- 1. Let $f \in \mathsf{k}[x_1,\ldots,x_n]$. Prove $df = \sum_{i=1}^n \frac{\partial f}{\partial x_i} dx_i$.
- 2. Let X and Y be affine algebraic varieties. Prove

$$\Omega[X \times Y] = \Omega[X] \otimes_{\mathsf{k}[X]} \mathsf{k}[X \times Y] \oplus \Omega[Y] \otimes_{\mathsf{k}[Y]} \mathsf{k}[X \times Y].$$

- 3. Let $C \subset \mathbb{A}^2$ be the affine algebraic curve cut out by $x^2 + y^2 = 1$. Let char $k \neq 2$. Prove that
- a) Any regular function on C can be uniquely written in the form f(y) + xg(y) for some polynomials f, g.
- b) Any regular differential form on C can be uniquely written in the form f(y)dx + (g(y) + xh)dy for some polynomials f, g and a constant $h \in k$.
- c) The differential forms $\frac{dx}{y}$ on D_y and $-\frac{dy}{x}$ on D_x coincide on the intersection D_{xy} of these open sets. Thus they give rise to a global regular differential form ω on C.
 - d) Write down ω in the form of b).
- 4. Consider the elliptic curve $E \subset \mathbb{P}^2$ cut out by $y^2z = x(x-z)(x-\lambda z)$, where $\lambda \in \mathsf{k}$ is a fixed parameter distinct from 0 and 1. In the open chart $D_z \cap E$, consider the differential form $\omega = \frac{dx}{y}$. Prove that
 - a) ω is regular on $D_z \cap E$.
 - b) ω extends (uniquely) to a regular differential form on the whole of E.
 - c) ω vanishes nowhere on E.
 - d) Any global regular differential form on E is a scalar multiple of ω .
 - 5. Prove that any algebraic group is smooth at any point.
- **76**.a) Let $C \subset \mathbb{A}^3$ be a reducible algebraic curve equal to the union of 3 coordinate lines. Prove that the ideal $J_C \subset \mathsf{k}[x,y,z]$ can not be generated by 2 elements.
 - b) Give an example of an affine curve that can not be a closed subvariety in \mathbb{A}^{2021} .
- c) Give an example of an irreducible affine curve that can not be a closed subvariety in \mathbb{A}^{2021} .