t{(a2
1 − b21) sin(b1t) + 2a1b1 cos(b1t)},

φ̇2
i + φ̇2

j = (a2
1 + b21)e2a1t,

(φ̇iφ̈j − φ̇j φ̈i)2 = b21(a2
1 + b1)2e4a1t .

Since b1 6= 0, we may estimate:

||σ̇P ∧ σ̈P || ≥ C2e
2a1t . (3.d)

We use Equation (3.c) and Equation (3.d) to see

||σ̇P ∧ σ̈P ||
||σ̇P ||2

≥ C2

C1
> 0 . (3.e)

We integrate the uniform estimate of Equation (3.e) to see κ+[σP ] =∞. �
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4. The proof of Theorem 1.3

Let σs1,...,sn(t) := (es1t, . . . , esnt) for s1 > · · · > sn and n ≥ 2. We may express

κ+[σs1,...,sn ] =

∫ ∞
0

√∑
i<j

{
sisj(si − sj)e(si+sj)t

}2

{∑
k

s2
ke

2skt

}−1

dt

≤
∫ ∞

0

∑
i<j

|sisj(si − sj)|e(si+sj)t

{∑
k

s2
ke

2skt

}−1

dt

≤
∫ ∞

0

∑
i<j

|sisj(si − sj)|e(si+sj)t
{
s2
i e

2sit + s2
je

2sjt
}−1

dt

=
∑
i<j

κ+[σsi,sj ] .

Thus estimate κ+[σs1,...,sn ] ≤ n(n− 1) for n ≥ 3 will follow if we can establish the
corresponding estimate κ+[σsi,sj ] < 2 for n = 2. We set n = 2 and consider 2 cases:

Case I: s2
1 ≥ s2

2. Since s1 > s2, we must have s1 > 0. We compute:

κ+[σs1,s2 ] =

∫ ∞
0

|s1s2(s1 − s2)| e(s1+s2)t
{
s2

1e
2s1t + s2

2e
2s2t
}−1

dt

<

∫ ∞
0

|s1s2(s1 − s2)| e(s1+s2)t
{
s2

1e
2s1t
}−1

dt

=

∫ ∞
0

∣∣s−1
1 s2(s1 − s2)

∣∣ e(s2−s1)tdt =
∣∣s−1

1 s2

∣∣ ≤ 1 .

Case II: s2
1 < s2

2. Since s1 > s2, either s1 > 0 > s2 or 0 > s1 > s2. When t
is small, s2

1e
2s1t < s2

2e
2s2t while if t is large, s2

1e
2s1t > s2

2e
2s2t. Choose T so that

s2
1e

2s1T = s2
2e

2s2T . Then

s2
1e

2s1t < s2
2e

2s2t if t < T and s2
1e

2s1t > s2
2e

2s2t if t > T .

We may decompose κ+[σs1,s2 ] = I1 + I2 for

I1 =

∫ T

0

|s1s2(s1 − s2)| e(s1+s2)t
{
s2

1e
2s1t + s2

2e
2s2t
}−1

dt

I2 =

∫ ∞
T

|s1s2(s1 − s2)| e(s1+s2)t
{
s2

1e
2s1t + s2

2e
2s2t
}−1

dt .

Note that e(s1−s2)T =
∣∣s2s

−1
1

∣∣ and e(s2−s1)T =
∣∣s−1

2 s1

∣∣. We complete the proof by
estimating:

I1 ≤
∫ T

0

|s1s2(s1 − s2)| e(s1+s2)t
{
s2

2e
2s2t
}−1

dt

=
∣∣s1s

−1
2 (s1 − s2)

∣∣ ∫ T

0

e(s1−s2)tdt =
∣∣s1s

−1
2

∣∣ e(s1−s2)t
∣∣∣T
0

=
∣∣s1s

−1
2

∣∣ {e(s1−s2)T − 1
}

=
∣∣s1s

−1
2

∣∣ {∣∣s2s
−1
1

∣∣− 1
}

= 1−
∣∣s2s

−1
1

∣∣ < 1,

I2 ≤
∫ ∞
T

|s1s2(s1 − s2)| e(s1+s2)t
{
s2

1e
2s1t
}−1

dt

=
∣∣s−1

1 s2(s1 − s2)
∣∣ ∫ ∞
T

e(s2−s1)tdt = −
∣∣s−1

1 s2

∣∣ e(s2−s1)t

∣∣∣∣∞
t=T

= 1. �
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5. The proof of Theorem 1.5

Let θ >> 1. We set

uk,θ := ekθ and σn,θ(t) := (e−u1,θt, . . . , e−un,θt) .

We have:

κ+[σn,θ] =

∫ ∞
0

(∑
i<j

{
(ui,θ − uj,θ)ui,θuj,θe−(ui,θ+uj,θ)t

}2
) 1

2∑
` u

2
`,θe
−2u`,θt

dt . (5.a)

To obtain a lower estimate for κ+[σn,θ], we must obtain an upper estimate for the
denominator D(t) :=

∑
` u

2
`,θe
−2u`,θt in Equation (5.a). We determine the maximal

term in D(t) on various intervals and complete the proof of Theorem 1.5:

Lemma 5.1. Set fk,θ(t) := uk,θe
−uk,θt.

(1) There exists a unique positive real number Tk,θ so fk,θ(Tk,θ) = fk+1,θ(Tk,θ).

(a) Tk,θ = θe−(k+1)θ(1− e−θ)−1.
(b) If t < Tk,θ, then fk,θ(t) < fk+1,θ(t).
(c) If t > Tk,θ, then fk,θ(t) > fk+1,θ(t).

(2) If j ∈ {k, k + 1, k + 2} and if t ∈ [Tk+1,θ, Tk,θ], then fj,θ(t) ≤ fk+1,θ(t).
(3) If 0 < δ < 1, there exists θ(δ) > 1 so that if θ ≥ θ(δ), if j /∈ {k, k+1, k+2},

and if t ∈ [Tk+1,θ, Tk,θ], then fj,θ(t) ≤ δfk+1,θ(t).
(4) If 0 < δ < 1, there exists θ(δ) > 1 so that if θ ≥ θ(δ), then∫ Tk,θ

Tk+1,θ

uk,θuk+1,θ(uk+1,θ − uk,θ)e−(uk,θ+uk+1,θ)t

u2
k+1,θe

−2uk+1,θt
dt ≥ 1− δ .

(5) If 0 < ε < 1, there exists θ(ε) > 1 so θ ≥ θ(ε) implies:

(a)

∫ Tk,θ

Tk+1,θ

κ(σn,θ)ds ≥ 1
3 −

1
nε for 1 ≤ k ≤ n− 1.

(b) κ+[σn,θ] ≥ 1
3 (n− 1)− ε.

Proof. Since 0 < uk,θ < uk+1,θ, fk,θ(t)− fk+1,θ(t) is negative for t = 0 and positive
for t large. Thus there exists Tk,θ ∈ R+ so fk,θ(Tk,θ) = fk+1,θ(Tk,θ). We show Tk,θ
is unique by determining its value. We have:

fk,θ(Tk,θ) = fk+1,θ(Tk,θ) ⇔
log(uk,θ)− uk,θTk,θ = log(uk+1,θ)− uk+1,θTk,θ ⇔
kθ − ekθTk,θ = (k + 1)θ − e(k+1)θTk,θ ⇔
Tk,θ = θ(e(k+1)θ − ekθ)−1 = θe−(k+1)θ(1− e−θ)−1 .

Assertion 1 follows from this computation and the Intermediate Value Theorem.
Note that Tn,θ < Tn−1,θ < · · · < T2,θ < T1,θ. Let t ∈ [Tk+1,θ, Tk,θ]. The

inequality of Assertion 2 is immediate if j = k+1. Since t ≤ Tk,θ, fk,θ(t) ≤ fk+1,θ(t)
by Assertion 1b. Since t ≥ Tk+1,θ, fk+1,θ(t) ≥ fk+2,θ(t) by Assertion 1c. This
proves Assertion 2.

Assertion 3 estimates fj,θ(t) for t ∈ [Tk+1,θ, Tk,θ] for the remaining values of j
which are distinct from k, k + 1, and k + 2. Let 1 ≤ k ≤ n − 1. Given 0 < δ < 1,
choose θ(δ) >> 1 so θ ≥ θ(δ) implies

(1− e−θ)−1 ≤ 1 + δ and
uj,θ − uk+1,θ ≥ (1− δ)uj,θ if 3 ≤ k + 2 < j ≤ n . (5.b)

By Equation (5.b), we have that:

Tk,θ = θe−(k+1)θ(1− e−θ)−1 ≤ (1 + δ)θe−(k+1)θ .
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Let j < k and t ∈ [Tk+1,θ, Tk,θ]. Thus, in particular, t ≤ Tk,θ. As uk+1,θ −uj,θ > 0,

fj,θ(t)fk+1,θ(t)
−1 = e(j−k−1)θe(uk+1,θ−uj,θ)t

≤ e(j−k−1)θeuk+1,θTk,θ ≤ e(j−k−1)θee
(k+1)θ·(1+δ)θe−(k+1)θ

= e(j−k+δ)θ .

This can be made arbitrarily small if θ is large since j − k + δ < 0. This proves
Assertion 3 if j < k. Next suppose j > k + 2. Since t ∈ [Tk+1,θ, Tk,θ],

t ≥ Tk+1,θ = θe−(k+2)θ(1− e−θ)−1 ≥ θe−(k+2)θ .

As uk+1,θ − uj,θ < 0, Equation (5.b) implies:

fj,θ(t)fk+1,θ(t)
−1 = eθ(j−k−1)e(uk+1,θ−uj,θ)t

≤ eθ(j−k−1)e(uk+1,θ−uj,θ)θe−(k+2)θ

≤ eθ(j−k−1)e−(1−δ)ejθθe−(k+2)θ

= eθ(j−k−1−(1−δ)e(j−k−2)θ) .

This term goes to zero as θ →∞ since j − k− 2 > 0. This establishes Assertion 3.
To prove Assertion 4, we compute:∫ Tk,θ

Tk+1,θ

uk,θuk+1,θ(uk+1,θ − uk,θ)e−(uk,θ+uk+1,θ)t

u2
k+1,θe

−2uk+1,θt
dt

= uk,θu
−1
k+1,θe

(uk+1,θ−uk,θ)t
∣∣∣Tk,θ
t=Tk+1,θ

= uk,θu
−1
k+1,θe

(uk+1,θ−uk,θ)Tk,θ{1− e(uk+1,θ−uk,θ)(Tk+1,θ−Tk,θ)}

= 1− e(uk+1,θ−uk,θ)(Tk+1,θ−Tk,θ)

= 1− e{eθk(eθ−1)}·{θ(eθ−1)−1{e−(k+1)θ−e−kθ}

= 1− eθ(e−θ−1).

Assertion 4 follows as θ(e−θ − 1) tends to −∞ as θ tends to ∞.
We use Assertion 2 and Assertion 3 to see that if t ∈ [Tk+1,θ, Tk,θ], then∑

`

u2
`,θe
−2u`,θt ≤ (3 + nδ)u2

k+1,θe
−2uk+1,θt,

∫ Tk,θ

Tk+1,θ

κ(σn,θ)ds

=

∫ Tk,θ

Tk+1,θ

(
∑
i<j

{
(ui,θ − uj,θ)ui,θuj,θe−(ui,θ+uj,θ)t

}2
)

1
2∑

` u
2
`,θe
−2u`,θt

dt

≥
∫ Tk,θ

Tk+1,θ

(uk+1,θ − uk,θ)uk+1,θuk,θe
−(uk,θ+uk+1,θ)t∑

` u
2
`,θe
−2u`,θt

dt

≥
∫ Tk,θ

Tk+1,θ

(uk+1,θ − uk,θ)uk+1,θuk,θe
−(uk,θ+uk+1,θ)t

(3 + nδ)u2
k+1,θe

−2uk+1,θt
dt

≥ (1− δ)(3 + nδ)−1.

Assertion 5a now follows by choosing δ = δ(ε) appropriately. We sum this estimate
for 1 ≤ k ≤ n − 1 to establish Assertion 5b and thereby complete the proof of
Theorem 1.5. �
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6. Examples

We now examine several specific cases. Since the eigenvalues are to be simple,
we can just specify P or equivalently R; the corresponding operator P is then:

P = P
(
d

dt

)
=
∏
λ∈R

{
d

dt
− λ
}
.

Example 6.1. Let P(λ) = λn − 1. The roots of P are the nth roots of unity and
all the roots have multiplicity 1. Since P(1) = 0, 1 is always a root.

Case I: Suppose that n is odd. Then 1 is the only real root of P. The remaining
roots are all complex. Thus k = 1 and it follows that σP is a proper embedding of
infinite length from [0,∞) to Rn. If λn = 1 and λ 6= 1, then necessarily <(λ) < 1.
It now follows that κ+[σP ] is finite. There exists a complex nth root of unity with
<(λ) < 0. Consequently, σP is also a proper embedding of infinite length from
(−∞, 0] to Rn. Since there are no real roots with si < 0, we conclude κ−[σP ] is
infinite.

Case II: Suppose that n is even. Then ±1 are the two real roots of P. It now
follows that σP is a proper embedding of infinite length from [0,∞) to Rn and from
(−∞, 0] to Rn. If λn = 1 and λ is not real, then −1 < <(λ) < 1. Consequently,
κ+[σP ] and κ−[σP ] are both finite.

Example 6.2. Let n ≥ 3. Let {1, . . . , n− 2,−1±
√
−1} be the roots of P. Then

σP is a proper embedding of infinite length from [0,∞) to Rn and from (−∞, 0]
to Rn, κ+[σP ] is finite, and κ−[σP ] is infinite. We adjust the angular parameter to
emphasize the radial revolution and let the roots be {1,−1 ± 5

√
−1}. This yields

the curve:

C(t) = (cos(5t)e−t, sin(5t)e−t, et)

This curve curve hugs the z axis for t > 0 and becomes a spiral in the xy plane for
t < 0. It has exponentially decaying curvature as t → ∞ and infinite curvature as
t→ −∞. We draw the 2-dimensional projection

D(t) = (cos(5t)e−t, sin(5t)e−t)

Example 6.3. Let n ≥ 3. Let {−1, . . . , 2− n, 1±
√
−1} be the roots of P. Then

σP is a proper embedding of infinite length from [0,∞) to Rn and from (−∞, 0] to
Rn, κ+[σP ] is infinite, and κ−[σP ] is finite.

Example 6.4. Let n ≥ 2. Let {1, . . . , n − 1,−1} be the roots of P. Then σP is
a proper embedding of infinite length from [0,∞) to Rn and from (−∞, 0] to Rn,
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κ+[σP ] is finite, and κ−[σP ] is finite. The following curve hugs the z axis for t < 0
and hugs the curve y = x2 in the xy plane for t > 0. The total curvature is finite. It
has exponentially decaying curvature as t→∞ and infinite curvature as t→ −∞.

C(t) = (et, e2t, e−t) D(t) = (et, e2t)

By considering the roots {1, a,−1} for a > 0, one can construct curves which
asymptotically approach the curve y = xa for x > 0 in the xy plane as t→∞.

Example 6.5. Let n = 3. Let {1, 1,−1} be the roots of P. Then σP is a proper
embedding of infinite length from [0,∞) to Rn and from (−∞, 0] to Rn, κ+[σP ] is
finite, and κ−[σP ] is finite. The following curve hugs the z axis for t < 0 and hugs
the curve (et, tet) for t > 0. Both have finite total curvature.

C(t) = (et, tet, e−t) D(t) = (et, tet)

Example 6.6. Let n = 4. Let the roots of P be {1 ± 5
√
−1,−1 ±

√
−1}. Then

σP is a proper embedding of infinite length from [0,∞) to Rn and from (−∞, 0] to
Rn, κ+[σP ] is infinite, and κ−[σP ] is infinite. This yields

C(t) = (et cos(5t), et sin(5t), e−t cos(5t), e−t sin(5t)) .

Example 6.7. Let n = 2k + 1 ≥ 5 be odd. Let

{0, 1±
√
−1,−1±

√
−1, . . . ,−(k − 1)±

√
−1}

be the roots of P. Then σP is a proper embedding of infinite length from [0,∞) to
Rn and from (−∞, 0] to Rn, κ+[σP ] is infinite, and κ−[σP ] is infinite.

7. The proof of Theorem 1.6

Let Φ = {φ1, . . . , φn} be the standard basis for S given in Equation (1.b) and
let Ψ = {ψ1, . . . , ψn} be any other basis for S. Express

ψi = Θj
iφj

where we adopt the Einstein convention and sum over repeated indices. We use Θj
i

to make a linear change of basis on Rn and to regard σΨ,P = Θ◦σP ; correspondingly,
this defines a new inner product 〈·, ·〉 := Θ∗(·, ·) on Rn so that

||σ̇Ψ,P || = ||σ̇P ||Θ and ||σ̇Ψ,P ∧ σ̈Ψ,P || = ||σ̇P ∧ σ̈P ||Θ . (7.a)

Any two norms on a finite dimensional real vector space are equivalent. Thus

C1||v|| ≤ ||v||Θ ≤ C2||v|| . (7.b)

The desired result now follows from Theorem 1.1, Theorem 1.2, Equation (7.a),
and Equation (7.b). �
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8. The proof of Theorem 1.7

We will assume that Ψ is the standard basis for S as the methods discussed in
Section 7 suffice to derive the general result from this specific example. We shall
deal with [0,∞) as the situation for (−∞, 0] is similar. The proof that r+(P ) > 0
implies σP is a proper embedding of [0,∞) into Rn with infinite length is unchanged
by any questions of multiplicity since est or {eat cos(bt), eat sin(bt)} are still among
the solutions of P for suitably chosen s or (a, b). We adopt the notation of Equa-
tion (1.c) to define the functions φs,` = t`est for s ∈ R and we adopt the notation

of Equation (1.d) to define the functions φµ,` = t`eat cos(bt) and φ̃µ,` = t`eat sin(bt)

for µ = a+ b
√
−1. We divide our discussion of κ+[σP ] into several cases:

Case I: Suppose that s1 > a1 and that s1 is a real root of order ν. If ν = 1,
the proof of Theorem 1.2 extends to show κ+[σP ] is finite; the multiplicity of the
other roots plays no role as the exponential decay e−εt swamps any powers of t. We
suppose therefore that the multiplicity ν(s1) > 1. We will show that there exists
t0 so that:

||σ̇P ||2 ≥ C1t
2ν−2e2s1t for t ≥ t0, (8.a)

||σ̇P ∧ σ̈P || ≤ C2t
2ν−4e2s1t for t ≥ t0 . (8.b)

It will then follow that

||σ̇P ∧ σ̈P ||
||σ̇P ||2

≤ C3t
−2 for t ≥ t0 .

Since this is integrable on [0,∞), we may conclude κ+[σP ] is finite as desired.
We establish Equation (8.a) by noting that we have the following estimate:

||σ̇P ||2 =

n∑
i=1

|φ̇i|2 ≥ |φ̇s1,ν−1|2 = {s1t
ν−1 + (ν − 1)tν−2}2e2s1t

≥ s2
1t

2(ν−1)e2s1t for t sufficiently large .

When dealing with [0,∞), we may take t0 = 1. However, when dealing with
(−∞, 0], we must take t0 << 0 to ensure that the term s1t

ν−1 dominates the term
(ν − 1)tν−2 since these terms might have opposite signs and cancellation could
occur.

We may compute that:

||σ̇P ∧ σ̈P ||2 =
∑
i<j

(φ̇iφ̈j − φ̇j φ̈i)2 . (8.c)

The assumption s1 > a1 shows that the maximal term in this sum occurs when
φi = φs1,ν−1 and φj = φs1,ν−2 and thus

||σ̇P ∧ σ̈P ||2 ≤
n(n− 1)

2
{φ̇s1,ν−1φ̈s1,ν−2 − φ̇s1,ν−2φ̈s1,ν−1}2 for t ≥ t0 .

We have:

φ̇s1,ν−1 = (s1t
ν−1 + (ν − 1)tν−2)es1t,

φ̈s1,ν−1 = (s2
1t
ν−1 + 2s1(ν − 1)tν−2 + (ν − 1)(ν − 2)tν−3)es1t,

φ̇s1,ν−2 = (s1t
ν−2 + (ν − 2)tν−3)es1t,

φ̈s1,ν−2 = (s2
1t
ν−2 + 2s1(ν − 2)tν−3 + (ν − 2)(ν − 3)tν−4)es1t,
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Consequently:

φ̇s1,ν−1φ̈s1,ν−2 − φ̇s1,ν−2φ̈s1,ν−1

=
{

(s1t
ν−1 + (ν − 1)tν−2)

× (s2
1t
ν−2 + 2s1(ν − 2)tν−3 + (ν − 2)(ν − 3)tν−3)

}
e2s1t

−
{

(s1t
ν−2 + (ν − 2)tν−3)

× (s2
1t
ν−1 + 2s1(ν − 1)tν−2 + (ν − 1)(ν − 2)tν−3)

}
e2s1t

The leading terms cancel:

{(s1t
ν−1s2

1t
ν−2)− (s1t

ν−2s2
1t
ν−1)}e2s1t = 0 .

The remaining terms are O(t2ν−4e2s1t) as desired; Equation (8.b) now follows. This
shows κ+[σP ] is finite if s1 > a1.

Case II: Suppose a1 > s1. Choose the complex root µ1 = a1 + b1
√
−1 to have

maximal multiplicity ν among all the complex roots t ∈ R with <(t) = a1. The

dominant term in Equation (8.c) occurs when φi = φµ1,ν−1 and φj = φ̃µ1,ν−1. Dif-
ferentiating powers of t lowers the order in t and give rise to lower order terms. Thus
we may ignore these derivatives and use the computations performed in Section 3
to see:

C1t
2ν−2e2a1t ≤ ||σ̇P ||2 ≤ C2t

2ν−2e2a1t for t ≥ t0,
(φ̇iφ̈j − φ̇j φ̈i)2 ≥ C3t

4(ν−1)e4a1t for t ≥ t0 .
We may now conclude that κ+[σP ] =∞.

Case III: The difficulty comes when a1 = s1. If µ1 is a complex root of multiplicity
at least as great as the multiplicity of s1, the {φµ1,ν−1, φ̃µ1,ν−1} terms dominate the
computation and the argument given above in Case II implies κ+[σP ] is infinite.
On the other hand, if all the complex roots with <(λ) = s1 have multiplicity less
than the multiplicity of s1, then the φs1,ν−1 terms dominate the computation and
the argument given above in Case I shows that κ+[σP ] is finite. �

We conclude this section with an example where the multiplicity plays a crucial
role and where our previous results are not applicable.

Example 8.1. Let P (φ) = φ(n) for n ≥ 2. Then R = {0} and 0 is a root of
multiplicity n. We have S = Span{φ1 := 1, φ2 := t, ..., φn := tn−1}. Since t ∈ S,
σP is a proper map of infinite length on [0,∞) and on (−∞, 0]. We have:

|σ̇P |2 ≥ C1t
2n−2, and∑

i<j

(φ̈iφ̇j − φ̈j φ̇i)2

=
∑
i<j

((i− 1)(i− 2)(j − 1)− (j − 1)(j − 2)(i− 1))2t2(i+j−3)

≤ C2t
2(2n−4) .

Consequently |κ| ≤ C3
t2n−4

t2n−2 for |t| ≥ 1. This is integrable so κ+[σP ] < ∞ and
κ−[σP ] <∞.
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